You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/kernel/printk.c

1807 lines
45 KiB

/*
* linux/kernel/printk.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* Modified to make sys_syslog() more flexible: added commands to
* return the last 4k of kernel messages, regardless of whether
* they've been read or not. Added option to suppress kernel printk's
* to the console. Added hook for sending the console messages
* elsewhere, in preparation for a serial line console (someday).
* Ted Ts'o, 2/11/93.
* Modified for sysctl support, 1/8/97, Chris Horn.
* Fixed SMP synchronization, 08/08/99, Manfred Spraul
* manfred@colorfullife.com
* Rewrote bits to get rid of console_lock
* 01Mar01 Andrew Morton
*/
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/tty.h>
#include <linux/tty_driver.h>
#include <linux/console.h>
#include <linux/init.h>
#include <linux/jiffies.h>
#include <linux/nmi.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/interrupt.h> /* For in_interrupt() */
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/security.h>
#include <linux/bootmem.h>
#include <linux/memblock.h>
#include <linux/syscalls.h>
#include <linux/kexec.h>
#include <linux/kdb.h>
#include <linux/ratelimit.h>
#include <linux/kmsg_dump.h>
#include <linux/syslog.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/rculist.h>
#include <asm/uaccess.h>
#define CREATE_TRACE_POINTS
#include <trace/events/printk.h>
/*
* Architectures can override it:
*/
void asmlinkage __attribute__((weak)) early_printk(const char *fmt, ...)
{
}
#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
/* printk's without a loglevel use this.. */
#define DEFAULT_MESSAGE_LOGLEVEL CONFIG_DEFAULT_MESSAGE_LOGLEVEL
/* We show everything that is MORE important than this.. */
#define MINIMUM_CONSOLE_LOGLEVEL 1 /* Minimum loglevel we let people use */
#define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */
DECLARE_WAIT_QUEUE_HEAD(log_wait);
int console_printk[4] = {
DEFAULT_CONSOLE_LOGLEVEL, /* console_loglevel */
DEFAULT_MESSAGE_LOGLEVEL, /* default_message_loglevel */
MINIMUM_CONSOLE_LOGLEVEL, /* minimum_console_loglevel */
DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */
};
/*
* Low level drivers may need that to know if they can schedule in
* their unblank() callback or not. So let's export it.
*/
int oops_in_progress;
EXPORT_SYMBOL(oops_in_progress);
/*
* console_sem protects the console_drivers list, and also
* provides serialisation for access to the entire console
* driver system.
*/
static DEFINE_SEMAPHORE(console_sem);
struct console *console_drivers;
EXPORT_SYMBOL_GPL(console_drivers);
/*
* This is used for debugging the mess that is the VT code by
* keeping track if we have the console semaphore held. It's
* definitely not the perfect debug tool (we don't know if _WE_
* hold it are racing, but it helps tracking those weird code
* path in the console code where we end up in places I want
* locked without the console sempahore held
*/
static int console_locked, console_suspended;
/*
* logbuf_lock protects log_buf, log_start, log_end, con_start and logged_chars
* It is also used in interesting ways to provide interlocking in
* console_unlock();.
*/
static DEFINE_RAW_SPINLOCK(logbuf_lock);
#define LOG_BUF_MASK (log_buf_len-1)
#define LOG_BUF(idx) (log_buf[(idx) & LOG_BUF_MASK])
/*
* The indices into log_buf are not constrained to log_buf_len - they
* must be masked before subscripting
*/
static unsigned log_start; /* Index into log_buf: next char to be read by syslog() */
static unsigned con_start; /* Index into log_buf: next char to be sent to consoles */
static unsigned log_end; /* Index into log_buf: most-recently-written-char + 1 */
/*
* If exclusive_console is non-NULL then only this console is to be printed to.
*/
static struct console *exclusive_console;
/*
* Array of consoles built from command line options (console=)
*/
struct console_cmdline
{
char name[8]; /* Name of the driver */
int index; /* Minor dev. to use */
char *options; /* Options for the driver */
#ifdef CONFIG_A11Y_BRAILLE_CONSOLE
char *brl_options; /* Options for braille driver */
#endif
};
#define MAX_CMDLINECONSOLES 8
static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
static int selected_console = -1;
static int preferred_console = -1;
int console_set_on_cmdline;
EXPORT_SYMBOL(console_set_on_cmdline);
/* Flag: console code may call schedule() */
static int console_may_schedule;
#ifdef CONFIG_PRINTK
static char __log_buf[__LOG_BUF_LEN];
static char *log_buf = __log_buf;
static int log_buf_len = __LOG_BUF_LEN;
static unsigned logged_chars; /* Number of chars produced since last read+clear operation */
static int saved_console_loglevel = -1;
#ifdef CONFIG_KEXEC
/*
* This appends the listed symbols to /proc/vmcoreinfo
*
* /proc/vmcoreinfo is used by various utiilties, like crash and makedumpfile to
* obtain access to symbols that are otherwise very difficult to locate. These
* symbols are specifically used so that utilities can access and extract the
* dmesg log from a vmcore file after a crash.
