You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/mm/vmstat.c

863 lines
20 KiB

/*
* linux/mm/vmstat.c
*
* Manages VM statistics
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*
* zoned VM statistics
* Copyright (C) 2006 Silicon Graphics, Inc.,
* Christoph Lameter <christoph@lameter.com>
*/
#include <linux/mm.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/cpu.h>
#include <linux/sched.h>
#ifdef CONFIG_VM_EVENT_COUNTERS
DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
EXPORT_PER_CPU_SYMBOL(vm_event_states);
static void sum_vm_events(unsigned long *ret, cpumask_t *cpumask)
{
int cpu = 0;
int i;
memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
cpu = first_cpu(*cpumask);
while (cpu < NR_CPUS) {
struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
cpu = next_cpu(cpu, *cpumask);
if (cpu < NR_CPUS)
prefetch(&per_cpu(vm_event_states, cpu));
for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
ret[i] += this->event[i];
}
}
/*
* Accumulate the vm event counters across all CPUs.
* The result is unavoidably approximate - it can change
* during and after execution of this function.
*/
void all_vm_events(unsigned long *ret)
{
sum_vm_events(ret, &cpu_online_map);
}
EXPORT_SYMBOL_GPL(all_vm_events);
#ifdef CONFIG_HOTPLUG
/*
* Fold the foreign cpu events into our own.
*
* This is adding to the events on one processor
* but keeps the global counts constant.
*/
void vm_events_fold_cpu(int cpu)
{
struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
int i;
for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
count_vm_events(i, fold_state->event[i]);
fold_state->event[i] = 0;
}
}
#endif /* CONFIG_HOTPLUG */
#endif /* CONFIG_VM_EVENT_COUNTERS */
/*
* Manage combined zone based / global counters
*
* vm_stat contains the global counters
*/
atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
EXPORT_SYMBOL(vm_stat);
#ifdef CONFIG_SMP
static int calculate_threshold(struct zone *zone)
{
int threshold;
int mem; /* memory in 128 MB units */
/*
* The threshold scales with the number of processors and the amount
* of memory per zone. More memory means that we can defer updates for
* longer, more processors could lead to more contention.
* fls() is used to have a cheap way of logarithmic scaling.
*
* Some sample thresholds:
*
* Threshold Processors (fls) Zonesize fls(mem+1)
* ------------------------------------------------------------------
* 8 1 1 0.9-1 GB 4
* 16 2 2 0.9-1 GB 4
* 20 2 2 1-2 GB 5
* 24 2 2 2-4 GB 6
* 28 2 2 4-8 GB 7
* 32 2 2 8-16 GB 8
* 4 2 2 <128M 1
* 30 4 3 2-4 GB 5
* 48 4 3 8-16 GB 8
* 32 8 4 1-2 GB 4
* 32 8 4 0.9-1GB 4
* 10 16 5 <128M 1
* 40 16 5 900M 4
* 70 64 7 2-4 GB 5
* 84 64 7 4-8 GB 6
* 108 512 9 4-8 GB 6
* 125 1024 10 8-16 GB 8
* 125 1024 10 16-32 GB 9
*/
mem = zone->present_pages >> (27 - PAGE_SHIFT);
threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
/*
* Maximum threshold is 125
*/
threshold = min(125, threshold);
return threshold;
}
/*
* Refresh the thresholds for each zone.
*/
static void refresh_zone_stat_thresholds(void)
{
struct zone *zone;
int cpu;
int threshold;
for_each_zone(zone) {
if (!zone->present_pages)
continue;
threshold = calculate_threshold(zone);
for_each_online_cpu(cpu)
zone_pcp(zone, cpu)->stat_threshold = threshold;
}
}
/*
* For use when we know that interrupts are disabled.
*/
void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
int delta)
{
struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
s8 *p = pcp->vm_stat_diff + item;
long x;
x = delta + *p;
if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {
zone_page_state_add(x, zone, item);
x = 0;
}
*p = x;
}
EXPORT_SYMBOL(__mod_zone_page_state);
/*
* For an unknown interrupt state
*/
void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
int delta)
{
unsigned long flags;
local_irq_save(flags);
__mod_zone_page_state(zone, item, delta);
local_irq_restore(flags);
}
EXPORT_SYMBOL(mod_zone_page_state);
/*
* Optimized increment and decrement functions.
