You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/drivers/rtc/rtc-sa1100.c

378 lines
8.9 KiB

/*
* Real Time Clock interface for StrongARM SA1x00 and XScale PXA2xx
*
* Copyright (c) 2000 Nils Faerber
*
* Based on rtc.c by Paul Gortmaker
*
* Original Driver by Nils Faerber <nils@kernelconcepts.de>
*
* Modifications from:
* CIH <cih@coventive.com>
* Nicolas Pitre <nico@cam.org>
* Andrew Christian <andrew.christian@hp.com>
*
* Converted to the RTC subsystem and Driver Model
* by Richard Purdie <rpurdie@rpsys.net>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/rtc.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/interrupt.h>
#include <linux/string.h>
#include <linux/pm.h>
#include <asm/bitops.h>
#include <asm/hardware.h>
#include <asm/irq.h>
#include <asm/rtc.h>
#ifdef CONFIG_ARCH_PXA
#include <asm/arch/pxa-regs.h>
#endif
#define TIMER_FREQ CLOCK_TICK_RATE
#define RTC_DEF_DIVIDER 32768 - 1
#define RTC_DEF_TRIM 0
static unsigned long rtc_freq = 1024;
static struct rtc_time rtc_alarm;
static DEFINE_SPINLOCK(sa1100_rtc_lock);
static int rtc_update_alarm(struct rtc_time *alrm)
{
struct rtc_time alarm_tm, now_tm;
unsigned long now, time;
int ret;
do {
now = RCNR;
rtc_time_to_tm(now, &now_tm);
rtc_next_alarm_time(&alarm_tm, &now_tm, alrm);
ret = rtc_tm_to_time(&alarm_tm, &time);
if (ret != 0)
break;
RTSR = RTSR & (RTSR_HZE|RTSR_ALE|RTSR_AL);
RTAR = time;
} while (now != RCNR);
return ret;
}
static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id)
{
struct platform_device *pdev = to_platform_device(dev_id);
struct rtc_device *rtc = platform_get_drvdata(pdev);
unsigned int rtsr;
unsigned long events = 0;
spin_lock(&sa1100_rtc_lock);
rtsr = RTSR;
/* clear interrupt sources */
RTSR = 0;
RTSR = (RTSR_AL | RTSR_HZ) & (rtsr >> 2);
/* clear alarm interrupt if it has occurred */
if (rtsr & RTSR_AL)
rtsr &= ~RTSR_ALE;
RTSR = rtsr & (RTSR_ALE | RTSR_HZE);
/* update irq data & counter */
if (rtsr & RTSR_AL)
events |= RTC_AF | RTC_IRQF;
if (rtsr & RTSR_HZ)
events |= RTC_UF | RTC_IRQF;
rtc_update_irq(&rtc->class_dev, 1, events);
if (rtsr & RTSR_AL && rtc_periodic_alarm(&rtc_alarm))
rtc_update_alarm(&rtc_alarm);
spin_unlock(&sa1100_rtc_lock);
return IRQ_HANDLED;
}
static int rtc_timer1_count;
static irqreturn_t timer1_interrupt(int irq, void *dev_id)
{
struct platform_device *pdev = to_platform_device(dev_id);
struct rtc_device *rtc = platform_get_drvdata(pdev);
/*
* If we match for the first time, rtc_timer1_count will be 1.
* Otherwise, we wrapped around (very unlikely but
* still possible) so compute the amount of missed periods.
* The match reg is updated only when the data is actually retrieved
* to avoid unnecessary interrupts.
*/
OSSR = OSSR_M1; /* clear match on timer1 */
rtc_update_irq(&rtc->class_dev, rtc_timer1_count, RTC_PF | RTC_IRQF);
if (rtc_timer1_count == 1)
rtc_timer1_count = (rtc_freq * ((1<<30)/(TIMER_FREQ>>2)));
return IRQ_HANDLED;
}
static int sa1100_rtc_read_callback(struct device *dev, int data)
{
if (data & RTC_PF) {
/* interpolate missed periods and set match for the next */
unsigned long period = TIMER_FREQ/rtc_freq;
unsigned long oscr = OSCR;
unsigned long osmr1 = OSMR1;
unsigned long missed = (oscr - osmr1)/period;
data += missed << 8;
OSSR = OSSR_M1; /* clear match on timer 1 */
OSMR1 = osmr1 + (missed + 1)*period;
/* Ensure we didn't miss another match in the mean time.