*/
void log_buf_kexec_setup(void)
{
VMCOREINFO_SYMBOL(log_buf);
VMCOREINFO_SYMBOL(log_end);
VMCOREINFO_SYMBOL(log_buf_len);
VMCOREINFO_SYMBOL(logged_chars);
}
#endif
/* requested log_buf_len from kernel cmdline */
static unsigned long __initdata new_log_buf_len;
/* save requested log_buf_len since it's too early to process it */
static int __init log_buf_len_setup(char *str)
{
unsigned size = memparse(str, &str);
if (size)
size = roundup_pow_of_two(size);
if (size > log_buf_len)
new_log_buf_len = size;
return 0;
}
early_param("log_buf_len", log_buf_len_setup);
void __init setup_log_buf(int early)
{
unsigned long flags;
unsigned start, dest_idx, offset;
char *new_log_buf;
int free;
if (!new_log_buf_len)
return;
if (early) {
unsigned long mem;
mem = memblock_alloc(new_log_buf_len, PAGE_SIZE);
if (!mem)
return;
new_log_buf = __va(mem);
} else {
new_log_buf = alloc_bootmem_nopanic(new_log_buf_len);
}
if (unlikely(!new_log_buf)) {
pr_err("log_buf_len: %ld bytes not available\n",
new_log_buf_len);
return;
}
raw_spin_lock_irqsave(&logbuf_lock, flags);
log_buf_len = new_log_buf_len;
log_buf = new_log_buf;
new_log_buf_len = 0;
free = __LOG_BUF_LEN - log_end;
offset = start = min(con_start, log_start);
dest_idx = 0;
while (start != log_end) {
unsigned log_idx_mask = start & (__LOG_BUF_LEN - 1);
log_buf[dest_idx] = __log_buf[log_idx_mask];
start++;
dest_idx++;
}
log_start -= offset;
con_start -= offset;
log_end -= offset;
raw_spin_unlock_irqrestore(&logbuf_lock, flags);
pr_info("log_buf_len: %d\n", log_buf_len);
pr_info("early log buf free: %d(%d%%)\n",
free, (free * 100) / __LOG_BUF_LEN);
}
#ifdef CONFIG_BOOT_PRINTK_DELAY
static int boot_delay; /* msecs delay after each printk during bootup */
static unsigned long long loops_per_msec; /* based on boot_delay */
static int __init boot_delay_setup(char *str)
{
unsigned long lpj;
lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
get_option(&str, &boot_delay);
if (boot_delay > 10 * 1000)
boot_delay = 0;
pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
"HZ: %d, loops_per_msec: %llu\n",
boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
return 1;
}
__setup("boot_delay=", boot_delay_setup);
static void boot_delay_msec(void)
{
unsigned long long k;
unsigned long timeout;
if (boot_delay == 0 || system_state != SYSTEM_BOOTING)
return;
k = (unsigned long long)loops_per_msec * boot_delay;
timeout = jiffies + msecs_to_jiffies(boot_delay);
while (k) {
k--;
cpu_relax();
/*
* use (volatile) jiffies to prevent
* compiler reduction; loop termination via jiffies
* is secondary and may or may not happen.
*/
if (time_after(jiffies, timeout))
break;
touch_nmi_watchdog();
}
}
#else
static inline void boot_delay_msec(void)
{
}
#endif
#ifdef CONFIG_SECURITY_DMESG_RESTRICT
int dmesg_restrict = 1;
#else
int dmesg_restrict;
#endif
static int syslog_action_restricted(int type)
{
if (dmesg_restrict)
return 1;
/* Unless restricted, we allow "read all" and "get buffer size" for everybody */
return type != SYSLOG_ACTION_READ_ALL && type != SYSLOG_ACTION_SIZE_BUFFER;
}
static int check_syslog_permissions(int type, bool from_file)
{
/*
* If this is from /proc/kmsg and we've already opened it, then we've
* already done the capabilities checks at open time.
*/
if (from_file && type != SYSLOG_ACTION_OPEN)
return 0;
if (syslog_action_restricted(type)) {
if (capable(CAP_SYSLOG))
return 0;
/* For historical reasons, accept CAP_SYS_ADMIN too, with a warning */
if (capable(CAP_SYS_ADMIN)) {
printk_once(KERN_WARNING "%s (%d): "
"Attempt to access syslog with CAP_SYS_ADMIN "
"but no CAP_SYSLOG (deprecated).\n",
current->comm, task_pid_nr(current));
return 0;
}
return -EPERM;
}
return 0;
}
int do_syslog(int type, char __user *buf, int len, bool from_file)
{
unsigned i, j, limit, count;
int do_clear = 0;
char c;
int error;
error = check_syslog_permissions(type, from_file);
if (error)
goto out;
error = security_syslog(type);
if (error)
return error;
switch (type) {
case SYSLOG_ACTION_CLOSE: /* Close log */
break;
case SYSLOG_ACTION_OPEN: /* Open log */
break;
case SYSLOG_ACTION_READ: /* Read from log */
error = -EINVAL;
if (!buf || len < 0)
goto out;
error = 0;
if (!len)
goto out;
if (!access_ok(VERIFY_WRITE, buf, len)) {
error = -EFAULT;
goto out;
}
error = wait_event_interruptible(log_wait,
(log_start - log_end));
if (error)
goto out;
i = 0;
raw_spin_lock_irq(&logbuf_lock);
while (!error && (log_start != log_end) && i < len) {
c = LOG_BUF(log_start);
log_start++;
raw_spin_unlock_irq(&logbuf_lock);
error = __put_user(c,buf);
buf++;
i++;
cond_resched();
raw_spin_lock_irq(&logbuf_lock);
}
raw_spin_unlock_irq(&logbuf_lock);
if (!error)
error = i;
break;
/* Read/clear last kernel messages */
case SYSLOG_ACTION_READ_CLEAR:
do_clear = 1;
/* FALL THRU */
/* Read last kernel messages */
case SYSLOG_ACTION_READ_ALL:
error = -EINVAL;
if (!buf || len < 0)
goto out;
error = 0;
if (!len)
goto out;
if (!access_ok(VERIFY_WRITE, buf, len)) {
error = -EFAULT;
goto out;
}
count = len;
if (count > log_buf_len)
count = log_buf_len;
raw_spin_lock_irq(&logbuf_lock);
if (count > logged_chars)
count = logged_chars;
if (do_clear)
logged_chars = 0;
limit = log_end;
/*
* __put_user() could sleep, and while we sleep
* printk() could overwrite the messages
