You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/drivers/scsi/libsas/sas_discover.c

782 lines
21 KiB

/*
* Serial Attached SCSI (SAS) Discover process
*
* Copyright (C) 2005 Adaptec, Inc. All rights reserved.
* Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
*
* This file is licensed under GPLv2.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include <linux/pci.h>
#include <linux/scatterlist.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_eh.h>
#include "sas_internal.h"
#include <scsi/scsi_transport.h>
#include <scsi/scsi_transport_sas.h>
#include "../scsi_sas_internal.h"
/* ---------- Basic task processing for discovery purposes ---------- */
void sas_init_dev(struct domain_device *dev)
{
INIT_LIST_HEAD(&dev->siblings);
INIT_LIST_HEAD(&dev->dev_list_node);
switch (dev->dev_type) {
case SAS_END_DEV:
break;
case EDGE_DEV:
case FANOUT_DEV:
INIT_LIST_HEAD(&dev->ex_dev.children);
break;
case SATA_DEV:
case SATA_PM:
case SATA_PM_PORT:
INIT_LIST_HEAD(&dev->sata_dev.children);
break;
default:
break;
}
}
static void sas_task_timedout(unsigned long _task)
{
struct sas_task *task = (void *) _task;
unsigned long flags;
spin_lock_irqsave(&task->task_state_lock, flags);
if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
task->task_state_flags |= SAS_TASK_STATE_ABORTED;
spin_unlock_irqrestore(&task->task_state_lock, flags);
complete(&task->completion);
}
static void sas_disc_task_done(struct sas_task *task)
{
if (!del_timer(&task->timer))
return;
complete(&task->completion);
}
#define SAS_DEV_TIMEOUT 10
/**
* sas_execute_task -- Basic task processing for discovery
* @task: the task to be executed
* @buffer: pointer to buffer to do I/O
* @size: size of @buffer
* @pci_dma_dir: PCI_DMA_...
*/
static int sas_execute_task(struct sas_task *task, void *buffer, int size,
int pci_dma_dir)
{
int res = 0;
struct scatterlist *scatter = NULL;
struct task_status_struct *ts = &task->task_status;
int num_scatter = 0;
int retries = 0;
struct sas_internal *i =
to_sas_internal(task->dev->port->ha->core.shost->transportt);
if (pci_dma_dir != PCI_DMA_NONE) {
scatter = kzalloc(sizeof(*scatter), GFP_KERNEL);
if (!scatter)
goto out;
sg_init_one(scatter, buffer, size);
num_scatter = 1;
}
task->task_proto = task->dev->tproto;
task->scatter = scatter;
task->num_scatter = num_scatter;
task->total_xfer_len = size;
task->data_dir = pci_dma_dir;
task->task_done = sas_disc_task_done;
for (retries = 0; retries < 5; retries++) {
task->task_state_flags = SAS_TASK_STATE_PENDING;
init_completion(&task->completion);
task->timer.data = (unsigned long) task;
task->timer.function = sas_task_timedout;
task->timer.expires = jiffies + SAS_DEV_TIMEOUT*HZ;
add_timer(&task->timer);
res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
if (res) {
del_timer(&task->timer);
SAS_DPRINTK("executing SAS discovery task failed:%d\n",
res);
goto ex_err;
}
wait_for_completion(&task->completion);
res = -ETASK;