* Here we compare (match - OSCR) 8 instead of 0 --
* see comment in pxa_timer_interrupt() for explanation.
*/
while( (signed long)((osmr1 = OSMR1) - OSCR) <= 8 ) {
data += 0x100;
OSSR = OSSR_M1; /* clear match on timer 1 */
OSMR1 = osmr1 + period;
}
}
return data;
}
static int sa1100_rtc_open(struct device *dev)
{
int ret;
ret = request_irq(IRQ_RTC1Hz, sa1100_rtc_interrupt, IRQF_DISABLED,
"rtc 1Hz", dev);
if (ret) {
dev_err(dev, "IRQ %d already in use.\n", IRQ_RTC1Hz);
goto fail_ui;
}
ret = request_irq(IRQ_RTCAlrm, sa1100_rtc_interrupt, IRQF_DISABLED,
"rtc Alrm", dev);
if (ret) {
dev_err(dev, "IRQ %d already in use.\n", IRQ_RTCAlrm);
goto fail_ai;
}
ret = request_irq(IRQ_OST1, timer1_interrupt, IRQF_DISABLED,
"rtc timer", dev);
if (ret) {
dev_err(dev, "IRQ %d already in use.\n", IRQ_OST1);
goto fail_pi;
}
return 0;
fail_pi:
free_irq(IRQ_RTCAlrm, dev);
fail_ai:
free_irq(IRQ_RTC1Hz, dev);
fail_ui:
return ret;
}
static void sa1100_rtc_release(struct device *dev)
{
spin_lock_irq(&sa1100_rtc_lock);
RTSR = 0;
OIER &= ~OIER_E1;
OSSR = OSSR_M1;
spin_unlock_irq(&sa1100_rtc_lock);
free_irq(IRQ_OST1, dev);
free_irq(IRQ_RTCAlrm, dev);
free_irq(IRQ_RTC1Hz, dev);
}
static int sa1100_rtc_ioctl(struct device *dev, unsigned int cmd,
unsigned long arg)
{
switch(cmd) {
case RTC_AIE_OFF:
spin_lock_irq(&sa1100_rtc_lock);
RTSR &= ~RTSR_ALE;
spin_unlock_irq(&sa1100_rtc_lock);
return 0;
case RTC_AIE_ON:
spin_lock_irq(&sa1100_rtc_lock);
RTSR |= RTSR_ALE;
spin_unlock_irq(&sa1100_rtc_lock);
return 0;
case RTC_UIE_OFF:
spin_lock_irq(&sa1100_rtc_lock);
RTSR &= ~RTSR_HZE;
spin_unlock_irq(&sa1100_rtc_lock);
return 0;
case RTC_UIE_ON:
spin_lock_irq(&sa1100_rtc_lock);
RTSR |= RTSR_HZE;
spin_unlock_irq(&sa1100_rtc_lock);
return 0;
case RTC_PIE_OFF:
spin_lock_irq(&sa1100_rtc_lock);
OIER &= ~OIER_E1;
spin_unlock_irq(&sa1100_rtc_lock);
return 0;
case RTC_PIE_ON:
spin_lock_irq(&sa1100_rtc_lock);
OSMR1 = TIMER_FREQ/rtc_freq + OSCR;
OIER |= OIER_E1;
rtc_timer1_count = 1;
spin_unlock_irq(&sa1100_rtc_lock);
return 0;
case RTC_IRQP_READ:
return put_user(rtc_freq, (unsigned long *)arg);
case RTC_IRQP_SET:
if (arg < 1 || arg > TIMER_FREQ)
return -EINVAL;
rtc_freq = arg;
return 0;
}
return -ENOIOCTLCMD;
}
static int sa1100_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
rtc_time_to_tm(RCNR, tm);
return 0;
}
static int sa1100_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
unsigned long time;
int ret;
ret = rtc_tm_to_time(tm, &time);
if (ret == 0)
RCNR = time;
return ret;
}
static int sa1100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
u32 rtsr;