* we try to copy to user space. Therefore
* the messages are copied in reverse. <manfreds>
*/
for (i = 0; i < count && !error; i++) {
j = limit-1-i;
if (j + log_buf_len < log_end)
break;
c = LOG_BUF(j);
raw_spin_unlock_irq(&logbuf_lock);
error = __put_user(c,&buf[count-1-i]);
cond_resched();
raw_spin_lock_irq(&logbuf_lock);
}
raw_spin_unlock_irq(&logbuf_lock);
if (error)
break;
error = i;
if (i != count) {
int offset = count-error;
/* buffer overflow during copy, correct user buffer. */
for (i = 0; i < error; i++) {
if (__get_user(c,&buf[i+offset]) ||
__put_user(c,&buf[i])) {
error = -EFAULT;
break;
}
cond_resched();
}
}
break;
/* Clear ring buffer */
case SYSLOG_ACTION_CLEAR:
logged_chars = 0;
break;
/* Disable logging to console */
case SYSLOG_ACTION_CONSOLE_OFF:
if (saved_console_loglevel == -1)
saved_console_loglevel = console_loglevel;
console_loglevel = minimum_console_loglevel;
break;
/* Enable logging to console */
case SYSLOG_ACTION_CONSOLE_ON:
if (saved_console_loglevel != -1) {
console_loglevel = saved_console_loglevel;
saved_console_loglevel = -1;
}
break;
/* Set level of messages printed to console */
case SYSLOG_ACTION_CONSOLE_LEVEL:
error = -EINVAL;
if (len < 1 || len > 8)
goto out;
if (len < minimum_console_loglevel)
len = minimum_console_loglevel;
console_loglevel = len;
/* Implicitly re-enable logging to console */
saved_console_loglevel = -1;
error = 0;
break;
/* Number of chars in the log buffer */
case SYSLOG_ACTION_SIZE_UNREAD:
error = log_end - log_start;
break;
/* Size of the log buffer */
case SYSLOG_ACTION_SIZE_BUFFER:
error = log_buf_len;
break;
default:
error = -EINVAL;
break;
}
out:
return error;
}
SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
{
return do_syslog(type, buf, len, SYSLOG_FROM_CALL);
}
#ifdef CONFIG_KGDB_KDB
/* kdb dmesg command needs access to the syslog buffer. do_syslog()
* uses locks so it cannot be used during debugging. Just tell kdb
* where the start and end of the physical and logical logs are. This
* is equivalent to do_syslog(3).
*/
void kdb_syslog_data(char *syslog_data[4])
{
syslog_data[0] = log_buf;
syslog_data[1] = log_buf + log_buf_len;
syslog_data[2] = log_buf + log_end -
(logged_chars < log_buf_len ? logged_chars : log_buf_len);
syslog_data[3] = log_buf + log_end;
}
#endif /* CONFIG_KGDB_KDB */
/*
* Call the console drivers on a range of log_buf
*/
static void __call_console_drivers(unsigned start, unsigned end)
{
struct console *con;
for_each_console(con) {
if (exclusive_console && con != exclusive_console)
continue;
if ((con->flags & CON_ENABLED) && con->write &&
(cpu_online(smp_processor_id()) ||
(con->flags & CON_ANYTIME)))
con->write(con, &LOG_BUF(start), end - start);
}
}
static bool __read_mostly ignore_loglevel;
static int __init ignore_loglevel_setup(char *str)
{
ignore_loglevel = 1;
printk(KERN_INFO "debug: ignoring loglevel setting.\n");
return 0;
}
early_param("ignore_loglevel", ignore_loglevel_setup);
module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
"print all kernel messages to the console.");
/*
* Write out chars from start to end - 1 inclusive
*/
static void _call_console_drivers(unsigned start,
unsigned end, int msg_log_level)
{
trace_console(&LOG_BUF(0), start, end, log_buf_len);
if ((msg_log_level < console_loglevel || ignore_loglevel) &&
console_drivers && start != end) {
if ((start & LOG_BUF_MASK) > (end & LOG_BUF_MASK)) {
/* wrapped write */
__call_console_drivers(start & LOG_BUF_MASK,
log_buf_len);
__call_console_drivers(0, end & LOG_BUF_MASK);
} else {
__call_console_drivers(start, end);
}
}
}
/*
* Parse the syslog header <[0-9]*>. The decimal value represents 32bit, the
* lower 3 bit are the log level, the rest are the log facility. In case
* userspace passes usual userspace syslog messages to /dev/kmsg or
* /dev/ttyprintk, the log prefix might contain the facility. Printk needs
* to extract the correct log level for in-kernel processing, and not mangle
* the original value.
*
* If a prefix is found, the length of the prefix is returned. If 'level' is
* passed, it will be filled in with the log level without a possible facility
* value. If 'special' is passed, the special printk prefix chars are accepted
* and returned. If no valid header is found, 0 is returned and the passed
* variables are not touched.
*/
static size_t log_prefix(const char *p, unsigned int *level, char *special)
{
unsigned int lev = 0;
char sp = '\0';
size_t len;
if (p[0] != '<' || !p[1])
return 0;
if (p[2] == '>') {
/* usual single digit level number or special char */
switch (p[1]) {
case '0' ... '7':
lev = p[1] - '0';
break;
case 'c': /* KERN_CONT */
case 'd': /* KERN_DEFAULT */
sp = p[1];
break;
default:
return 0;
}
len = 3;
} else {
/* multi digit including the level and facility number */
char *endp = NULL;
lev = (simple_strtoul(&p[1], &endp, 10) & 7);
if (endp == NULL || endp[0] != '>')
return 0;
len = (endp + 1) - p;
}
/* do not accept special char if not asked for */
if (sp && !special)
return 0;
if (special) {
*special = sp;
/* return special char, do not touch level */
if (sp)
return len;
}
if (level)
*level = lev;
return len;
}
/*
* Call the console drivers, asking them to write out
* log_buf[start] to log_buf[end - 1].
* The console_lock must be held.
