You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/drivers/net/sk98lin/skgeinit.c

2151 lines
58 KiB

/******************************************************************************
*
* Name: skgeinit.c
* Project: Gigabit Ethernet Adapters, Common Modules
* Version: $Revision: 1.97 $
* Date: $Date: 2003/10/02 16:45:31 $
* Purpose: Contains functions to initialize the adapter
*
******************************************************************************/
/******************************************************************************
*
* (C)Copyright 1998-2002 SysKonnect.
* (C)Copyright 2002-2003 Marvell.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* The information in this file is provided "AS IS" without warranty.
*
******************************************************************************/
#include "h/skdrv1st.h"
#include "h/skdrv2nd.h"
/* global variables ***********************************************************/
/* local variables ************************************************************/
#if (defined(DEBUG) || ((!defined(LINT)) && (!defined(SK_SLIM))))
static const char SysKonnectFileId[] =
"@(#) $Id: skgeinit.c,v 1.97 2003/10/02 16:45:31 rschmidt Exp $ (C) Marvell.";
#endif
struct s_QOffTab {
int RxQOff; /* Receive Queue Address Offset */
int XsQOff; /* Sync Tx Queue Address Offset */
int XaQOff; /* Async Tx Queue Address Offset */
};
static struct s_QOffTab QOffTab[] = {
{Q_R1, Q_XS1, Q_XA1}, {Q_R2, Q_XS2, Q_XA2}
};
struct s_Config {
char ScanString[8];
SK_U32 Value;
};
static struct s_Config OemConfig = {
{'O','E','M','_','C','o','n','f'},
#ifdef SK_OEM_CONFIG
OEM_CONFIG_VALUE,
#else
0,
#endif
};
/******************************************************************************
*
* SkGePollRxD() - Enable / Disable Descriptor Polling of RxD Ring
*
* Description:
* Enable or disable the descriptor polling of the receive descriptor
* ring (RxD) for port 'Port'.
* The new configuration is *not* saved over any SkGeStopPort() and
* SkGeInitPort() calls.
*
* Returns:
* nothing
*/
void SkGePollRxD(
SK_AC *pAC, /* adapter context */
SK_IOC IoC, /* IO context */
int Port, /* Port Index (MAC_1 + n) */
SK_BOOL PollRxD) /* SK_TRUE (enable pol.), SK_FALSE (disable pol.) */
{
SK_GEPORT *pPrt;
pPrt = &pAC->GIni.GP[Port];
SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_CSR), (PollRxD) ?
CSR_ENA_POL : CSR_DIS_POL);
} /* SkGePollRxD */
/******************************************************************************
*
* SkGePollTxD() - Enable / Disable Descriptor Polling of TxD Rings
*
* Description:
* Enable or disable the descriptor polling of the transmit descriptor
* ring(s) (TxD) for port 'Port'.
* The new configuration is *not* saved over any SkGeStopPort() and
* SkGeInitPort() calls.
*
* Returns:
* nothing
*/
void SkGePollTxD(
SK_AC *pAC, /* adapter context */
SK_IOC IoC, /* IO context */
int Port, /* Port Index (MAC_1 + n) */
SK_BOOL PollTxD) /* SK_TRUE (enable pol.), SK_FALSE (disable pol.) */
{
SK_GEPORT *pPrt;
SK_U32 DWord;
pPrt = &pAC->GIni.GP[Port];
DWord = (SK_U32)(PollTxD ? CSR_ENA_POL : CSR_DIS_POL);
if (pPrt->PXSQSize != 0) {
SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), DWord);
}
if (pPrt->PXAQSize != 0) {
SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), DWord);
}
} /* SkGePollTxD */
/******************************************************************************
*
* SkGeYellowLED() - Switch the yellow LED on or off.
*
* Description:
* Switch the yellow LED on or off.
*
* Note:
* This function may be called any time after SkGeInit(Level 1).
*
* Returns:
* nothing
*/
void SkGeYellowLED(
SK_AC *pAC, /* adapter context */
SK_IOC IoC, /* IO context */
int State) /* yellow LED state, 0 = OFF, 0 != ON */
{
if (State == 0) {
/* Switch yellow LED OFF */
SK_OUT8(IoC, B0_LED, LED_STAT_OFF);
}
else {
/* Switch yellow LED ON */
SK_OUT8(IoC, B0_LED, LED_STAT_ON);
}
} /* SkGeYellowLED */
#if (!defined(SK_SLIM) || defined(GENESIS))
/******************************************************************************
*
* SkGeXmitLED() - Modify the Operational Mode of a transmission LED.