if (task->task_state_flags & SAS_TASK_STATE_ABORTED) {
int res2;
SAS_DPRINTK("task aborted, flags:0x%x\n",
task->task_state_flags);
res2 = i->dft->lldd_abort_task(task);
SAS_DPRINTK("came back from abort task\n");
if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
if (res2 == TMF_RESP_FUNC_COMPLETE)
continue; /* Retry the task */
else
goto ex_err;
}
}
if (task->task_status.stat == SAM_BUSY ||
task->task_status.stat == SAM_TASK_SET_FULL ||
task->task_status.stat == SAS_QUEUE_FULL) {
SAS_DPRINTK("task: q busy, sleeping...\n");
schedule_timeout_interruptible(HZ);
} else if (task->task_status.stat == SAM_CHECK_COND) {
struct scsi_sense_hdr shdr;
if (!scsi_normalize_sense(ts->buf, ts->buf_valid_size,
&shdr)) {
SAS_DPRINTK("couldn't normalize sense\n");
continue;
}
if ((shdr.sense_key == 6 && shdr.asc == 0x29) ||
(shdr.sense_key == 2 && shdr.asc == 4 &&
shdr.ascq == 1)) {
SAS_DPRINTK("device %016llx LUN: %016llx "
"powering up or not ready yet, "
"sleeping...\n",
SAS_ADDR(task->dev->sas_addr),
SAS_ADDR(task->ssp_task.LUN));
schedule_timeout_interruptible(5*HZ);
} else if (shdr.sense_key == 1) {
res = 0;
break;
} else if (shdr.sense_key == 5) {
break;
} else {
SAS_DPRINTK("dev %016llx LUN: %016llx "
"sense key:0x%x ASC:0x%x ASCQ:0x%x"
"\n",
SAS_ADDR(task->dev->sas_addr),
SAS_ADDR(task->ssp_task.LUN),
shdr.sense_key,
shdr.asc, shdr.ascq);
}
} else if (task->task_status.resp != SAS_TASK_COMPLETE ||
task->task_status.stat != SAM_GOOD) {
SAS_DPRINTK("task finished with resp:0x%x, "
"stat:0x%x\n",
task->task_status.resp,
task->task_status.stat);
goto ex_err;
} else {
res = 0;
break;
}
}
ex_err:
if (pci_dma_dir != PCI_DMA_NONE)
kfree(scatter);
out:
return res;
}
/* ---------- Domain device discovery ---------- */
/**
* sas_get_port_device -- Discover devices which caused port creation
* @port: pointer to struct sas_port of interest
*
* Devices directly attached to a HA port, have no parent. This is
* how we know they are (domain) "root" devices. All other devices
* do, and should have their "parent" pointer set appropriately as
* soon as a child device is discovered.
*/
static int sas_get_port_device(struct asd_sas_port *port)
{
unsigned long flags;
struct asd_sas_phy *phy;
struct sas_rphy *rphy;
struct domain_device *dev;
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
spin_lock_irqsave(&port->phy_list_lock, flags);
if (list_empty(&port->phy_list)) {
spin_unlock_irqrestore(&port->phy_list_lock, flags);
kfree(dev);
return -ENODEV;
}
phy = container_of(port->phy_list.next, struct asd_sas_phy, port_phy_el);
spin_lock(&phy->frame_rcvd_lock);
memcpy(dev->frame_rcvd, phy->frame_rcvd, min(sizeof(dev->frame_rcvd),
(size_t)phy->frame_rcvd_size));
spin_unlock(&phy->frame_rcvd_lock);
spin_unlock_irqrestore(&port->phy_list_lock, flags);
if (dev->frame_rcvd[0] == 0x34 && port->oob_mode == SATA_OOB_MODE) {
struct dev_to_host_fis *fis =
(struct dev_to_host_fis *) dev->frame_rcvd;
