You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
755 lines
21 KiB
755 lines
21 KiB
/*
|
|
* Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
|
|
*
|
|
* Copyright © 2006 Red Hat, Inc.
|
|
* Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
|
|
*/
|
|
|
|
#define DEBUG
|
|
|
|
#include <linux/device.h>
|
|
#undef DEBUG
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/nand.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <asm/io.h>
|
|
|
|
#define CAFE_NAND_CTRL1 0x00
|
|
#define CAFE_NAND_CTRL2 0x04
|
|
#define CAFE_NAND_CTRL3 0x08
|
|
#define CAFE_NAND_STATUS 0x0c
|
|
#define CAFE_NAND_IRQ 0x10
|
|
#define CAFE_NAND_IRQ_MASK 0x14
|
|
#define CAFE_NAND_DATA_LEN 0x18
|
|
#define CAFE_NAND_ADDR1 0x1c
|
|
#define CAFE_NAND_ADDR2 0x20
|
|
#define CAFE_NAND_TIMING1 0x24
|
|
#define CAFE_NAND_TIMING2 0x28
|
|
#define CAFE_NAND_TIMING3 0x2c
|
|
#define CAFE_NAND_NONMEM 0x30
|
|
#define CAFE_NAND_ECC_RESULT 0x3C
|
|
#define CAFE_NAND_DMA_CTRL 0x40
|
|
#define CAFE_NAND_DMA_ADDR0 0x44
|
|
#define CAFE_NAND_DMA_ADDR1 0x48
|
|
#define CAFE_NAND_ECC_SYN01 0x50
|
|
#define CAFE_NAND_ECC_SYN23 0x54
|
|
#define CAFE_NAND_ECC_SYN45 0x58
|
|
#define CAFE_NAND_ECC_SYN67 0x5c
|
|
#define CAFE_NAND_READ_DATA 0x1000
|
|
#define CAFE_NAND_WRITE_DATA 0x2000
|
|
|
|
#define CAFE_GLOBAL_CTRL 0x3004
|
|
#define CAFE_GLOBAL_IRQ 0x3008
|
|
#define CAFE_GLOBAL_IRQ_MASK 0x300c
|
|
#define CAFE_NAND_RESET 0x3034
|
|
|
|
int cafe_correct_ecc(unsigned char *buf,
|
|
unsigned short *chk_syndrome_list);
|
|
|
|
struct cafe_priv {
|
|
struct nand_chip nand;
|
|
struct pci_dev *pdev;
|
|
void __iomem *mmio;
|
|
uint32_t ctl1;
|
|
uint32_t ctl2;
|
|
int datalen;
|
|
int nr_data;
|
|
int data_pos;
|
|
int page_addr;
|
|
dma_addr_t dmaaddr;
|
|
unsigned char *dmabuf;
|
|
};
|
|
|
|
static int usedma = 1;
|
|
module_param(usedma, int, 0644);
|
|
|
|
static int skipbbt = 0;
|
|
module_param(skipbbt, int, 0644);
|
|
|
|
static int debug = 0;
|
|
module_param(debug, int, 0644);
|
|
|
|
static int regdebug = 0;
|
|
module_param(regdebug, int, 0644);
|
|
|
|
static int checkecc = 1;
|
|
module_param(checkecc, int, 0644);
|
|
|
|
static int numtimings;
|
|
static int timing[3];
|
|
module_param_array(timing, int, &numtimings, 0644);
|
|
|
|
/* Hrm. Why isn't this already conditional on something in the struct device? */
|
|
#define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
|
|
|
|
/* Make it easier to switch to PIO if we need to */
|
|
#define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr)
|
|
#define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr)
|
|
|
|
static int cafe_device_ready(struct mtd_info *mtd)
|
|
{
|
|
struct cafe_priv *cafe = mtd->priv;
|
|
int result = !!(cafe_readl(cafe, NAND_STATUS) | 0x40000000);
|
|
uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
|
|
|
|
cafe_writel(cafe, irqs, NAND_IRQ);
|
|
|
|
cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
|
|
result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
|
|
cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
|
|
{
|
|
struct cafe_priv *cafe = mtd->priv;
|
|
|
|
if (usedma)
|
|
memcpy(cafe->dmabuf + cafe->datalen, buf, len);
|
|
else
|
|
memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
|
|
|
|
cafe->datalen += len;
|
|
|
|
cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
|
|
len, cafe->datalen);
|
|
}
|
|
|
|
static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
|
|
{
|
|
struct cafe_priv *cafe = mtd->priv;
|
|
|
|
if (usedma)
|
|
memcpy(buf, cafe->dmabuf + cafe->datalen, len);