*/
static void call_console_drivers(unsigned start, unsigned end)
{
unsigned cur_index, start_print;
static int msg_level = -1;
BUG_ON(((int)(start - end)) > 0);
cur_index = start;
start_print = start;
while (cur_index != end) {
if (msg_level < 0 && ((end - cur_index) > 2)) {
/* strip log prefix */
cur_index += log_prefix(&LOG_BUF(cur_index), &msg_level, NULL);
start_print = cur_index;
}
while (cur_index != end) {
char c = LOG_BUF(cur_index);
cur_index++;
if (c == '\n') {
if (msg_level < 0) {
/*
* printk() has already given us loglevel tags in
* the buffer. This code is here in case the
* log buffer has wrapped right round and scribbled
* on those tags
*/
msg_level = default_message_loglevel;
}
_call_console_drivers(start_print, cur_index, msg_level);
msg_level = -1;
start_print = cur_index;
break;
}
}
}
_call_console_drivers(start_print, end, msg_level);
}
static void emit_log_char(char c)
{
LOG_BUF(log_end) = c;
log_end++;
if (log_end - log_start > log_buf_len)
log_start = log_end - log_buf_len;
if (log_end - con_start > log_buf_len)
con_start = log_end - log_buf_len;
if (logged_chars < log_buf_len)
logged_chars++;
}
/*
* Zap console related locks when oopsing. Only zap at most once
* every 10 seconds, to leave time for slow consoles to print a
* full oops.
*/
static void zap_locks(void)
{
static unsigned long oops_timestamp;
if (time_after_eq(jiffies, oops_timestamp) &&
!time_after(jiffies, oops_timestamp + 30 * HZ))
return;
oops_timestamp = jiffies;
debug_locks_off();
/* If a crash is occurring, make sure we can't deadlock */
raw_spin_lock_init(&logbuf_lock);
/* And make sure that we print immediately */
sema_init(&console_sem, 1);
}
#if defined(CONFIG_PRINTK_TIME)
static bool printk_time = 1;
#else
static bool printk_time = 0;
#endif
module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
static bool always_kmsg_dump;
module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
/* Check if we have any console registered that can be called early in boot. */
static int have_callable_console(void)
{
struct console *con;
for_each_console(con)
if (con->flags & CON_ANYTIME)
return 1;
return 0;
}
/**
* printk - print a kernel message
* @fmt: format string
*
* This is printk(). It can be called from any context. We want it to work.
*
* We try to grab the console_lock. If we succeed, it's easy - we log the output and
* call the console drivers. If we fail to get the semaphore we place the output
* into the log buffer and return. The current holder of the console_sem will
* notice the new output in console_unlock(); and will send it to the
* consoles before releasing the lock.
*
* One effect of this deferred printing is that code which calls printk() and
* then changes console_loglevel may break. This is because console_loglevel
* is inspected when the actual printing occurs.
*
* See also:
* printf(3)
*
* See the vsnprintf() documentation for format string extensions over C99.
*/
asmlinkage int printk(const char *fmt, ...)
{
va_list args;
int r;
#ifdef CONFIG_KGDB_KDB
if (unlikely(kdb_trap_printk)) {
va_start(args, fmt);
r = vkdb_printf(fmt, args);
va_end(args);
return r;
}
#endif
va_start(args, fmt);
r = vprintk(fmt, args);
va_end(args);
return r;
}
/* cpu currently holding logbuf_lock */
static volatile unsigned int printk_cpu = UINT_MAX;
/*
* Can we actually use the console at this time on this cpu?
*
* Console drivers may assume that per-cpu resources have
* been allocated. So unless they're explicitly marked as
* being able to cope (CON_ANYTIME) don't call them until
* this CPU is officially up.
*/
static inline int can_use_console(unsigned int cpu)
{
return cpu_online(cpu) || have_callable_console();
}
/*
* Try to get console ownership to actually show the kernel
* messages from a 'printk'. Return true (and with the
* console_lock held, and 'console_locked' set) if it
* is successful, false otherwise.
*
* This gets called with the 'logbuf_lock' spinlock held and
* interrupts disabled. It should return with 'lockbuf_lock'
* released but interrupts still disabled.
*/
static int console_trylock_for_printk(unsigned int cpu)
__releases(&logbuf_lock)
{
int retval = 0, wake = 0;
if (console_trylock()) {
retval = 1;
/*
* If we can't use the console, we need to release
* the console semaphore by hand to avoid flushing
* the buffer. We need to hold the console semaphore
* in order to do this test safely.
*/
if (!can_use_console(cpu)) {
console_locked = 0;
wake = 1;
retval = 0;
}
}
printk_cpu = UINT_MAX;
if (wake)
up(&console_sem);
raw_spin_unlock(&logbuf_lock);
return retval;
}
static const char recursion_bug_msg [] =
KERN_CRIT "BUG: recent printk recursion!\n";
static int recursion_bug;
static int new_text_line = 1;
static char printk_buf[1024];
int printk_delay_msec __read_mostly;
static inline void printk_delay(void)
{
if (unlikely(printk_delay_msec)) {
int m = printk_delay_msec;
while (m--) {
mdelay(1);
touch_nmi_watchdog();
}
}
}
asmlinkage int vprintk(const char *fmt, va_list args)
{
int printed_len = 0;
int current_log_level = default_message_loglevel;
unsigned long flags;
int this_cpu;
char *p;
size_t plen;
char special;
boot_delay_msec();
printk_delay();
/* This stops the holder of console_sem just where we want him */
local_irq_save(flags);
this_cpu = smp_processor_id();
/*
* Ouch, printk recursed into itself!