*
* These are only for a single page and therefore can take a struct page *
* argument instead of struct zone *. This allows the inclusion of the code
* generated for page_zone(page) into the optimized functions.
*
* No overflow check is necessary and therefore the differential can be
* incremented or decremented in place which may allow the compilers to
* generate better code.
* The increment or decrement is known and therefore one boundary check can
* be omitted.
*
* NOTE: These functions are very performance sensitive. Change only
* with care.
*
* Some processors have inc/dec instructions that are atomic vs an interrupt.
* However, the code must first determine the differential location in a zone
* based on the processor number and then inc/dec the counter. There is no
* guarantee without disabling preemption that the processor will not change
* in between and therefore the atomicity vs. interrupt cannot be exploited
* in a useful way here.
*/
void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
{
struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
s8 *p = pcp->vm_stat_diff + item;
(*p)++;
if (unlikely(*p > pcp->stat_threshold)) {
int overstep = pcp->stat_threshold / 2;
zone_page_state_add(*p + overstep, zone, item);
*p = -overstep;
}
}
void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
__inc_zone_state(page_zone(page), item);
}
EXPORT_SYMBOL(__inc_zone_page_state);
void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
{
struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
s8 *p = pcp->vm_stat_diff + item;
(*p)--;
if (unlikely(*p < - pcp->stat_threshold)) {
int overstep = pcp->stat_threshold / 2;
zone_page_state_add(*p - overstep, zone, item);
*p = overstep;
}
}
void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
__dec_zone_state(page_zone(page), item);
}
EXPORT_SYMBOL(__dec_zone_page_state);
void inc_zone_state(struct zone *zone, enum zone_stat_item item)
{
unsigned long flags;
local_irq_save(flags);
__inc_zone_state(zone, item);
local_irq_restore(flags);
}
void inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
unsigned long flags;
struct zone *zone;
zone = page_zone(page);
local_irq_save(flags);
__inc_zone_state(zone, item);
local_irq_restore(flags);
}
EXPORT_SYMBOL(inc_zone_page_state);
void dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
unsigned long flags;
local_irq_save(flags);
__dec_zone_page_state(page, item);
local_irq_restore(flags);
}
EXPORT_SYMBOL(dec_zone_page_state);
/*
* Update the zone counters for one cpu.
*
* Note that refresh_cpu_vm_stats strives to only access
* node local memory. The per cpu pagesets on remote zones are placed
* in the memory local to the processor using that pageset. So the
* loop over all zones will access a series of cachelines local to
* the processor.
*
* The call to zone_page_state_add updates the cachelines with the
* statistics in the remote zone struct as well as the global cachelines
* with the global counters. These could cause remote node cache line
* bouncing and will have to be only done when necessary.
*/
void refresh_cpu_vm_stats(int cpu)
{
struct zone *zone;
int i;
unsigned long flags;
for_each_zone(zone) {
struct per_cpu_pageset *p;
if (!populated_zone(zone))
continue;
p = zone_pcp(zone, cpu);
for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
if (p->vm_stat_diff[i]) {
local_irq_save(flags);
zone_page_state_add(p->vm_stat_diff[i],
zone, i);
p->vm_stat_diff[i] = 0;
#ifdef CONFIG_NUMA
/* 3 seconds idle till flush */
p->expire = 3;
#endif
local_irq_restore(flags);
}
#ifdef CONFIG_NUMA
/*
* Deal with draining the remote pageset of this
* processor
*
* Check if there are pages remaining in this pageset
* if not then there is nothing to expire.
*/
if (!p->expire || (!p->pcp[0].count && !p->pcp[1].count))
continue;
/*
* We never drain zones local to this processor.
*/
if (zone_to_nid(zone) == numa_node_id()) {
p->expire = 0;
continue;
}
p->expire--;
if (p->expire)
continue;
if (p->pcp[0].count)
drain_zone_pages(zone, p->pcp + 0);
if (p->pcp[1].count)
drain_zone_pages(zone, p->pcp + 1);
#endif
}
}
#endif
#ifdef CONFIG_NUMA
/*
* zonelist = the list of zones passed to the allocator
* z = the zone from which the allocation occurred.
