You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/arch/powerpc/mm/init64.c

385 lines
10 KiB

/*
* PowerPC version
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
*
* Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
* and Cort Dougan (PReP) (cort@cs.nmt.edu)
* Copyright (C) 1996 Paul Mackerras
* Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
*
* Derived from "arch/i386/mm/init.c"
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*
* Dave Engebretsen <engebret@us.ibm.com>
* Rework for PPC64 port.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <linux/config.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/stddef.h>
#include <linux/vmalloc.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/bootmem.h>
#include <linux/highmem.h>
#include <linux/idr.h>
#include <linux/nodemask.h>
#include <linux/module.h>
#include <asm/pgalloc.h>
#include <asm/page.h>
#include <asm/prom.h>
#include <asm/lmb.h>
#include <asm/rtas.h>
#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/mmu.h>
#include <asm/uaccess.h>
#include <asm/smp.h>
#include <asm/machdep.h>
#include <asm/tlb.h>
#include <asm/eeh.h>
#include <asm/processor.h>
#include <asm/mmzone.h>
#include <asm/cputable.h>
#include <asm/ppcdebug.h>
#include <asm/sections.h>
#include <asm/system.h>
#include <asm/iommu.h>
#include <asm/abs_addr.h>
#include <asm/vdso.h>
#include <asm/imalloc.h>
#if PGTABLE_RANGE > USER_VSID_RANGE
#warning Limited user VSID range means pagetable space is wasted
#endif
#if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
#warning TASK_SIZE is smaller than it needs to be.
#endif
int mem_init_done;
unsigned long ioremap_bot = IMALLOC_BASE;
static unsigned long phbs_io_bot = PHBS_IO_BASE;
extern pgd_t swapper_pg_dir[];
extern struct task_struct *current_set[NR_CPUS];
unsigned long klimit = (unsigned long)_end;
unsigned long _SDR1=0;
unsigned long _ASR=0;
/* max amount of RAM to use */
unsigned long __max_memory;
/* info on what we think the IO hole is */
unsigned long io_hole_start;
unsigned long io_hole_size;
/*
* Do very early mm setup.
*/
void __init mm_init_ppc64(void)
{
#ifndef CONFIG_PPC_ISERIES
unsigned long i;
#endif
ppc64_boot_msg(0x100, "MM Init");
/* This is the story of the IO hole... please, keep seated,
* unfortunately, we are out of oxygen masks at the moment.
* So we need some rough way to tell where your big IO hole
* is. On pmac, it's between 2G and 4G, on POWER3, it's around
* that area as well, on POWER4 we don't have one, etc...
* We need that as a "hint" when sizing the TCE table on POWER3
* So far, the simplest way that seem work well enough for us it
* to just assume that the first discontinuity in our physical
* RAM layout is the IO hole. That may not be correct in the future
* (and isn't on iSeries but then we don't care ;)
*/
#ifndef CONFIG_PPC_ISERIES
for (i = 1; i < lmb.memory.cnt; i++) {
unsigned long base, prevbase, prevsize;
prevbase = lmb.memory.region[i-1].base;
prevsize = lmb.memory.region[i-1].size;
base = lmb.memory.region[i].base;
if (base > (prevbase + prevsize)) {
io_hole_start = prevbase + prevsize;
io_hole_size = base - (prevbase + prevsize);
break;
}
}
#endif /* CONFIG_PPC_ISERIES */
if (io_hole_start)
printk("IO Hole assumed to be %lx -> %lx\n",
io_hole_start, io_hole_start + io_hole_size - 1);
ppc64_boot_msg(0x100, "MM Init Done");
}
void free_initmem(void)
{
unsigned long addr;
addr = (unsigned long)__init_begin;
for (; addr < (unsigned long)__init_end; addr += PAGE_SIZE) {
memset((void *)addr, 0xcc, PAGE_SIZE);
ClearPageReserved(virt_to_page(addr));
set_page_count(virt_to_page(addr), 1);
free_page(addr);
totalram_pages++;
}
printk ("Freeing unused kernel memory: %luk freed\n",
((unsigned long)__init_end - (unsigned long)__init_begin) >> 10);
}
#ifdef CONFIG_BLK_DEV_INITRD
void free_initrd_mem(unsigned long start, unsigned long end)
{
if (start < end)
printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
for (; start < end; start += PAGE_SIZE) {
ClearPageReserved(virt_to_page(start));
set_page_count(virt_to_page(start), 1);
free_page(start);
totalram_pages++;
}
}
#endif
/*
* Initialize the bootmem system and give it all the memory we
* have available.
*/
#ifndef CONFIG_NEED_MULTIPLE_NODES
void __init do_init_bootmem(void)
{
unsigned long i;
unsigned long start, bootmap_pages;
unsigned long total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
int boot_mapsize;
/*
* Find an area to use for the bootmem bitmap. Calculate the size of
* bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
* Add 1 additional page in case the address isn't page-aligned.
*/
bootmap_pages = bootmem_bootmap_pages(total_pages);
start = lmb_alloc(bootmap_pages<<PAGE_SHIFT, PAGE_SIZE);
BUG_ON(!start);
boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
max_pfn = max_low_pfn;
/* Add all physical memory to the bootmem map, mark each area
* present.
*/
for (i=0; i < lmb.memory.cnt; i++)
free_bootmem(lmb.memory.region[i].base,
lmb_size_bytes(&lmb.memory, i));
/* reserve the sections we're already using */
for (i=0; i < lmb.reserved.cnt; i++)
reserve_bootmem(lmb.reserved.region[i].base,
lmb_size_bytes(&lmb.reserved, i));
for (i=0; i < lmb.memory.cnt; i++)
memory_present(0, lmb_start_pfn(&lmb.memory, i),
lmb_end_pfn(&lmb.memory, i));
}
/*
* paging_init() sets up the page tables - in fact we've already done this.