*/
if (unlikely(printk_cpu == this_cpu)) {
/*
* If a crash is occurring during printk() on this CPU,
* then try to get the crash message out but make sure
* we can't deadlock. Otherwise just return to avoid the
* recursion and return - but flag the recursion so that
* it can be printed at the next appropriate moment:
*/
if (!oops_in_progress && !lockdep_recursing(current)) {
recursion_bug = 1;
goto out_restore_irqs;
}
zap_locks();
}
lockdep_off();
raw_spin_lock(&logbuf_lock);
printk_cpu = this_cpu;
if (recursion_bug) {
recursion_bug = 0;
strcpy(printk_buf, recursion_bug_msg);
printed_len = strlen(recursion_bug_msg);
}
/* Emit the output into the temporary buffer */
printed_len += vscnprintf(printk_buf + printed_len,
sizeof(printk_buf) - printed_len, fmt, args);
p = printk_buf;
/* Read log level and handle special printk prefix */
plen = log_prefix(p, &current_log_level, &special);
if (plen) {
p += plen;
switch (special) {
case 'c': /* Strip <c> KERN_CONT, continue line */
plen = 0;
break;
case 'd': /* Strip <d> KERN_DEFAULT, start new line */
plen = 0;
default:
if (!new_text_line) {
emit_log_char('\n');
new_text_line = 1;
}
}
}
/*
* Copy the output into log_buf. If the caller didn't provide
* the appropriate log prefix, we insert them here
*/
for (; *p; p++) {
if (new_text_line) {
new_text_line = 0;
if (plen) {
/* Copy original log prefix */
int i;
for (i = 0; i < plen; i++)
emit_log_char(printk_buf[i]);
printed_len += plen;
} else {
/* Add log prefix */
emit_log_char('<');
emit_log_char(current_log_level + '0');
emit_log_char('>');
printed_len += 3;
}
if (printk_time) {
/* Add the current time stamp */
char tbuf[50], *tp;
unsigned tlen;
unsigned long long t;
unsigned long nanosec_rem;
t = cpu_clock(printk_cpu);
nanosec_rem = do_div(t, 1000000000);
tlen = sprintf(tbuf, "[%5lu.%06lu] ",
(unsigned long) t,
nanosec_rem / 1000);
for (tp = tbuf; tp < tbuf + tlen; tp++)
emit_log_char(*tp);
printed_len += tlen;
}
if (!*p)
break;
}
emit_log_char(*p);
if (*p == '\n')
new_text_line = 1;
}
/*
* Try to acquire and then immediately release the
* console semaphore. The release will do all the
* actual magic (print out buffers, wake up klogd,
* etc).
*
* The console_trylock_for_printk() function
* will release 'logbuf_lock' regardless of whether it
* actually gets the semaphore or not.
*/
if (console_trylock_for_printk(this_cpu))
console_unlock();
lockdep_on();
out_restore_irqs:
local_irq_restore(flags);
return printed_len;
}
EXPORT_SYMBOL(printk);
EXPORT_SYMBOL(vprintk);
#else
static void call_console_drivers(unsigned start, unsigned end)
{
}
#endif
static int __add_preferred_console(char *name, int idx, char *options,
char *brl_options)
{
struct console_cmdline *c;
int i;
/*
* See if this tty is not yet registered, and
* if we have a slot free.
*/
for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; i++)
if (strcmp(console_cmdline[i].name, name) == 0 &&
console_cmdline[i].index == idx) {
if (!brl_options)
selected_console = i;
return 0;
}
if (i == MAX_CMDLINECONSOLES)
return -E2BIG;
if (!brl_options)
selected_console = i;
c = &console_cmdline[i];
strlcpy(c->name, name, sizeof(c->name));
c->options = options;
#ifdef CONFIG_A11Y_BRAILLE_CONSOLE
c->brl_options = brl_options;
#endif
c->index = idx;
return 0;
}
/*
* Set up a list of consoles. Called from init/main.c
*/
static int __init console_setup(char *str)
{
char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */
char *s, *options, *brl_options = NULL;
int idx;
#ifdef CONFIG_A11Y_BRAILLE_CONSOLE
if (!memcmp(str, "brl,", 4)) {
brl_options = "";
str += 4;
} else if (!memcmp(str, "brl=", 4)) {
brl_options = str + 4;
str = strchr(brl_options, ',');
if (!str) {
printk(KERN_ERR "need port name after brl=\n");
return 1;
}
*(str++) = 0;
}
#endif
/*
* Decode str into name, index, options.
*/
if (str[0] >= '0' && str[0] <= '9') {
strcpy(buf, "ttyS");
strncpy(buf + 4, str, sizeof(buf) - 5);
} else {
strncpy(buf, str, sizeof(buf) - 1);
}
buf[sizeof(buf) - 1] = 0;
if ((options = strchr(str, ',')) != NULL)
*(options++) = 0;
#ifdef __sparc__
if (!strcmp(str, "ttya"))
strcpy(buf, "ttyS0");
if (!strcmp(str, "ttyb"))
strcpy(buf, "ttyS1");
#endif
for (s = buf; *s; s++)
if ((*s >= '0' && *s <= '9') || *s == ',')
break;
idx = simple_strtoul(s, NULL, 10);
*s = 0;
__add_preferred_console(buf, idx, options, brl_options);
console_set_on_cmdline = 1;
return 1;
}
__setup("console=", console_setup);
/**
* add_preferred_console - add a device to the list of preferred consoles.
* @name: device name
* @idx: device index
* @options: options for this console
*
* The last preferred console added will be used for kernel messages
* and stdin/out/err for init. Normally this is used by console_setup
* above to handle user-supplied console arguments; however it can also
* be used by arch-specific code either to override the user or more
* commonly to provide a default console (ie from PROM variables) when
* the user has not supplied one.