*
* Must be called with interrupts disabled.
*/
void zone_statistics(struct zonelist *zonelist, struct zone *z)
{
if (z->zone_pgdat == zonelist->zones[0]->zone_pgdat) {
__inc_zone_state(z, NUMA_HIT);
} else {
__inc_zone_state(z, NUMA_MISS);
__inc_zone_state(zonelist->zones[0], NUMA_FOREIGN);
}
if (z->node == numa_node_id())
__inc_zone_state(z, NUMA_LOCAL);
else
__inc_zone_state(z, NUMA_OTHER);
}
#endif
#ifdef CONFIG_PROC_FS
#include <linux/seq_file.h>
static char * const migratetype_names[MIGRATE_TYPES] = {
"Unmovable",
"Reclaimable",
"Movable",
"Reserve",
};
static void *frag_start(struct seq_file *m, loff_t *pos)
{
pg_data_t *pgdat;
loff_t node = *pos;
for (pgdat = first_online_pgdat();
pgdat && node;
pgdat = next_online_pgdat(pgdat))
--node;
return pgdat;
}
static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
{
pg_data_t *pgdat = (pg_data_t *)arg;
(*pos)++;
return next_online_pgdat(pgdat);
}
static void frag_stop(struct seq_file *m, void *arg)
{
}
/* Walk all the zones in a node and print using a callback */
static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
{
struct zone *zone;
struct zone *node_zones = pgdat->node_zones;
unsigned long flags;
for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
if (!populated_zone(zone))
continue;
spin_lock_irqsave(&zone->lock, flags);
print(m, pgdat, zone);
spin_unlock_irqrestore(&zone->lock, flags);
}
}
static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
struct zone *zone)
{
int order;
seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
for (order = 0; order < MAX_ORDER; ++order)
seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
seq_putc(m, '\n');
}
/*
* This walks the free areas for each zone.
*/
static int frag_show(struct seq_file *m, void *arg)
{
pg_data_t *pgdat = (pg_data_t *)arg;
walk_zones_in_node(m, pgdat, frag_show_print);
return 0;
}
static void pagetypeinfo_showfree_print(struct seq_file *m,
pg_data_t *pgdat, struct zone *zone)
{
int order, mtype;
for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
seq_printf(m, "Node %4d, zone %8s, type %12s ",
pgdat->node_id,
zone->name,
migratetype_names[mtype]);
for (order = 0; order < MAX_ORDER; ++order) {
unsigned long freecount = 0;
struct free_area *area;
struct list_head *curr;
area = &(zone->free_area[order]);
list_for_each(curr, &area->free_list[mtype])
freecount++;
seq_printf(m, "%6lu ", freecount);
}
seq_putc(m, '\n');
}
}
/* Print out the free pages at each order for each migatetype */
static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
{
int order;
pg_data_t *pgdat = (pg_data_t *)arg;
/* Print header */
seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
for (order = 0; order < MAX_ORDER; ++order)
seq_printf(m, "%6d ", order);
seq_putc(m, '\n');
walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
return 0;
}
static void pagetypeinfo_showblockcount_print(struct seq_file *m,
pg_data_t *pgdat, struct zone *zone)
{
int mtype;
unsigned long pfn;
unsigned long start_pfn = zone->zone_start_pfn;
unsigned long end_pfn = start_pfn + zone->spanned_pages;
unsigned long count[MIGRATE_TYPES] = { 0, };
for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
struct page *page;
if (!pfn_valid(pfn))
continue;
page = pfn_to_page(pfn);
mtype = get_pageblock_migratetype(page);
count[mtype]++;
}
/* Print counts */
seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
seq_printf(m, "%12lu ", count[mtype]);
seq_putc(m, '\n');
}
/* Print out the free pages at each order for each migratetype */
static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
{
int mtype;
pg_data_t *pgdat = (pg_data_t *)arg;
seq_printf(m, "\n%-23s", "Number of blocks type ");
for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
seq_printf(m, "%12s ", migratetype_names[mtype]);
seq_putc(m, '\n');
walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
return 0;
}
/*
* This prints out statistics in relation to grouping pages by mobility.