*/
void __init paging_init(void)
{
unsigned long zones_size[MAX_NR_ZONES];
unsigned long zholes_size[MAX_NR_ZONES];
unsigned long total_ram = lmb_phys_mem_size();
unsigned long top_of_ram = lmb_end_of_DRAM();
printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
top_of_ram, total_ram);
printk(KERN_INFO "Memory hole size: %ldMB\n",
(top_of_ram - total_ram) >> 20);
/*
* All pages are DMA-able so we put them all in the DMA zone.
*/
memset(zones_size, 0, sizeof(zones_size));
memset(zholes_size, 0, sizeof(zholes_size));
zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
free_area_init_node(0, NODE_DATA(0), zones_size,
__pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);
}
#endif /* ! CONFIG_NEED_MULTIPLE_NODES */
static struct kcore_list kcore_vmem;
static int __init setup_kcore(void)
{
int i;
for (i=0; i < lmb.memory.cnt; i++) {
unsigned long base, size;
struct kcore_list *kcore_mem;
base = lmb.memory.region[i].base;
size = lmb.memory.region[i].size;
/* GFP_ATOMIC to avoid might_sleep warnings during boot */
kcore_mem = kmalloc(sizeof(struct kcore_list), GFP_ATOMIC);
if (!kcore_mem)
panic("mem_init: kmalloc failed\n");
kclist_add(kcore_mem, __va(base), size);
}
kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
return 0;
}
module_init(setup_kcore);
void __init mem_init(void)
{
#ifdef CONFIG_NEED_MULTIPLE_NODES
int nid;
#endif
pg_data_t *pgdat;
unsigned long i;
struct page *page;
unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
num_physpages = max_low_pfn; /* RAM is assumed contiguous */
high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
#ifdef CONFIG_NEED_MULTIPLE_NODES
for_each_online_node(nid) {
if (NODE_DATA(nid)->node_spanned_pages != 0) {
printk("freeing bootmem node %x\n", nid);
totalram_pages +=
free_all_bootmem_node(NODE_DATA(nid));
}
}
#else
max_mapnr = num_physpages;
totalram_pages += free_all_bootmem();
#endif
for_each_pgdat(pgdat) {
for (i = 0; i < pgdat->node_spanned_pages; i++) {
page = pgdat_page_nr(pgdat, i);
if (PageReserved(page))
reservedpages++;
}
}
codesize = (unsigned long)&_etext - (unsigned long)&_stext;
initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
datasize = (unsigned long)&_edata - (unsigned long)&__init_end;
bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
"%luk reserved, %luk data, %luk bss, %luk init)\n",
(unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
num_physpages << (PAGE_SHIFT-10),
codesize >> 10,
reservedpages << (PAGE_SHIFT-10),
datasize >> 10,
bsssize >> 10,
initsize >> 10);
mem_init_done = 1;
/* Initialize the vDSO */
vdso_init();
}
void __iomem * reserve_phb_iospace(unsigned long size)
{
void __iomem *virt_addr;
if (phbs_io_bot >= IMALLOC_BASE)
panic("reserve_phb_iospace(): phb io space overflow\n");
virt_addr = (void __iomem *) phbs_io_bot;
phbs_io_bot += size;
return virt_addr;
}
static void zero_ctor(void *addr, kmem_cache_t *cache, unsigned long flags)
{
memset(addr, 0, kmem_cache_size(cache));
}
static const int pgtable_cache_size[2] = {
PTE_TABLE_SIZE, PMD_TABLE_SIZE
};
static const char *pgtable_cache_name[ARRAY_SIZE(pgtable_cache_size)] = {
"pgd_pte_cache", "pud_pmd_cache",
};
kmem_cache_t *pgtable_cache[ARRAY_SIZE(pgtable_cache_size)];
void pgtable_cache_init(void)
{
int i;
BUILD_BUG_ON(PTE_TABLE_SIZE != pgtable_cache_size[PTE_CACHE_NUM]);
BUILD_BUG_ON(PMD_TABLE_SIZE != pgtable_cache_size[PMD_CACHE_NUM]);
BUILD_BUG_ON(PUD_TABLE_SIZE != pgtable_cache_size[PUD_CACHE_NUM]);
BUILD_BUG_ON(PGD_TABLE_SIZE != pgtable_cache_size[PGD_CACHE_NUM]);
for (i = 0; i < ARRAY_SIZE(pgtable_cache_size); i++) {
int size = pgtable_cache_size[i];
const char *name = pgtable_cache_name[i];
pgtable_cache[i] = kmem_cache_create(name,
size, size,
SLAB_HWCACHE_ALIGN
| SLAB_MUST_HWCACHE_ALIGN,
zero_ctor,
NULL);
if (! pgtable_cache[i])
panic("pgtable_cache_init(): could not create %s!\n",
name);
}
}
pgprot_t phys_mem_access_prot(struct file *file, unsigned long addr,
unsigned long size, pgprot_t vma_prot)
{
if (ppc_md.phys_mem_access_prot)
return ppc_md.phys_mem_access_prot(file, addr, size, vma_prot);
if (!page_is_ram(addr >> PAGE_SHIFT))
vma_prot = __pgprot(pgprot_val(vma_prot)
| _PAGE_GUARDED | _PAGE_NO_CACHE);
return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);