if (fis->interrupt_reason == 1 && fis->lbal == 1 &&
fis->byte_count_low==0x69 && fis->byte_count_high == 0x96
&& (fis->device & ~0x10) == 0)
dev->dev_type = SATA_PM;
else
dev->dev_type = SATA_DEV;
dev->tproto = SATA_PROTO;
} else {
struct sas_identify_frame *id =
(struct sas_identify_frame *) dev->frame_rcvd;
dev->dev_type = id->dev_type;
dev->iproto = id->initiator_bits;
dev->tproto = id->target_bits;
}
sas_init_dev(dev);
switch (dev->dev_type) {
case SAS_END_DEV:
rphy = sas_end_device_alloc(port->port);
break;
case EDGE_DEV:
rphy = sas_expander_alloc(port->port,
SAS_EDGE_EXPANDER_DEVICE);
break;
case FANOUT_DEV:
rphy = sas_expander_alloc(port->port,
SAS_FANOUT_EXPANDER_DEVICE);
break;
case SATA_DEV:
default:
printk("ERROR: Unidentified device type %d\n", dev->dev_type);
rphy = NULL;
break;
}
if (!rphy) {
kfree(dev);
return -ENODEV;
}
rphy->identify.phy_identifier = phy->phy->identify.phy_identifier;
memcpy(dev->sas_addr, port->attached_sas_addr, SAS_ADDR_SIZE);
sas_fill_in_rphy(dev, rphy);
sas_hash_addr(dev->hashed_sas_addr, dev->sas_addr);
port->port_dev = dev;
dev->port = port;
dev->linkrate = port->linkrate;
dev->min_linkrate = port->linkrate;
dev->max_linkrate = port->linkrate;
dev->pathways = port->num_phys;
memset(port->disc.fanout_sas_addr, 0, SAS_ADDR_SIZE);
memset(port->disc.eeds_a, 0, SAS_ADDR_SIZE);
memset(port->disc.eeds_b, 0, SAS_ADDR_SIZE);
port->disc.max_level = 0;
dev->rphy = rphy;
spin_lock(&port->dev_list_lock);
list_add_tail(&dev->dev_list_node, &port->dev_list);
spin_unlock(&port->dev_list_lock);
return 0;
}
/* ---------- Discover and Revalidate ---------- */
/* ---------- SATA ---------- */
static void sas_get_ata_command_set(struct domain_device *dev)
{
struct dev_to_host_fis *fis =
(struct dev_to_host_fis *) dev->frame_rcvd;
if ((fis->sector_count == 1 && /* ATA */
fis->lbal == 1 &&
fis->lbam == 0 &&
fis->lbah == 0 &&
fis->device == 0)
||
(fis->sector_count == 0 && /* CE-ATA (mATA) */
fis->lbal == 0 &&
fis->lbam == 0xCE &&
fis->lbah == 0xAA &&
(fis->device & ~0x10) == 0))
dev->sata_dev.command_set = ATA_COMMAND_SET;
else if ((fis->interrupt_reason == 1 && /* ATAPI */
fis->lbal == 1 &&
fis->byte_count_low == 0x14 &&
fis->byte_count_high == 0xEB &&
(fis->device & ~0x10) == 0))
dev->sata_dev.command_set = ATAPI_COMMAND_SET;
else if ((fis->sector_count == 1 && /* SEMB */
fis->lbal == 1 &&
fis->lbam == 0x3C &&
fis->lbah == 0xC3 &&
fis->device == 0)
||
(fis->interrupt_reason == 1 && /* SATA PM */
fis->lbal == 1 &&
fis->byte_count_low == 0x69 &&
fis->byte_count_high == 0x96 &&
(fis->device & ~0x10) == 0))
/* Treat it as a superset? */
dev->sata_dev.command_set = ATAPI_COMMAND_SET;
}
/**
* sas_issue_ata_cmd -- Basic SATA command processing for discovery
* @dev: the device to send the command to
* @command: the command register
* @features: the features register
* @buffer: pointer to buffer to do I/O
* @size: size of @buffer
* @pci_dma_dir: PCI_DMA_...