memcpy(&alrm->time, &rtc_alarm, sizeof(struct rtc_time));
rtsr = RTSR;
alrm->enabled = (rtsr & RTSR_ALE) ? 1 : 0;
alrm->pending = (rtsr & RTSR_AL) ? 1 : 0;
return 0;
}
static int sa1100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
int ret;
spin_lock_irq(&sa1100_rtc_lock);
ret = rtc_update_alarm(&alrm->time);
if (ret == 0) {
if (alrm->enabled)
RTSR |= RTSR_ALE;
else
RTSR &= ~RTSR_ALE;
}
spin_unlock_irq(&sa1100_rtc_lock);
return ret;
}
static int sa1100_rtc_proc(struct device *dev, struct seq_file *seq)
{
seq_printf(seq, "trim/divider\t: 0x%08x\n", (u32) RTTR);
seq_printf(seq, "update_IRQ\t: %s\n",
(RTSR & RTSR_HZE) ? "yes" : "no");
seq_printf(seq, "periodic_IRQ\t: %s\n",
(OIER & OIER_E1) ? "yes" : "no");
seq_printf(seq, "periodic_freq\t: %ld\n", rtc_freq);
return 0;
}
static const struct rtc_class_ops sa1100_rtc_ops = {
.open = sa1100_rtc_open,
.read_callback = sa1100_rtc_read_callback,
.release = sa1100_rtc_release,
.ioctl = sa1100_rtc_ioctl,
.read_time = sa1100_rtc_read_time,
.set_time = sa1100_rtc_set_time,
.read_alarm = sa1100_rtc_read_alarm,
.set_alarm = sa1100_rtc_set_alarm,
.proc = sa1100_rtc_proc,
};
static int sa1100_rtc_probe(struct platform_device *pdev)
{
struct rtc_device *rtc;
/*
* According to the manual we should be able to let RTTR be zero
* and then a default diviser for a 32.768KHz clock is used.
* Apparently this doesn't work, at least for my SA1110 rev 5.
* If the clock divider is uninitialized then reset it to the
* default value to get the 1Hz clock.
*/
if (RTTR == 0) {
RTTR = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16);
dev_warn(&pdev->dev, "warning: initializing default clock divider/trim value\n");
/* The current RTC value probably doesn't make sense either */
RCNR = 0;
}
rtc = rtc_device_register(pdev->name, &pdev->dev, &sa1100_rtc_ops,
THIS_MODULE);
if (IS_ERR(rtc))
return PTR_ERR(rtc);
platform_set_drvdata(pdev, rtc);
return 0;
}
static int sa1100_rtc_remove(struct platform_device *pdev)
{
struct rtc_device *rtc = platform_get_drvdata(pdev);
if (rtc)
rtc_device_unregister(rtc);
return 0;
}
static struct platform_driver sa1100_rtc_driver = {
.probe = sa1100_rtc_probe,
.remove = sa1100_rtc_remove,
.driver = {
.name = "sa1100-rtc",
},
};
static int __init sa1100_rtc_init(void)
{
return platform_driver_register(&sa1100_rtc_driver);
}
static void __exit sa1100_rtc_exit(void)
{
platform_driver_unregister(&sa1100_rtc_driver);
}
module_init(sa1100_rtc_init);
module_exit(sa1100_rtc_exit);
MODULE_AUTHOR("Richard Purdie <rpurdie@rpsys.net>");
MODULE_DESCRIPTION("SA11x0/PXA2xx Realtime Clock Driver (RTC)");
MODULE_LICENSE("GPL");