*/
int add_preferred_console(char *name, int idx, char *options)
{
return __add_preferred_console(name, idx, options, NULL);
}
int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
{
struct console_cmdline *c;
int i;
for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; i++)
if (strcmp(console_cmdline[i].name, name) == 0 &&
console_cmdline[i].index == idx) {
c = &console_cmdline[i];
strlcpy(c->name, name_new, sizeof(c->name));
c->name[sizeof(c->name) - 1] = 0;
c->options = options;
c->index = idx_new;
return i;
}
/* not found */
return -1;
}
bool console_suspend_enabled = 1;
EXPORT_SYMBOL(console_suspend_enabled);
static int __init console_suspend_disable(char *str)
{
console_suspend_enabled = 0;
return 1;
}
__setup("no_console_suspend", console_suspend_disable);
module_param_named(console_suspend, console_suspend_enabled,
bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
" and hibernate operations");
/**
* suspend_console - suspend the console subsystem
*
* This disables printk() while we go into suspend states
*/
void suspend_console(void)
{
if (!console_suspend_enabled)
return;
printk("Suspending console(s) (use no_console_suspend to debug)\n");
console_lock();
console_suspended = 1;
up(&console_sem);
}
void resume_console(void)
{
if (!console_suspend_enabled)
return;
down(&console_sem);
console_suspended = 0;
console_unlock();
}
/**
* console_cpu_notify - print deferred console messages after CPU hotplug
* @self: notifier struct
* @action: CPU hotplug event
* @hcpu: unused
*
* If printk() is called from a CPU that is not online yet, the messages
* will be spooled but will not show up on the console. This function is
* called when a new CPU comes online (or fails to come up), and ensures
* that any such output gets printed.
*/
static int __cpuinit console_cpu_notify(struct notifier_block *self,
unsigned long action, void *hcpu)
{
switch (action) {
case CPU_ONLINE:
case CPU_DEAD:
case CPU_DYING:
case CPU_DOWN_FAILED:
case CPU_UP_CANCELED:
console_lock();
console_unlock();
}
return NOTIFY_OK;
}
/**
* console_lock - lock the console system for exclusive use.
*
* Acquires a lock which guarantees that the caller has
* exclusive access to the console system and the console_drivers list.
*
* Can sleep, returns nothing.
*/
void console_lock(void)
{
BUG_ON(in_interrupt());
down(&console_sem);
if (console_suspended)
return;
console_locked = 1;
console_may_schedule = 1;
}
EXPORT_SYMBOL(console_lock);
/**
* console_trylock - try to lock the console system for exclusive use.
*
* Tried to acquire a lock which guarantees that the caller has
* exclusive access to the console system and the console_drivers list.
*
* returns 1 on success, and 0 on failure to acquire the lock.
*/
int console_trylock(void)
{
if (down_trylock(&console_sem))
return 0;
if (console_suspended) {
up(&console_sem);
return 0;
}
console_locked = 1;
console_may_schedule = 0;
return 1;
}
EXPORT_SYMBOL(console_trylock);
int is_console_locked(void)
{
return console_locked;
}
/*
* Delayed printk facility, for scheduler-internal messages:
*/
#define PRINTK_BUF_SIZE 512
#define PRINTK_PENDING_WAKEUP 0x01
#define PRINTK_PENDING_SCHED 0x02
static DEFINE_PER_CPU(int, printk_pending);
static DEFINE_PER_CPU(char [PRINTK_BUF_SIZE], printk_sched_buf);
void printk_tick(void)
{
if (__this_cpu_read(printk_pending)) {
int pending = __this_cpu_xchg(printk_pending, 0);
if (pending & PRINTK_PENDING_SCHED) {
char *buf = __get_cpu_var(printk_sched_buf);
printk(KERN_WARNING "[sched_delayed] %s", buf);
}
if (pending & PRINTK_PENDING_WAKEUP)
wake_up_interruptible(&log_wait);
}
}
int printk_needs_cpu(int cpu)
{
if (cpu_is_offline(cpu))
printk_tick();
return __this_cpu_read(printk_pending);
}
void wake_up_klogd(void)
{
if (waitqueue_active(&log_wait))
this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
}
/**
* console_unlock - unlock the console system
*
* Releases the console_lock which the caller holds on the console system
* and the console driver list.
*
* While the console_lock was held, console output may have been buffered
* by printk(). If this is the case, console_unlock(); emits
* the output prior to releasing the lock.
*
* If there is output waiting for klogd, we wake it up.
*
* console_unlock(); may be called from any context.
*/
void console_unlock(void)
{
unsigned long flags;
unsigned _con_start, _log_end;
unsigned wake_klogd = 0, retry = 0;
if (console_suspended) {
up(&console_sem);
return;
}
console_may_schedule = 0;
again:
for ( ; ; ) {
raw_spin_lock_irqsave(&logbuf_lock, flags);
wake_klogd |= log_start - log_end;
if (con_start == log_end)
break; /* Nothing to print */
_con_start = con_start;
_log_end = log_end;
con_start = log_end; /* Flush */
raw_spin_unlock(&logbuf_lock);
stop_critical_timings(); /* don't trace print latency */
call_console_drivers(_con_start, _log_end);
start_critical_timings();
local_irq_restore(flags);
}
console_locked = 0;
/* Release the exclusive_console once it is used */
if (unlikely(exclusive_console))
exclusive_console = NULL;
raw_spin_unlock(&logbuf_lock);
up(&console_sem);
/*
* Someone could have filled up the buffer again, so re-check if there's
* something to flush. In case we cannot trylock the console_sem again,
* there's a new owner and the console_unlock() from them will do the
* flush, no worries.
*/
raw_spin_lock(&logbuf_lock);
if (con_start != log_end)
retry = 1;
raw_spin_unlock_irqrestore(&logbuf_lock, flags);
if (retry && console_trylock())
goto again;
if (wake_klogd)
wake_up_klogd();
}
EXPORT_SYMBOL(console_unlock);
/**
* console_conditional_schedule - yield the CPU if required
*
* If the console code is currently allowed to sleep, and
* if this CPU should yield the CPU to another task, do
* so here.
*
* Must be called within console_lock();.
*/
void __sched console_conditional_schedule(void)
{
if (console_may_schedule)
cond_resched();
}
EXPORT_SYMBOL(console_conditional_schedule);
void console_unblank(void)
{
struct console *c;
/*
* console_unblank can no longer be called in interrupt context unless
* oops_in_progress is set to 1..