*/
static int sas_issue_ata_cmd(struct domain_device *dev, u8 command,
u8 features, void *buffer, int size,
int pci_dma_dir)
{
int res = 0;
struct sas_task *task;
struct dev_to_host_fis *d2h_fis = (struct dev_to_host_fis *)
&dev->frame_rcvd[0];
res = -ENOMEM;
task = sas_alloc_task(GFP_KERNEL);
if (!task)
goto out;
task->dev = dev;
task->ata_task.fis.command = command;
task->ata_task.fis.features = features;
task->ata_task.fis.device = d2h_fis->device;
task->ata_task.retry_count = 1;
res = sas_execute_task(task, buffer, size, pci_dma_dir);
sas_free_task(task);
out:
return res;
}
static void sas_sata_propagate_sas_addr(struct domain_device *dev)
{
unsigned long flags;
struct asd_sas_port *port = dev->port;
struct asd_sas_phy *phy;
BUG_ON(dev->parent);
memcpy(port->attached_sas_addr, dev->sas_addr, SAS_ADDR_SIZE);
spin_lock_irqsave(&port->phy_list_lock, flags);
list_for_each_entry(phy, &port->phy_list, port_phy_el)
memcpy(phy->attached_sas_addr, dev->sas_addr, SAS_ADDR_SIZE);
spin_unlock_irqrestore(&port->phy_list_lock, flags);
}
#define ATA_IDENTIFY_DEV 0xEC
#define ATA_IDENTIFY_PACKET_DEV 0xA1
#define ATA_SET_FEATURES 0xEF
#define ATA_FEATURE_PUP_STBY_SPIN_UP 0x07
/**
* sas_discover_sata_dev -- discover a STP/SATA device (SATA_DEV)
* @dev: STP/SATA device of interest (ATA/ATAPI)
*
* The LLDD has already been notified of this device, so that we can
* send FISes to it. Here we try to get IDENTIFY DEVICE or IDENTIFY
* PACKET DEVICE, if ATAPI device, so that the LLDD can fine-tune its
* performance for this device.
*/
static int sas_discover_sata_dev(struct domain_device *dev)
{
int res;
__le16 *identify_x;
u8 command;
identify_x = kzalloc(512, GFP_KERNEL);
if (!identify_x)
return -ENOMEM;
if (dev->sata_dev.command_set == ATA_COMMAND_SET) {
dev->sata_dev.identify_device = identify_x;
command = ATA_IDENTIFY_DEV;
} else {
dev->sata_dev.identify_packet_device = identify_x;
command = ATA_IDENTIFY_PACKET_DEV;
}
res = sas_issue_ata_cmd(dev, command, 0, identify_x, 512,
PCI_DMA_FROMDEVICE);
if (res)
goto out_err;
/* lives on the media? */
if (le16_to_cpu(identify_x[0]) & 4) {
/* incomplete response */
SAS_DPRINTK("sending SET FEATURE/PUP_STBY_SPIN_UP to "
"dev %llx\n", SAS_ADDR(dev->sas_addr));
if (!le16_to_cpu(identify_x[83] & (1<<6)))
goto cont1;
res = sas_issue_ata_cmd(dev, ATA_SET_FEATURES,
ATA_FEATURE_PUP_STBY_SPIN_UP,
NULL, 0, PCI_DMA_NONE);
if (res)
goto cont1;
schedule_timeout_interruptible(5*HZ); /* More time? */
res = sas_issue_ata_cmd(dev, command, 0, identify_x, 512,
PCI_DMA_FROMDEVICE);
if (res)
goto out_err;
}
cont1:
/* Get WWN */
if (dev->port->oob_mode != SATA_OOB_MODE) {
memcpy(dev->sas_addr, dev->sata_dev.rps_resp.rps.stp_sas_addr,
SAS_ADDR_SIZE);
} else if (dev->sata_dev.command_set == ATA_COMMAND_SET &&
(le16_to_cpu(dev->sata_dev.identify_device[108]) & 0xF000)
== 0x5000) {
int i;
for (i = 0; i < 4; i++) {
dev->sas_addr[2*i] =
(le16_to_cpu(dev->sata_dev.identify_device[108+i]) & 0xFF00) >> 8;
dev->sas_addr[2*i+1] =
le16_to_cpu(dev->sata_dev.identify_device[108+i]) & 0x00FF;
}
}
sas_hash_addr(dev->hashed_sas_addr, dev->sas_addr);
if (!dev->parent)
sas_sata_propagate_sas_addr(dev);
/* XXX Hint: register this SATA device with SATL.