|
|
else
|
|
memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
|
|
|
|
cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
|
|
len, cafe->datalen);
|
|
cafe->datalen += len;
|
|
}
|
|
|
|
static uint8_t cafe_read_byte(struct mtd_info *mtd)
|
|
{
|
|
struct cafe_priv *cafe = mtd->priv;
|
|
uint8_t d;
|
|
|
|
cafe_read_buf(mtd, &d, 1);
|
|
cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
|
|
|
|
return d;
|
|
}
|
|
|
|
static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
|
|
int column, int page_addr)
|
|
{
|
|
struct cafe_priv *cafe = mtd->priv;
|
|
int adrbytes = 0;
|
|
uint32_t ctl1;
|
|
uint32_t doneint = 0x80000000;
|
|
|
|
cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
|
|
command, column, page_addr);
|
|
|
|
if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
|
|
/* Second half of a command we already calculated */
|
|
cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
|
|
ctl1 = cafe->ctl1;
|
|
cafe->ctl2 &= ~(1<<30);
|
|
cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
|
|
cafe->ctl1, cafe->nr_data);
|
|
goto do_command;
|
|
}
|
|
/* Reset ECC engine */
|
|
cafe_writel(cafe, 0, NAND_CTRL2);
|
|
|
|
/* Emulate NAND_CMD_READOOB on large-page chips */
|
|
if (mtd->writesize > 512 &&
|
|
command == NAND_CMD_READOOB) {
|
|
column += mtd->writesize;
|
|
command = NAND_CMD_READ0;
|
|
}
|
|
|
|
/* FIXME: Do we need to send read command before sending data
|
|
for small-page chips, to position the buffer correctly? */
|
|
|
|
if (column != -1) {
|
|
cafe_writel(cafe, column, NAND_ADDR1);
|
|
adrbytes = 2;
|
|
if (page_addr != -1)
|
|
goto write_adr2;
|
|
} else if (page_addr != -1) {
|
|
cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
|
|
page_addr >>= 16;
|
|
write_adr2:
|
|
cafe_writel(cafe, page_addr, NAND_ADDR2);
|
|
adrbytes += 2;
|
|
if (mtd->size > mtd->writesize << 16)
|
|
adrbytes++;
|
|
}
|
|
|
|
cafe->data_pos = cafe->datalen = 0;
|
|
|
|
/* Set command valid bit */
|
|
ctl1 = 0x80000000 | command;
|
|
|
|
/* Set RD or WR bits as appropriate */
|
|
if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
|
|
ctl1 |= (1<<26); /* rd */
|
|
/* Always 5 bytes, for now */
|
|
cafe->datalen = 4;
|
|
/* And one address cycle -- even for STATUS, since the controller doesn't work without */
|
|
adrbytes = 1;
|
|
} else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
|
|
command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
|
|
ctl1 |= 1<<26; /* rd */
|
|
/* For now, assume just read to end of page */
|
|
cafe->datalen = mtd->writesize + mtd->oobsize - column;
|
|
} else if (command == NAND_CMD_SEQIN)
|
|
ctl1 |= 1<<25; /* wr */
|
|
|
|
/* Set number of address bytes */
|
|
if (adrbytes)
|
|
ctl1 |= ((adrbytes-1)|8) << 27;
|
|
|
|
if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
|
|
/* Ignore the first command of a pair; the hardware
|
|
deals with them both at once, later */
|
|
cafe->ctl1 = ctl1;
|
|
cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
|
|
cafe->ctl1, cafe->datalen);
|
|
return;
|
|
}
|
|
/* RNDOUT and READ0 commands need a following byte */
|
|
if (command == NAND_CMD_RNDOUT)
|
|
cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
|
|
else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
|
|
cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
|
|
|
|
do_command:
|
|
cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
|
|
cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
|
|
|
|
/* NB: The datasheet lies -- we really should be subtracting 1 here */
|
|
cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
|
|
cafe_writel(cafe, 0x90000000, NAND_IRQ);
|
|
if (usedma && (ctl1 & (3<<25))) {
|
|
uint32_t dmactl = 0xc0000000 + cafe->datalen;
|
|
/* If WR or RD bits set, set up DMA */
|
|
if (ctl1 & (1<<26)) {
|
|
/* It's a read */
|
|
dmactl |= (1<<29);
|
|
/* ... so it's done when the DMA is done, not just
|
|
the command. */
|
|
doneint = 0x10000000;
|
|
}
|
|
cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
|
|
}
|
|
cafe->datalen = 0;
|
|
|
|
if (unlikely(regdebug)) {
|
|
int i;
|
|
printk("About to write command %08x to register 0\n", ctl1);
|
|
for (i=4; i< 0x5c; i+=4)
|
|
printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
|
|
}
|
|
|
|
cafe_writel(cafe, ctl1, NAND_CTRL1);
|
|
/* Apply this short delay always to ensure that we do wait tWB in
|
|
* any case on any machine. */
|
|
ndelay(100);
|
|
|
|
if (1) {
|
|
int c;
|
|
uint32_t irqs;
|
|
|
|
for (c = 500000; c != 0; c--) {
|
|
irqs = cafe_readl(cafe, NAND_IRQ);
|
|
if (irqs & doneint)
|
|
break;
|
|
udelay(1);
|
|
if (!(c % 100000))
|
|
cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
|
|
cpu_relax();
|
|
}
|
|
cafe_writel(cafe, doneint, NAND_IRQ);
|
|
cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
|
|
command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
|
|
}
|
|
|
|
WARN_ON(cafe->ctl2 & (1<<30));
|
|
|
|
switch (command) {
|
|
|
|
case NAND_CMD_CACHEDPROG:
|
|
case NAND_CMD_PAGEPROG:
|
|
case NAND_CMD_ERASE1:
|
|
case NAND_CMD_ERASE2:
|
|
case NAND_CMD_SEQIN:
|
|
case NAND_CMD_RNDIN:
|
|
case NAND_CMD_STATUS:
|
|
case NAND_CMD_DEPLETE1:
|
|
case NAND_CMD_RNDOUT:
|
|
case NAND_CMD_STATUS_ERROR:
|
|
case NAND_CMD_STATUS_ERROR0:
|
|
case NAND_CMD_STATUS_ERROR1:
|
|
case NAND_CMD_STATUS_ERROR2:
|
|
case NAND_CMD_STATUS_ERROR3:
|
|
cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
|
|
return;
|
|
}
|
|
nand_wait_ready(mtd);
|
|
cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
|
|
}
|
|
|
|
static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
|
|
{
|
|
//struct cafe_priv *cafe = mtd->priv;
|
|
// cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
|
|
}
|
|
|
|
static int cafe_nand_interrupt(int irq, void *id)
|
|
{
|
|
struct mtd_info *mtd = id;
|
|
struct cafe_priv *cafe = mtd->priv;
|
|
uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
|
|
cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
|
|
if (!irqs)
|
|
return IRQ_NONE;
|
|
|
|
cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void cafe_nand_bug(struct mtd_info *mtd)
|
|
{
|
|
BUG();
|
|
}
|
|
|
|
static int cafe_nand_write_oob(struct mtd_info *mtd,
|
|
struct nand_chip *chip, int page)
|
|
{
|
|
int status = 0;
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
|
|
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
|
|
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
|
|
status = chip->waitfunc(mtd, chip);
|
|
|
|
return status & NAND_STATUS_FAIL ? -EIO : 0;
|
|
}
|
|
|
|
/* Don't use -- use nand_read_oob_std for now */
|
|
static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
|
|
int page, int sndcmd)
|
|
{
|
|
chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
|
|
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
|
|
return 1;
|
|
}
|
|
/**
|
|
* cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
|
|
* @mtd: mtd info structure
|
|
* @chip: nand chip info structure
|
|
* @buf: buffer to store read data
|
|
*
|
|
* The hw generator calculates the error syndrome automatically. Therefor
|
|
* we need a special oob layout and handling.