*/
if (oops_in_progress) {
if (down_trylock(&console_sem) != 0)
return;
} else
console_lock();
console_locked = 1;
console_may_schedule = 0;
for_each_console(c)
if ((c->flags & CON_ENABLED) && c->unblank)
c->unblank();
console_unlock();
}
/*
* Return the console tty driver structure and its associated index
*/
struct tty_driver *console_device(int *index)
{
struct console *c;
struct tty_driver *driver = NULL;
console_lock();
for_each_console(c) {
if (!c->device)
continue;
driver = c->device(c, index);
if (driver)
break;
}
console_unlock();
return driver;
}
/*
* Prevent further output on the passed console device so that (for example)
* serial drivers can disable console output before suspending a port, and can
* re-enable output afterwards.
*/
void console_stop(struct console *console)
{
console_lock();
console->flags &= ~CON_ENABLED;
console_unlock();
}
EXPORT_SYMBOL(console_stop);
void console_start(struct console *console)
{
console_lock();
console->flags |= CON_ENABLED;
console_unlock();
}
EXPORT_SYMBOL(console_start);
static int __read_mostly keep_bootcon;
static int __init keep_bootcon_setup(char *str)
{
keep_bootcon = 1;
printk(KERN_INFO "debug: skip boot console de-registration.\n");
return 0;
}
early_param("keep_bootcon", keep_bootcon_setup);
/*
* The console driver calls this routine during kernel initialization
* to register the console printing procedure with printk() and to
* print any messages that were printed by the kernel before the
* console driver was initialized.
*
* This can happen pretty early during the boot process (because of
* early_printk) - sometimes before setup_arch() completes - be careful
* of what kernel features are used - they may not be initialised yet.
*
* There are two types of consoles - bootconsoles (early_printk) and
* "real" consoles (everything which is not a bootconsole) which are
* handled differently.
* - Any number of bootconsoles can be registered at any time.
* - As soon as a "real" console is registered, all bootconsoles
* will be unregistered automatically.
* - Once a "real" console is registered, any attempt to register a
* bootconsoles will be rejected
*/
void register_console(struct console *newcon)
{
int i;
unsigned long flags;
struct console *bcon = NULL;
/*
* before we register a new CON_BOOT console, make sure we don't
* already have a valid console
*/
if (console_drivers && newcon->flags & CON_BOOT) {
/* find the last or real console */
for_each_console(bcon) {
if (!(bcon->flags & CON_BOOT)) {
printk(KERN_INFO "Too late to register bootconsole %s%d\n",
newcon->name, newcon->index);
return;
}
}
}
if (console_drivers && console_drivers->flags & CON_BOOT)
bcon = console_drivers;
if (preferred_console < 0 || bcon || !console_drivers)
preferred_console = selected_console;
if (newcon->early_setup)
newcon->early_setup();
/*
* See if we want to use this console driver. If we
* didn't select a console we take the first one
* that registers here.
*/
if (preferred_console < 0) {
if (newcon->index < 0)
newcon->index = 0;
if (newcon->setup == NULL ||
newcon->setup(newcon, NULL) == 0) {
newcon->flags |= CON_ENABLED;
if (newcon->device) {
newcon->flags |= CON_CONSDEV;
preferred_console = 0;
}
}
}
/*
* See if this console matches one we selected on
* the command line.
*/
for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0];
i++) {
if (strcmp(console_cmdline[i].name, newcon->name) != 0)
continue;
if (newcon->index >= 0 &&
newcon->index != console_cmdline[i].index)
continue;
if (newcon->index < 0)
newcon->index = console_cmdline[i].index;
#ifdef CONFIG_A11Y_BRAILLE_CONSOLE
if (console_cmdline[i].brl_options) {
newcon->flags |= CON_BRL;
braille_register_console(newcon,
console_cmdline[i].index,
console_cmdline[i].options,
console_cmdline[i].brl_options);
return;
}
#endif
if (newcon->setup &&
newcon->setup(newcon, console_cmdline[i].options) != 0)
break;
newcon->flags |= CON_ENABLED;
newcon->index = console_cmdline[i].index;
if (i == selected_console) {
newcon->flags |= CON_CONSDEV;
preferred_console = selected_console;
}
break;
}
if (!(newcon->flags & CON_ENABLED))
return;
/*
* If we have a bootconsole, and are switching to a real console,
* don't print everything out again, since when the boot console, and
* the real console are the same physical device, it's annoying to
* see the beginning boot messages twice
*/
if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
newcon->flags &= ~CON_PRINTBUFFER;
/*
* Put this console in the list - keep the
* preferred driver at the head of the list.
*/
console_lock();
if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
newcon->next = console_drivers;
console_drivers = newcon;
if (newcon->next)
newcon->next->flags &= ~CON_CONSDEV;
} else {
newcon->next = console_drivers->next;
console_drivers->next = newcon;
}
if (newcon->flags & CON_PRINTBUFFER) {
/*
* console_unlock(); will print out the buffered messages
* for us.
*/
raw_spin_lock_irqsave(&logbuf_lock, flags);
con_start = log_start;
raw_spin_unlock_irqrestore(&logbuf_lock, flags);
/*
* We're about to replay the log buffer. Only do this to the
* just-registered console to avoid excessive message spam to
* the already-registered consoles.