When this returns, dev->sata_dev->lu is alive and
present.
sas_satl_register_dev(dev);
*/
return 0;
out_err:
dev->sata_dev.identify_packet_device = NULL;
dev->sata_dev.identify_device = NULL;
kfree(identify_x);
return res;
}
static int sas_discover_sata_pm(struct domain_device *dev)
{
return -ENODEV;
}
int sas_notify_lldd_dev_found(struct domain_device *dev)
{
int res = 0;
struct sas_ha_struct *sas_ha = dev->port->ha;
struct Scsi_Host *shost = sas_ha->core.shost;
struct sas_internal *i = to_sas_internal(shost->transportt);
if (i->dft->lldd_dev_found) {
res = i->dft->lldd_dev_found(dev);
if (res) {
printk("sas: driver on pcidev %s cannot handle "
"device %llx, error:%d\n",
pci_name(sas_ha->pcidev),
SAS_ADDR(dev->sas_addr), res);
}
}
return res;
}
void sas_notify_lldd_dev_gone(struct domain_device *dev)
{
struct sas_ha_struct *sas_ha = dev->port->ha;
struct Scsi_Host *shost = sas_ha->core.shost;
struct sas_internal *i = to_sas_internal(shost->transportt);
if (i->dft->lldd_dev_gone)
i->dft->lldd_dev_gone(dev);
}
/* ---------- Common/dispatchers ---------- */
/**
* sas_discover_sata -- discover an STP/SATA domain device
* @dev: pointer to struct domain_device of interest
*
* First we notify the LLDD of this device, so we can send frames to
* it. Then depending on the type of device we call the appropriate
* discover functions. Once device discover is done, we notify the
* LLDD so that it can fine-tune its parameters for the device, by
* removing it and then adding it. That is, the second time around,
* the driver would have certain fields, that it is looking at, set.
* Finally we initialize the kobj so that the device can be added to
* the system at registration time. Devices directly attached to a HA
* port, have no parents. All other devices do, and should have their
* "parent" pointer set appropriately before calling this function.
*/
int sas_discover_sata(struct domain_device *dev)
{
int res;
sas_get_ata_command_set(dev);
res = sas_notify_lldd_dev_found(dev);
if (res)
goto out_err2;
switch (dev->dev_type) {
case SATA_DEV:
res = sas_discover_sata_dev(dev);
break;
case SATA_PM:
res = sas_discover_sata_pm(dev);
break;
default:
break;
}
if (res)
goto out_err;
sas_notify_lldd_dev_gone(dev);
res = sas_notify_lldd_dev_found(dev);
if (res)
goto out_err2;
res = sas_rphy_add(dev->rphy);
if (res)
goto out_err;
return res;
out_err:
sas_notify_lldd_dev_gone(dev);
out_err2:
sas_rphy_free(dev->rphy);
dev->rphy = NULL;
return res;
}
/**
* sas_discover_end_dev -- discover an end device (SSP, etc)
* @end: pointer to domain device of interest
*
* See comment in sas_discover_sata().
*/
int sas_discover_end_dev(struct domain_device *dev)
{
int res;
res = sas_notify_lldd_dev_found(dev);
if (res)
goto out_err2;
res = sas_rphy_add(dev->rphy);
if (res)
goto out_err;
/* do this to get the end device port attributes which will have
* been scanned in sas_rphy_add */
sas_notify_lldd_dev_gone(dev);
res = sas_notify_lldd_dev_found(dev);
if (res)
goto out_err3;
return 0;
out_err:
sas_notify_lldd_dev_gone(dev);
out_err2:
sas_rphy_free(dev->rphy);
dev->rphy = NULL;
return res;
out_err3:
sas_rphy_delete(dev->rphy);
dev->rphy = NULL;
return res;
}
/* ---------- Device registration and unregistration ---------- */
static inline void sas_unregister_common_dev(struct domain_device *dev)
{
sas_notify_lldd_dev_gone(dev);
if (!dev->parent)
dev->port->port_dev = NULL;
else
list_del_init(&dev->siblings);
list_del_init(&dev->dev_list_node);
}
void sas_unregister_dev(struct domain_device *dev)
{
if (dev->rphy) {
sas_remove_children(&dev->rphy->dev);
sas_rphy_delete(dev->rphy);
dev->rphy = NULL;
}
if (dev->dev_type == EDGE_DEV || dev->dev_type == FANOUT_DEV) {
/* remove the phys and ports, everything else should be gone */
kfree(dev->ex_dev.ex_phy);
dev->ex_dev.ex_phy = NULL;
}
sas_unregister_common_dev(dev);
}
void sas_unregister_domain_devices(struct asd_sas_port *port)
{
struct domain_device *dev, *n;
list_for_each_entry_safe_reverse(dev,n,&port->dev_list,dev_list_node)
sas_unregister_dev(dev);
port->port->rphy = NULL;
}
/* ---------- Discovery and Revalidation ---------- */
/**
* sas_discover_domain -- discover the domain
* @port: port to the domain of interest
*
* NOTE: this process _must_ quit (return) as soon as any connection
* errors are encountered. Connection recovery is done elsewhere.