* It is expensive to collect so do not constantly read the file.
*/
static int pagetypeinfo_show(struct seq_file *m, void *arg)
{
pg_data_t *pgdat = (pg_data_t *)arg;
seq_printf(m, "Page block order: %d\n", pageblock_order);
seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
seq_putc(m, '\n');
pagetypeinfo_showfree(m, pgdat);
pagetypeinfo_showblockcount(m, pgdat);
return 0;
}
const struct seq_operations fragmentation_op = {
.start = frag_start,
.next = frag_next,
.stop = frag_stop,
.show = frag_show,
};
const struct seq_operations pagetypeinfo_op = {
.start = frag_start,
.next = frag_next,
.stop = frag_stop,
.show = pagetypeinfo_show,
};
#ifdef CONFIG_ZONE_DMA
#define TEXT_FOR_DMA(xx) xx "_dma",
#else
#define TEXT_FOR_DMA(xx)
#endif
#ifdef CONFIG_ZONE_DMA32
#define TEXT_FOR_DMA32(xx) xx "_dma32",
#else
#define TEXT_FOR_DMA32(xx)
#endif
#ifdef CONFIG_HIGHMEM
#define TEXT_FOR_HIGHMEM(xx) xx "_high",
#else
#define TEXT_FOR_HIGHMEM(xx)
#endif
#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
TEXT_FOR_HIGHMEM(xx) xx "_movable",
static const char * const vmstat_text[] = {
/* Zoned VM counters */
"nr_free_pages",
"nr_inactive",
"nr_active",
"nr_anon_pages",
"nr_mapped",
"nr_file_pages",
"nr_dirty",
"nr_writeback",
"nr_slab_reclaimable",
"nr_slab_unreclaimable",
"nr_page_table_pages",
"nr_unstable",
"nr_bounce",
"nr_vmscan_write",
#ifdef CONFIG_NUMA
"numa_hit",
"numa_miss",
"numa_foreign",
"numa_interleave",
"numa_local",
"numa_other",
#endif
#ifdef CONFIG_VM_EVENT_COUNTERS
"pgpgin",
"pgpgout",
"pswpin",
"pswpout",
TEXTS_FOR_ZONES("pgalloc")
"pgfree",
"pgactivate",
"pgdeactivate",
"pgfault",
"pgmajfault",
TEXTS_FOR_ZONES("pgrefill")
TEXTS_FOR_ZONES("pgsteal")
TEXTS_FOR_ZONES("pgscan_kswapd")
TEXTS_FOR_ZONES("pgscan_direct")
"pginodesteal",
"slabs_scanned",
"kswapd_steal",
"kswapd_inodesteal",
"pageoutrun",
"allocstall",
"pgrotated",
#endif
};
static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
struct zone *zone)
{
int i;
seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
seq_printf(m,
"\n pages free %lu"
"\n min %lu"
"\n low %lu"
"\n high %lu"
"\n scanned %lu (a: %lu i: %lu)"
"\n spanned %lu"
"\n present %lu",
zone_page_state(zone, NR_FREE_PAGES),
zone->pages_min,
zone->pages_low,
zone->pages_high,
zone->pages_scanned,
zone->nr_scan_active, zone->nr_scan_inactive,
zone->spanned_pages,
zone->present_pages);
for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
seq_printf(m, "\n %-12s %lu", vmstat_text[i],
zone_page_state(zone, i));
seq_printf(m,
"\n protection: (%lu",
zone->lowmem_reserve[0]);
for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
seq_printf(m,
")"
"\n pagesets");
for_each_online_cpu(i) {
struct per_cpu_pageset *pageset;
int j;
pageset = zone_pcp(zone, i);
for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
seq_printf(m,
"\n cpu: %i pcp: %i"
"\n count: %i"
"\n high: %i"
"\n batch: %i",
i, j,
pageset->pcp[j].count,
pageset->pcp[j].high,
pageset->pcp[j].batch);
}
#ifdef CONFIG_SMP
seq_printf(m, "\n vm stats threshold: %d",
pageset->stat_threshold);
#endif
}
seq_printf(m,
"\n all_unreclaimable: %u"
"\n prev_priority: %i"
"\n start_pfn: %lu",
zone_is_all_unreclaimable(zone),
zone->prev_priority,
zone->zone_start_pfn);
seq_putc(m, '\n');
}
/*
* Output information about zones in @pgdat.