*
* Description:
* The Rx or Tx LED which is specified by 'Led' will be
* enabled, disabled or switched on in test mode.
*
* Note:
* 'Led' must contain the address offset of the LEDs INI register.
*
* Usage:
* SkGeXmitLED(pAC, IoC, MR_ADDR(Port, TX_LED_INI), SK_LED_ENA);
*
* Returns:
* nothing
*/
void SkGeXmitLED(
SK_AC *pAC, /* adapter context */
SK_IOC IoC, /* IO context */
int Led, /* offset to the LED Init Value register */
int Mode) /* Mode may be SK_LED_DIS, SK_LED_ENA, SK_LED_TST */
{
SK_U32 LedIni;
switch (Mode) {
case SK_LED_ENA:
LedIni = SK_XMIT_DUR * (SK_U32)pAC->GIni.GIHstClkFact / 100;
SK_OUT32(IoC, Led + XMIT_LED_INI, LedIni);
SK_OUT8(IoC, Led + XMIT_LED_CTRL, LED_START);
break;
case SK_LED_TST:
SK_OUT8(IoC, Led + XMIT_LED_TST, LED_T_ON);
SK_OUT32(IoC, Led + XMIT_LED_CNT, 100);
SK_OUT8(IoC, Led + XMIT_LED_CTRL, LED_START);
break;
case SK_LED_DIS:
default:
/*
* Do NOT stop the LED Timer here. The LED might be
* in on state. But it needs to go off.
*/
SK_OUT32(IoC, Led + XMIT_LED_CNT, 0);
SK_OUT8(IoC, Led + XMIT_LED_TST, LED_T_OFF);
break;
}
/*
* 1000BT: The Transmit LED is driven by the PHY.
* But the default LED configuration is used for
* Level One and Broadcom PHYs.
* (Broadcom: It may be that PHY_B_PEC_EN_LTR has to be set.)
* (In this case it has to be added here. But we will see. XXX)
*/
} /* SkGeXmitLED */
#endif /* !SK_SLIM || GENESIS */
/******************************************************************************
*
* DoCalcAddr() - Calculates the start and the end address of a queue.
*
* Description:
* This function calculates the start and the end address of a queue.
* Afterwards the 'StartVal' is incremented to the next start position.
* If the port is already initialized the calculated values
* will be checked against the configured values and an
* error will be returned, if they are not equal.
* If the port is not initialized the values will be written to
* *StartAdr and *EndAddr.
*
* Returns:
* 0: success
* 1: configuration error
*/
static int DoCalcAddr(
SK_AC *pAC, /* adapter context */
SK_GEPORT SK_FAR *pPrt, /* port index */
int QuSize, /* size of the queue to configure in kB */
SK_U32 SK_FAR *StartVal, /* start value for address calculation */
SK_U32 SK_FAR *QuStartAddr,/* start addr to calculate */
SK_U32 SK_FAR *QuEndAddr) /* end address to calculate */
{
SK_U32 EndVal;
SK_U32 NextStart;
int Rtv;
Rtv = 0;
if (QuSize == 0) {
EndVal = *StartVal;
NextStart = EndVal;
}
else {
EndVal = *StartVal + ((SK_U32)QuSize * 1024) - 1;
NextStart = EndVal + 1;
}
if (pPrt->PState >= SK_PRT_INIT) {
if (*StartVal != *QuStartAddr || EndVal != *QuEndAddr) {
Rtv = 1;
}
}
else {
*QuStartAddr = *StartVal;
*QuEndAddr = EndVal;
}
*StartVal = NextStart;
return(Rtv);
} /* DoCalcAddr */
/******************************************************************************
*
* SkGeInitAssignRamToQueues() - allocate default queue sizes
*
* Description:
* This function assigns the memory to the different queues and ports.
* When DualNet is set to SK_TRUE all ports get the same amount of memory.
* Otherwise the first port gets most of the memory and all the
* other ports just the required minimum.