* Discover process only interrogates devices in order to discover the
* domain.
*/
static void sas_discover_domain(struct work_struct *work)
{
int error = 0;
struct sas_discovery_event *ev =
container_of(work, struct sas_discovery_event, work);
struct asd_sas_port *port = ev->port;
sas_begin_event(DISCE_DISCOVER_DOMAIN, &port->disc.disc_event_lock,
&port->disc.pending);
if (port->port_dev)
return ;
else {
error = sas_get_port_device(port);
if (error)
return;
}
SAS_DPRINTK("DOING DISCOVERY on port %d, pid:%d\n", port->id,
current->pid);
switch (port->port_dev->dev_type) {
case SAS_END_DEV:
error = sas_discover_end_dev(port->port_dev);
break;
case EDGE_DEV:
case FANOUT_DEV:
error = sas_discover_root_expander(port->port_dev);
break;
case SATA_DEV:
case SATA_PM:
error = sas_discover_sata(port->port_dev);
break;
default:
SAS_DPRINTK("unhandled device %d\n", port->port_dev->dev_type);
break;
}
if (error) {
spin_lock(&port->dev_list_lock);
list_del_init(&port->port_dev->dev_list_node);
spin_unlock(&port->dev_list_lock);
kfree(port->port_dev); /* not kobject_register-ed yet */
port->port_dev = NULL;
}
SAS_DPRINTK("DONE DISCOVERY on port %d, pid:%d, result:%d\n", port->id,
current->pid, error);
}
static void sas_revalidate_domain(struct work_struct *work)
{
int res = 0;
struct sas_discovery_event *ev =
container_of(work, struct sas_discovery_event, work);
struct asd_sas_port *port = ev->port;
sas_begin_event(DISCE_REVALIDATE_DOMAIN, &port->disc.disc_event_lock,
&port->disc.pending);
SAS_DPRINTK("REVALIDATING DOMAIN on port %d, pid:%d\n", port->id,
current->pid);
if (port->port_dev)
res = sas_ex_revalidate_domain(port->port_dev);
SAS_DPRINTK("done REVALIDATING DOMAIN on port %d, pid:%d, res 0x%x\n",
port->id, current->pid, res);
}
/* ---------- Events ---------- */
int sas_discover_event(struct asd_sas_port *port, enum discover_event ev)
{
struct sas_discovery *disc;
if (!port)
return 0;
disc = &port->disc;
BUG_ON(ev >= DISC_NUM_EVENTS);
sas_queue_event(ev, &disc->disc_event_lock, &disc->pending,
&disc->disc_work[ev].work, port->ha->core.shost);
return 0;
}
/**
* sas_init_disc -- initialize the discovery struct in the port
* @port: pointer to struct port
*
* Called when the ports are being initialized.
*/
void sas_init_disc(struct sas_discovery *disc, struct asd_sas_port *port)
{
int i;
static const work_func_t sas_event_fns[DISC_NUM_EVENTS] = {
[DISCE_DISCOVER_DOMAIN] = sas_discover_domain,
[DISCE_REVALIDATE_DOMAIN] = sas_revalidate_domain,
};
spin_lock_init(&disc->disc_event_lock);
disc->pending = 0;
for (i = 0; i < DISC_NUM_EVENTS; i++) {
INIT_WORK(&disc->disc_work[i].work, sas_event_fns[i]);
disc->disc_work[i].port = port;
}
}