|
|
*/
|
|
static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint8_t *buf)
|
|
{
|
|
struct cafe_priv *cafe = mtd->priv;
|
|
|
|
cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
|
|
cafe_readl(cafe, NAND_ECC_RESULT),
|
|
cafe_readl(cafe, NAND_ECC_SYN01));
|
|
|
|
chip->read_buf(mtd, buf, mtd->writesize);
|
|
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
|
|
|
|
if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
|
|
unsigned short syn[8];
|
|
int i;
|
|
|
|
for (i=0; i<8; i+=2) {
|
|
uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
|
|
syn[i] = tmp & 0xfff;
|
|
syn[i+1] = (tmp >> 16) & 0xfff;
|
|
}
|
|
|
|
if ((i = cafe_correct_ecc(buf, syn)) < 0) {
|
|
dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
|
|
cafe_readl(cafe, NAND_ADDR2) * 2048);
|
|
for (i=0; i< 0x5c; i+=4)
|
|
printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
|
|
mtd->ecc_stats.failed++;
|
|
} else {
|
|
dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", i);
|
|
mtd->ecc_stats.corrected += i;
|
|
}
|
|
}
|
|
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct nand_ecclayout cafe_oobinfo_2048 = {
|
|
.eccbytes = 14,
|
|
.eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
|
|
.oobfree = {{14, 50}}
|
|
};
|
|
|
|
/* Ick. The BBT code really ought to be able to work this bit out
|
|
for itself from the above, at least for the 2KiB case */
|
|
static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
|
|
static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
|
|
|
|
static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
|
|
static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
|
|
|
|
|
|
static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
|
|
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
|
|
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
|
|
.offs = 14,
|
|
.len = 4,
|
|
.veroffs = 18,
|
|
.maxblocks = 4,
|
|
.pattern = cafe_bbt_pattern_2048
|
|
};
|
|
|
|
static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
|
|
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
|
|
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
|
|
.offs = 14,
|
|
.len = 4,
|
|
.veroffs = 18,
|
|
.maxblocks = 4,
|
|
.pattern = cafe_mirror_pattern_2048
|
|
};
|
|
|
|
static struct nand_ecclayout cafe_oobinfo_512 = {
|
|
.eccbytes = 14,
|
|
.eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
|
|
.oobfree = {{14, 2}}
|
|
};
|
|
|
|
static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
|
|
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
|
|
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
|
|
.offs = 14,
|
|
.len = 1,
|
|
.veroffs = 15,
|
|
.maxblocks = 4,
|
|
.pattern = cafe_bbt_pattern_512
|
|
};
|
|
|
|
static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
|
|
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
|
|
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
|
|
.offs = 14,
|
|
.len = 1,
|
|
.veroffs = 15,
|
|
.maxblocks = 4,
|
|
.pattern = cafe_mirror_pattern_512
|
|
};
|
|
|
|
|
|
static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
|
|
struct nand_chip *chip, const uint8_t *buf)
|
|
{
|
|
struct cafe_priv *cafe = mtd->priv;
|
|
|
|
chip->write_buf(mtd, buf, mtd->writesize);
|
|
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
|
|
|
|
/* Set up ECC autogeneration */
|
|
cafe->ctl2 |= (1<<30);
|
|
}
|
|
|
|
static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
const uint8_t *buf, int page, int cached, int raw)
|
|
{
|
|
int status;
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
|
|
|
|
if (unlikely(raw))
|
|
chip->ecc.write_page_raw(mtd, chip, buf);
|
|
else
|
|
chip->ecc.write_page(mtd, chip, buf);
|
|
|
|
/*
|
|
* Cached progamming disabled for now, Not sure if its worth the
|
|
* trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
|
|
*/
|
|
cached = 0;
|
|
|
|
if (!cached || !(chip->options & NAND_CACHEPRG)) {
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