*/
exclusive_console = newcon;
}
console_unlock();
console_sysfs_notify();
/*
* By unregistering the bootconsoles after we enable the real console
* we get the "console xxx enabled" message on all the consoles -
* boot consoles, real consoles, etc - this is to ensure that end
* users know there might be something in the kernel's log buffer that
* went to the bootconsole (that they do not see on the real console)
*/
if (bcon &&
((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
!keep_bootcon) {
/* we need to iterate through twice, to make sure we print
* everything out, before we unregister the console(s)
*/
printk(KERN_INFO "console [%s%d] enabled, bootconsole disabled\n",
newcon->name, newcon->index);
for_each_console(bcon)
if (bcon->flags & CON_BOOT)
unregister_console(bcon);
} else {
printk(KERN_INFO "%sconsole [%s%d] enabled\n",
(newcon->flags & CON_BOOT) ? "boot" : "" ,
newcon->name, newcon->index);
}
}
EXPORT_SYMBOL(register_console);
int unregister_console(struct console *console)
{
struct console *a, *b;
int res = 1;
#ifdef CONFIG_A11Y_BRAILLE_CONSOLE
if (console->flags & CON_BRL)
return braille_unregister_console(console);
#endif
console_lock();
if (console_drivers == console) {
console_drivers=console->next;
res = 0;
} else if (console_drivers) {
for (a=console_drivers->next, b=console_drivers ;
a; b=a, a=b->next) {
if (a == console) {
b->next = a->next;
res = 0;
break;
}
}
}
/*
* If this isn't the last console and it has CON_CONSDEV set, we
* need to set it on the next preferred console.
*/
if (console_drivers != NULL && console->flags & CON_CONSDEV)
console_drivers->flags |= CON_CONSDEV;
console_unlock();
console_sysfs_notify();
return res;
}
EXPORT_SYMBOL(unregister_console);
static int __init printk_late_init(void)
{
struct console *con;
for_each_console(con) {
if (!keep_bootcon && con->flags & CON_BOOT) {
printk(KERN_INFO "turn off boot console %s%d\n",
con->name, con->index);
unregister_console(con);
}
}
hotcpu_notifier(console_cpu_notify, 0);
return 0;
}
late_initcall(printk_late_init);
#if defined CONFIG_PRINTK
int printk_sched(const char *fmt, ...)
{
unsigned long flags;
va_list args;
char *buf;
int r;
local_irq_save(flags);
buf = __get_cpu_var(printk_sched_buf);
va_start(args, fmt);
r = vsnprintf(buf, PRINTK_BUF_SIZE, fmt, args);
va_end(args);
__this_cpu_or(printk_pending, PRINTK_PENDING_SCHED);
local_irq_restore(flags);
return r;
}
/*
* printk rate limiting, lifted from the networking subsystem.
*
* This enforces a rate limit: not more than 10 kernel messages
* every 5s to make a denial-of-service attack impossible.
*/
DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
int __printk_ratelimit(const char *func)
{
return ___ratelimit(&printk_ratelimit_state, func);
}
EXPORT_SYMBOL(__printk_ratelimit);
/**
* printk_timed_ratelimit - caller-controlled printk ratelimiting
* @caller_jiffies: pointer to caller's state
* @interval_msecs: minimum interval between prints
*
* printk_timed_ratelimit() returns true if more than @interval_msecs
* milliseconds have elapsed since the last time printk_timed_ratelimit()
* returned true.
*/
bool printk_timed_ratelimit(unsigned long *caller_jiffies,
unsigned int interval_msecs)
{
if (*caller_jiffies == 0
|| !time_in_range(jiffies, *caller_jiffies,
*caller_jiffies
+ msecs_to_jiffies(interval_msecs))) {
*caller_jiffies = jiffies;
return true;
}
return false;
}
EXPORT_SYMBOL(printk_timed_ratelimit);
static DEFINE_SPINLOCK(dump_list_lock);
static LIST_HEAD(dump_list);
/**
* kmsg_dump_register - register a kernel log dumper.
* @dumper: pointer to the kmsg_dumper structure
*
* Adds a kernel log dumper to the system. The dump callback in the
* structure will be called when the kernel oopses or panics and must be
* set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
*/
int kmsg_dump_register(struct kmsg_dumper *dumper)
{
unsigned long flags;
int err = -EBUSY;
/* The dump callback needs to be set */
if (!dumper->dump)
return -EINVAL;
spin_lock_irqsave(&dump_list_lock, flags);
/* Don't allow registering multiple times */
if (!dumper->registered) {
dumper->registered = 1;
list_add_tail_rcu(&dumper->list, &dump_list);
err = 0;
}
spin_unlock_irqrestore(&dump_list_lock, flags);
return err;
}
EXPORT_SYMBOL_GPL(kmsg_dump_register);
/**
* kmsg_dump_unregister - unregister a kmsg dumper.
* @dumper: pointer to the kmsg_dumper structure
*
* Removes a dump device from the system. Returns zero on success and
* %-EINVAL otherwise.
*/
int kmsg_dump_unregister(struct kmsg_dumper *dumper)
{
unsigned long flags;
int err = -EINVAL;
spin_lock_irqsave(&dump_list_lock, flags);
if (dumper->registered) {
dumper->registered = 0;
list_del_rcu(&dumper->list);
err = 0;
}
spin_unlock_irqrestore(&dump_list_lock, flags);
synchronize_rcu();
return err;
}
EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
/**
* kmsg_dump - dump kernel log to kernel message dumpers.
* @reason: the reason (oops, panic etc) for dumping
*
* Iterate through each of the dump devices and call the oops/panic
* callbacks with the log buffer.
*/
void kmsg_dump(enum kmsg_dump_reason reason)
{
unsigned long end;
unsigned chars;
struct kmsg_dumper *dumper;
const char *s1, *s2;
unsigned long l1, l2;
unsigned long flags;
if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
return;
/* Theoretically, the log could move on after we do this, but
there's not a lot we can do about that. The new messages
will overwrite the start of what we dump. */
raw_spin_lock_irqsave(&logbuf_lock, flags);
end = log_end & LOG_BUF_MASK;
chars = logged_chars;
raw_spin_unlock_irqrestore(&logbuf_lock, flags);
if (chars > end) {
s1 = log_buf + log_buf_len - chars + end;
l1 = chars - end;
s2 = log_buf;
l2 = end;
} else {
s1 = "";
l1 = 0;
s2 = log_buf + end - chars;
l2 = chars;
}
rcu_read_lock();
list_for_each_entry_rcu(dumper, &dump_list, list)
dumper->dump(dumper, reason, s1, l1, s2, l2);
rcu_read_unlock();
}
#endif