* This function can only be called when pAC->GIni.GIRamSize and
* pAC->GIni.GIMacsFound have been initialized, usually this happens
* at init level 1
*
* Returns:
* 0 - ok
* 1 - invalid input values
* 2 - not enough memory
*/
int SkGeInitAssignRamToQueues(
SK_AC *pAC, /* Adapter context */
int ActivePort, /* Active Port in RLMT mode */
SK_BOOL DualNet) /* adapter context */
{
int i;
int UsedKilobytes; /* memory already assigned */
int ActivePortKilobytes; /* memory available for active port */
SK_GEPORT *pGePort;
UsedKilobytes = 0;
if (ActivePort >= pAC->GIni.GIMacsFound) {
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_INIT,
("SkGeInitAssignRamToQueues: ActivePort (%d) invalid\n",
ActivePort));
return(1);
}
if (((pAC->GIni.GIMacsFound * (SK_MIN_RXQ_SIZE + SK_MIN_TXQ_SIZE)) +
((RAM_QUOTA_SYNC == 0) ? 0 : SK_MIN_TXQ_SIZE)) > pAC->GIni.GIRamSize) {
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_INIT,
("SkGeInitAssignRamToQueues: Not enough memory (%d)\n",
pAC->GIni.GIRamSize));
return(2);
}
if (DualNet) {
/* every port gets the same amount of memory */
ActivePortKilobytes = pAC->GIni.GIRamSize / pAC->GIni.GIMacsFound;
for (i = 0; i < pAC->GIni.GIMacsFound; i++) {
pGePort = &pAC->GIni.GP[i];
/* take away the minimum memory for active queues */
ActivePortKilobytes -= (SK_MIN_RXQ_SIZE + SK_MIN_TXQ_SIZE);
/* receive queue gets the minimum + 80% of the rest */
pGePort->PRxQSize = (int) (ROUND_QUEUE_SIZE_KB((
ActivePortKilobytes * (unsigned long) RAM_QUOTA_RX) / 100))
+ SK_MIN_RXQ_SIZE;
ActivePortKilobytes -= (pGePort->PRxQSize - SK_MIN_RXQ_SIZE);
/* synchronous transmit queue */
pGePort->PXSQSize = 0;
/* asynchronous transmit queue */
pGePort->PXAQSize = (int) ROUND_QUEUE_SIZE_KB(ActivePortKilobytes +
SK_MIN_TXQ_SIZE);
}
}
else {
/* Rlmt Mode or single link adapter */
/* Set standby queue size defaults for all standby ports */
for (i = 0; i < pAC->GIni.GIMacsFound; i++) {
if (i != ActivePort) {
pGePort = &pAC->GIni.GP[i];
pGePort->PRxQSize = SK_MIN_RXQ_SIZE;
pGePort->PXAQSize = SK_MIN_TXQ_SIZE;
pGePort->PXSQSize = 0;
/* Count used RAM */
UsedKilobytes += pGePort->PRxQSize + pGePort->PXAQSize;
}
}
/* what's left? */
ActivePortKilobytes = pAC->GIni.GIRamSize - UsedKilobytes;
/* assign it to the active port */
/* first take away the minimum memory */
ActivePortKilobytes -= (SK_MIN_RXQ_SIZE + SK_MIN_TXQ_SIZE);
pGePort = &pAC->GIni.GP[ActivePort];
/* receive queue get's the minimum + 80% of the rest */
pGePort->PRxQSize = (int) (ROUND_QUEUE_SIZE_KB((ActivePortKilobytes *
(unsigned long) RAM_QUOTA_RX) / 100)) + SK_MIN_RXQ_SIZE;
ActivePortKilobytes -= (pGePort->PRxQSize - SK_MIN_RXQ_SIZE);
/* synchronous transmit queue */
pGePort->PXSQSize = 0;
/* asynchronous transmit queue */
pGePort->PXAQSize = (int) ROUND_QUEUE_SIZE_KB(ActivePortKilobytes) +
SK_MIN_TXQ_SIZE;
}
#ifdef VCPU
VCPUprintf(0, "PRxQSize=%u, PXSQSize=%u, PXAQSize=%u\n",
pGePort->PRxQSize, pGePort->PXSQSize, pGePort->PXAQSize);
#endif /* VCPU */
return(0);
} /* SkGeInitAssignRamToQueues */
/******************************************************************************
*
* SkGeCheckQSize() - Checks the Adapters Queue Size Configuration
*
* Description:
* This function verifies the Queue Size Configuration specified
* in the variables PRxQSize, PXSQSize, and PXAQSize of all
* used ports.
* This requirements must be fullfilled to have a valid configuration:
* - The size of all queues must not exceed GIRamSize.
* - The queue sizes must be specified in units of 8 kB.