|
|
status = chip->waitfunc(mtd, chip);
|
|
/*
|
|
* See if operation failed and additional status checks are
|
|
* available
|
|
*/
|
|
if ((status & NAND_STATUS_FAIL) && (chip->errstat))
|
|
status = chip->errstat(mtd, chip, FL_WRITING, status,
|
|
page);
|
|
|
|
if (status & NAND_STATUS_FAIL)
|
|
return -EIO;
|
|
} else {
|
|
chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
|
|
status = chip->waitfunc(mtd, chip);
|
|
}
|
|
|
|
#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
|
|
/* Send command to read back the data */
|
|
chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
|
|
|
|
if (chip->verify_buf(mtd, buf, mtd->writesize))
|
|
return -EIO;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int __devinit cafe_nand_probe(struct pci_dev *pdev,
|
|
const struct pci_device_id *ent)
|
|
{
|
|
struct mtd_info *mtd;
|
|
struct cafe_priv *cafe;
|
|
uint32_t timing1, timing2, timing3;
|
|
uint32_t ctrl;
|
|
int err = 0;
|
|
|
|
err = pci_enable_device(pdev);
|
|
if (err)
|
|
return err;
|
|
|
|
pci_set_master(pdev);
|
|
|
|
mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
|
|
if (!mtd) {
|
|
dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
|
|
return -ENOMEM;
|
|
}
|
|
cafe = (void *)(&mtd[1]);
|
|
|
|
mtd->priv = cafe;
|
|
mtd->owner = THIS_MODULE;
|
|
|
|
cafe->pdev = pdev;
|
|
cafe->mmio = pci_iomap(pdev, 0, 0);
|
|
if (!cafe->mmio) {
|
|
dev_warn(&pdev->dev, "failed to iomap\n");
|
|
err = -ENOMEM;
|
|
goto out_free_mtd;
|
|
}
|
|
cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
|
|
&cafe->dmaaddr, GFP_KERNEL);
|
|
if (!cafe->dmabuf) {
|
|
err = -ENOMEM;
|
|
goto out_ior;
|
|
}
|
|
cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
|
|
|
|
cafe->nand.cmdfunc = cafe_nand_cmdfunc;
|
|
cafe->nand.dev_ready = cafe_device_ready;
|
|
cafe->nand.read_byte = cafe_read_byte;
|
|
cafe->nand.read_buf = cafe_read_buf;
|
|
cafe->nand.write_buf = cafe_write_buf;
|
|
cafe->nand.select_chip = cafe_select_chip;
|
|
|
|
cafe->nand.chip_delay = 0;
|
|
|
|
/* Enable the following for a flash based bad block table */
|
|
cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
|
|
|
|
if (skipbbt) {
|
|
cafe->nand.options |= NAND_SKIP_BBTSCAN;
|
|
cafe->nand.block_bad = cafe_nand_block_bad;
|
|
}
|
|
|
|
if (numtimings && numtimings != 3) {
|
|
dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
|
|
}
|
|
|
|
if (numtimings == 3) {
|
|
timing1 = timing[0];
|
|
timing2 = timing[1];
|
|
timing3 = timing[2];
|
|
cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
|
|
timing1, timing2, timing3);
|
|
} else {
|
|
timing1 = cafe_readl(cafe, NAND_TIMING1);
|
|
timing2 = cafe_readl(cafe, NAND_TIMING2);
|
|
timing3 = cafe_readl(cafe, NAND_TIMING3);
|
|
|
|
if (timing1 | timing2 | timing3) {
|
|
cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n", timing1, timing2, timing3);
|
|
} else {
|
|
dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
|
|
timing1 = timing2 = timing3 = 0xffffffff;
|
|
}
|
|
}
|
|
|
|
/* Start off by resetting the NAND controller completely */
|
|
cafe_writel(cafe, 1, NAND_RESET);
|
|
cafe_writel(cafe, 0, NAND_RESET);
|
|
|
|
cafe_writel(cafe, timing1, NAND_TIMING1);
|
|
cafe_writel(cafe, timing2, NAND_TIMING2);
|
|
cafe_writel(cafe, timing3, NAND_TIMING3);
|
|
|
|
cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
|
|
err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
|
|
"CAFE NAND", mtd);
|
|
if (err) {
|
|
dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
|
|
goto out_free_dma;
|
|
}
|
|
|
|
/* Disable master reset, enable NAND clock */
|
|
ctrl = cafe_readl(cafe, GLOBAL_CTRL);
|
|
ctrl &= 0xffffeff0;
|
|
ctrl |= 0x00007000;
|
|
cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
|
|
cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
|
|
cafe_writel(cafe, 0, NAND_DMA_CTRL);
|
|
|
|
cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
|
|
cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
|
|