*/
static int zoneinfo_show(struct seq_file *m, void *arg)
{
pg_data_t *pgdat = (pg_data_t *)arg;
walk_zones_in_node(m, pgdat, zoneinfo_show_print);
return 0;
}
const struct seq_operations zoneinfo_op = {
.start = frag_start, /* iterate over all zones. The same as in
* fragmentation. */
.next = frag_next,
.stop = frag_stop,
.show = zoneinfo_show,
};
static void *vmstat_start(struct seq_file *m, loff_t *pos)
{
unsigned long *v;
#ifdef CONFIG_VM_EVENT_COUNTERS
unsigned long *e;
#endif
int i;
if (*pos >= ARRAY_SIZE(vmstat_text))
return NULL;
#ifdef CONFIG_VM_EVENT_COUNTERS
v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long)
+ sizeof(struct vm_event_state), GFP_KERNEL);
#else
v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long),
GFP_KERNEL);
#endif
m->private = v;
if (!v)
return ERR_PTR(-ENOMEM);
for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
v[i] = global_page_state(i);
#ifdef CONFIG_VM_EVENT_COUNTERS
e = v + NR_VM_ZONE_STAT_ITEMS;
all_vm_events(e);
e[PGPGIN] /= 2; /* sectors -> kbytes */
e[PGPGOUT] /= 2;
#endif
return v + *pos;
}
static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
{
(*pos)++;
if (*pos >= ARRAY_SIZE(vmstat_text))
return NULL;
return (unsigned long *)m->private + *pos;
}
static int vmstat_show(struct seq_file *m, void *arg)
{
unsigned long *l = arg;
unsigned long off = l - (unsigned long *)m->private;
seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
return 0;
}
static void vmstat_stop(struct seq_file *m, void *arg)
{
kfree(m->private);
m->private = NULL;
}
const struct seq_operations vmstat_op = {
.start = vmstat_start,
.next = vmstat_next,
.stop = vmstat_stop,
.show = vmstat_show,
};
#endif /* CONFIG_PROC_FS */
#ifdef CONFIG_SMP
static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
int sysctl_stat_interval __read_mostly = HZ;
static void vmstat_update(struct work_struct *w)
{
refresh_cpu_vm_stats(smp_processor_id());
schedule_delayed_work(&__get_cpu_var(vmstat_work),
sysctl_stat_interval);
}
static void __cpuinit start_cpu_timer(int cpu)
{
struct delayed_work *vmstat_work = &per_cpu(vmstat_work, cpu);
INIT_DELAYED_WORK_DEFERRABLE(vmstat_work, vmstat_update);
schedule_delayed_work_on(cpu, vmstat_work, HZ + cpu);
}
/*
* Use the cpu notifier to insure that the thresholds are recalculated
* when necessary.
*/
static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
unsigned long action,
void *hcpu)
{
long cpu = (long)hcpu;
switch (action) {
case CPU_ONLINE:
case CPU_ONLINE_FROZEN:
start_cpu_timer(cpu);
break;
case CPU_DOWN_PREPARE:
case CPU_DOWN_PREPARE_FROZEN:
cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
per_cpu(vmstat_work, cpu).work.func = NULL;
break;
case CPU_DOWN_FAILED:
case CPU_DOWN_FAILED_FROZEN:
start_cpu_timer(cpu);
break;
case CPU_DEAD:
case CPU_DEAD_FROZEN:
refresh_zone_stat_thresholds();
break;
default:
break;
}
return NOTIFY_OK;
}
static struct notifier_block __cpuinitdata vmstat_notifier =
{ &vmstat_cpuup_callback, NULL, 0 };
static int __init setup_vmstat(void)
{
int cpu;
refresh_zone_stat_thresholds();
register_cpu_notifier(&vmstat_notifier);
for_each_online_cpu(cpu)
start_cpu_timer(cpu);
return 0;
}
module_init(setup_vmstat)
#endif