* - The size of Rx queues of available ports must not be
* smaller than 16 kB.
* - The size of at least one Tx queue (synch. or asynch.)
* of available ports must not be smaller than 16 kB
* when Jumbo Frames are used.
* - The RAM start and end addresses must not be changed
* for ports which are already initialized.
* Furthermore SkGeCheckQSize() defines the Start and End Addresses
* of all ports and stores them into the HWAC port structure.
*
* Returns:
* 0: Queue Size Configuration valid
* 1: Queue Size Configuration invalid
*/
static int SkGeCheckQSize(
SK_AC *pAC, /* adapter context */
int Port) /* port index */
{
SK_GEPORT *pPrt;
int i;
int Rtv;
int Rtv2;
SK_U32 StartAddr;
#ifndef SK_SLIM
int UsedMem; /* total memory used (max. found ports) */
#endif
Rtv = 0;
#ifndef SK_SLIM
UsedMem = 0;
for (i = 0; i < pAC->GIni.GIMacsFound; i++) {
pPrt = &pAC->GIni.GP[i];
if ((pPrt->PRxQSize & QZ_UNITS) != 0 ||
(pPrt->PXSQSize & QZ_UNITS) != 0 ||
(pPrt->PXAQSize & QZ_UNITS) != 0) {
SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E012, SKERR_HWI_E012MSG);
return(1);
}
if (i == Port && pPrt->PRxQSize < SK_MIN_RXQ_SIZE) {
SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E011, SKERR_HWI_E011MSG);
return(1);
}
/*
* the size of at least one Tx queue (synch. or asynch.) has to be > 0.
* if Jumbo Frames are used, this size has to be >= 16 kB.
*/
if ((i == Port && pPrt->PXSQSize == 0 && pPrt->PXAQSize == 0) ||
(pAC->GIni.GIPortUsage == SK_JUMBO_LINK &&
((pPrt->PXSQSize > 0 && pPrt->PXSQSize < SK_MIN_TXQ_SIZE) ||
(pPrt->PXAQSize > 0 && pPrt->PXAQSize < SK_MIN_TXQ_SIZE)))) {
SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E023, SKERR_HWI_E023MSG);
return(1);
}
UsedMem += pPrt->PRxQSize + pPrt->PXSQSize + pPrt->PXAQSize;
}
if (UsedMem > pAC->GIni.GIRamSize) {
SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E012, SKERR_HWI_E012MSG);
return(1);
}
#endif /* !SK_SLIM */
/* Now start address calculation */
StartAddr = pAC->GIni.GIRamOffs;
for (i = 0; i < pAC->GIni.GIMacsFound; i++) {
pPrt = &pAC->GIni.GP[i];
/* Calculate/Check values for the receive queue */
Rtv2 = DoCalcAddr(pAC, pPrt, pPrt->PRxQSize, &StartAddr,
&pPrt->PRxQRamStart, &pPrt->PRxQRamEnd);
Rtv |= Rtv2;
/* Calculate/Check values for the synchronous Tx queue */
Rtv2 = DoCalcAddr(pAC, pPrt, pPrt->PXSQSize, &StartAddr,
&pPrt->PXsQRamStart, &pPrt->PXsQRamEnd);
Rtv |= Rtv2;
/* Calculate/Check values for the asynchronous Tx queue */
Rtv2 = DoCalcAddr(pAC, pPrt, pPrt->PXAQSize, &StartAddr,
&pPrt->PXaQRamStart, &pPrt->PXaQRamEnd);
Rtv |= Rtv2;
if (Rtv) {
SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E013, SKERR_HWI_E013MSG);
return(1);
}
}
return(0);
} /* SkGeCheckQSize */
#ifdef GENESIS
/******************************************************************************
*
* SkGeInitMacArb() - Initialize the MAC Arbiter
*
* Description:
* This function initializes the MAC Arbiter.
* It must not be called if there is still an
* initialized or active port.