|
|
/* Set up DMA address */
|
|
cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
|
|
if (sizeof(cafe->dmaaddr) > 4)
|
|
/* Shift in two parts to shut the compiler up */
|
|
cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
|
|
else
|
|
cafe_writel(cafe, 0, NAND_DMA_ADDR1);
|
|
|
|
cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
|
|
cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
|
|
|
|
/* Enable NAND IRQ in global IRQ mask register */
|
|
cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
|
|
cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
|
|
cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK));
|
|
|
|
/* Scan to find existence of the device */
|
|
if (nand_scan_ident(mtd, 1)) {
|
|
err = -ENXIO;
|
|
goto out_irq;
|
|
}
|
|
|
|
cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
|
|
if (mtd->writesize == 2048)
|
|
cafe->ctl2 |= 1<<29; /* 2KiB page size */
|
|
|
|
/* Set up ECC according to the type of chip we found */
|
|
if (mtd->writesize == 2048) {
|
|
cafe->nand.ecc.layout = &cafe_oobinfo_2048;
|
|
cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
|
|
cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
|
|
} else if (mtd->writesize == 512) {
|
|
cafe->nand.ecc.layout = &cafe_oobinfo_512;
|
|
cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
|
|
cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
|
|
} else {
|
|
printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
|
|
mtd->writesize);
|
|
goto out_irq;
|
|
}
|
|
cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
|
|
cafe->nand.ecc.size = mtd->writesize;
|
|
cafe->nand.ecc.bytes = 14;
|
|
cafe->nand.ecc.hwctl = (void *)cafe_nand_bug;
|
|
cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
|
|
cafe->nand.ecc.correct = (void *)cafe_nand_bug;
|
|
cafe->nand.write_page = cafe_nand_write_page;
|
|
cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
|
|
cafe->nand.ecc.write_oob = cafe_nand_write_oob;
|
|
cafe->nand.ecc.read_page = cafe_nand_read_page;
|
|
cafe->nand.ecc.read_oob = cafe_nand_read_oob;
|
|
|
|
err = nand_scan_tail(mtd);
|
|
if (err)
|
|
goto out_irq;
|
|
|
|
pci_set_drvdata(pdev, mtd);
|
|
add_mtd_device(mtd);
|
|
goto out;
|
|
|
|
out_irq:
|
|
/* Disable NAND IRQ in global IRQ mask register */
|
|
cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
|
|
free_irq(pdev->irq, mtd);
|
|
out_free_dma:
|
|
dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
|
|
out_ior:
|
|
pci_iounmap(pdev, cafe->mmio);
|
|
out_free_mtd:
|
|
kfree(mtd);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static void __devexit cafe_nand_remove(struct pci_dev *pdev)
|
|
{
|
|
struct mtd_info *mtd = pci_get_drvdata(pdev);
|
|
struct cafe_priv *cafe = mtd->priv;
|
|
|
|
del_mtd_device(mtd);
|
|
/* Disable NAND IRQ in global IRQ mask register */
|
|
cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
|
|
free_irq(pdev->irq, mtd);
|
|
nand_release(mtd);
|
|
pci_iounmap(pdev, cafe->mmio);
|
|
dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
|
|
kfree(mtd);
|
|
}
|
|
|
|
static struct pci_device_id cafe_nand_tbl[] = {
|
|
{ 0x11ab, 0x4100, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MEMORY_FLASH << 8, 0xFFFF0 }
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
|
|
|
|
static struct pci_driver cafe_nand_pci_driver = {
|
|
.name = "CAFÉ NAND",
|
|
.id_table = cafe_nand_tbl,
|
|
.probe = cafe_nand_probe,
|
|
.remove = __devexit_p(cafe_nand_remove),
|
|
#ifdef CONFIG_PMx
|
|
.suspend = cafe_nand_suspend,
|
|
.resume = cafe_nand_resume,
|
|
#endif
|
|
};
|
|
|
|
static int cafe_nand_init(void)
|
|
{
|
|
return pci_register_driver(&cafe_nand_pci_driver);
|
|
}
|
|
|
|
static void cafe_nand_exit(void)
|
|
{
|
|
pci_unregister_driver(&cafe_nand_pci_driver);
|
|
}
|
|
module_init(cafe_nand_init);
|
|
module_exit(cafe_nand_exit);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
|
|
MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");
|
|
|