*
* Returns:
* nothing
*/
static void SkGeInitMacArb(
SK_AC *pAC, /* adapter context */
SK_IOC IoC) /* IO context */
{
/* release local reset */
SK_OUT16(IoC, B3_MA_TO_CTRL, MA_RST_CLR);
/* configure timeout values */
SK_OUT8(IoC, B3_MA_TOINI_RX1, SK_MAC_TO_53);
SK_OUT8(IoC, B3_MA_TOINI_RX2, SK_MAC_TO_53);
SK_OUT8(IoC, B3_MA_TOINI_TX1, SK_MAC_TO_53);
SK_OUT8(IoC, B3_MA_TOINI_TX2, SK_MAC_TO_53);
SK_OUT8(IoC, B3_MA_RCINI_RX1, 0);
SK_OUT8(IoC, B3_MA_RCINI_RX2, 0);
SK_OUT8(IoC, B3_MA_RCINI_TX1, 0);
SK_OUT8(IoC, B3_MA_RCINI_TX2, 0);
/* recovery values are needed for XMAC II Rev. B2 only */
/* Fast Output Enable Mode was intended to use with Rev. B2, but now? */
/*
* There is no start or enable button to push, therefore
* the MAC arbiter is configured and enabled now.
*/
} /* SkGeInitMacArb */
/******************************************************************************
*
* SkGeInitPktArb() - Initialize the Packet Arbiter
*
* Description:
* This function initializes the Packet Arbiter.
* It must not be called if there is still an
* initialized or active port.
*
* Returns:
* nothing
*/
static void SkGeInitPktArb(
SK_AC *pAC, /* adapter context */
SK_IOC IoC) /* IO context */
{
/* release local reset */
SK_OUT16(IoC, B3_PA_CTRL, PA_RST_CLR);
/* configure timeout values */
SK_OUT16(IoC, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
SK_OUT16(IoC, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
SK_OUT16(IoC, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
SK_OUT16(IoC, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
/*
* enable timeout timers if jumbo frames not used
* NOTE: the packet arbiter timeout interrupt is needed for
* half duplex hangup workaround
*/
if (pAC->GIni.GIPortUsage != SK_JUMBO_LINK) {
if (pAC->GIni.GIMacsFound == 1) {
SK_OUT16(IoC, B3_PA_CTRL, PA_ENA_TO_TX1);
}
else {
SK_OUT16(IoC, B3_PA_CTRL, PA_ENA_TO_TX1 | PA_ENA_TO_TX2);
}
}
} /* SkGeInitPktArb */
#endif /* GENESIS */
/******************************************************************************
*
* SkGeInitMacFifo() - Initialize the MAC FIFOs
*
* Description:
* Initialize all MAC FIFOs of the specified port
*
* Returns:
* nothing
*/
static void SkGeInitMacFifo(
SK_AC *pAC, /* adapter context */
SK_IOC IoC, /* IO context */
int Port) /* Port Index (MAC_1 + n) */
{
SK_U16 Word;
#ifdef VCPU
SK_U32 DWord;
#endif /* VCPU */
/*
* For each FIFO:
* - release local reset
* - use default value for MAC FIFO size
* - setup defaults for the control register
* - enable the FIFO
*/
#ifdef GENESIS
if (pAC->GIni.GIGenesis) {
/* Configure Rx MAC FIFO */
SK_OUT8(IoC, MR_ADDR(Port, RX_MFF_CTRL2), MFF_RST_CLR);
SK_OUT16(IoC, MR_ADDR(Port, RX_MFF_CTRL1), MFF_RX_CTRL_DEF);
SK_OUT8(IoC, MR_ADDR(Port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
/* Configure Tx MAC FIFO */
SK_OUT8(IoC, MR_ADDR(Port, TX_MFF_CTRL2), MFF_RST_CLR);
SK_OUT16(IoC, MR_ADDR(Port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
SK_OUT8(IoC, MR_ADDR(Port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
/* Enable frame flushing if jumbo frames used */
if (pAC->GIni.GIPortUsage == SK_JUMBO_LINK) {
SK_OUT16(IoC, MR_ADDR(Port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
}
}
#endif /* GENESIS */
#ifdef YUKON
if (pAC->GIni.GIYukon) {
/* set Rx GMAC FIFO Flush Mask */
SK_OUT16(IoC, MR_ADDR(Port, RX_GMF_FL_MSK), (SK_U16)RX_FF_FL_DEF_MSK);
Word = (SK_U16)GMF_RX_CTRL_DEF;
/* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
if (pAC->GIni.GIYukonLite && pAC->GIni.GIChipId == CHIP_ID_YUKON) {
Word &= ~GMF_RX_F_FL_ON;
}
/* Configure Rx MAC FIFO */
SK_OUT8(IoC, MR_ADDR(Port, RX_GMF_CTRL_T), (SK_U8)GMF_RST_CLR);
SK_OUT16(IoC, MR_ADDR(Port, RX_GMF_CTRL_T), Word);
/* set Rx GMAC FIFO Flush Threshold (default: 0x0a -> 56 bytes) */
SK_OUT16(IoC, MR_ADDR(Port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF);
/* Configure Tx MAC FIFO */
SK_OUT8(IoC, MR_ADDR(Port, TX_GMF_CTRL_T), (SK_U8)GMF_RST_CLR);
SK_OUT16(IoC, MR_ADDR(Port, TX_GMF_CTRL_T), (SK_U16)GMF_TX_CTRL_DEF);
#ifdef VCPU
SK_IN32(IoC, MR_ADDR(Port, RX_GMF_AF_THR), &DWord);
SK_IN32(IoC, MR_ADDR(Port, TX_GMF_AE_THR), &DWord);
#endif /* VCPU */
/* set Tx GMAC FIFO Almost Empty Threshold */
/* SK_OUT32(IoC, MR_ADDR(Port, TX_GMF_AE_THR), 0); */
}
#endif /* YUKON */
} /* SkGeInitMacFifo */
#ifdef SK_LNK_SYNC_CNT
/******************************************************************************
*
* SkGeLoadLnkSyncCnt() - Load the Link Sync Counter and starts counting
*
* Description:
* This function starts the Link Sync Counter of the specified
* port and enables the generation of an Link Sync IRQ.
* The Link Sync Counter may be used to detect an active link,
* if autonegotiation is not used.
*
* Note:
* o To ensure receiving the Link Sync Event the LinkSyncCounter
* should be initialized BEFORE clearing the XMAC's reset!
* o Enable IS_LNK_SYNC_M1 and IS_LNK_SYNC_M2 after calling this
* function.
*
* Returns:
* nothing
*/
void SkGeLoadLnkSyncCnt(
SK_AC *pAC, /* adapter context */
SK_IOC IoC, /* IO context */
int Port, /* Port Index (MAC_1 + n) */
SK_U32 CntVal) /* Counter value */
{
SK_U32 OrgIMsk;
SK_U32 NewIMsk;
SK_U32 ISrc;
SK_BOOL IrqPend;
/* stop counter */
SK_OUT8(IoC, MR_ADDR(Port, LNK_SYNC_CTRL), LED_STOP);
/*
* ASIC problem:
* Each time starting the Link Sync Counter an IRQ is generated
* by the adapter. See problem report entry from 21.07.98
*
* Workaround: Disable Link Sync IRQ and clear the unexpeced IRQ
* if no IRQ is already pending.
*/
IrqPend = SK_FALSE;
SK_IN32(IoC, B0_ISRC, &ISrc);
SK_IN32(IoC, B0_IMSK, &OrgIMsk);
if (Port == MAC_1) {
NewIMsk = OrgIMsk & ~IS_LNK_SYNC_M1;
if ((ISrc & IS_LNK_SYNC_M1) != 0) {
IrqPend = SK_TRUE;
}
}
else {
NewIMsk = OrgIMsk & ~IS_LNK_SYNC_M2;
if ((ISrc & IS_LNK_SYNC_M2) != 0) {
IrqPend = SK_TRUE;
}
}
if (!IrqPend) {
SK_OUT32(IoC, B0_IMSK, NewIMsk);
}
/* load counter */
SK_OUT32(IoC, MR_ADDR(Port, LNK_SYNC_INI), CntVal);
/* start counter */
SK_OUT8(IoC, MR_ADDR(Port, LNK_SYNC_CTRL), LED_START);
if (!IrqPend) {
/* clear the unexpected IRQ, and restore the interrupt mask */
SK_OUT8(IoC, MR_ADDR(Port, LNK_SYNC_CTRL), LED_CLR_IRQ);
SK_OUT32(IoC, B0_IMSK, OrgIMsk);
}
} /* SkGeLoadLnkSyncCnt*/
#endif /* SK_LNK_SYNC_CNT */
#if defined(SK_DIAG) || defined(SK_CFG_SYNC)
/******************************************************************************
*
* SkGeCfgSync() - Configure synchronous bandwidth for this port.
*
* Description:
* This function may be used to configure synchronous bandwidth
* to the specified port. This may be done any time after
* initializing the port. The configuration values are NOT saved
* in the HWAC port structure and will be overwritten any
* time when stopping and starting the port.
* Any values for the synchronous configuration will be ignored
* if the size of the synchronous queue is zero!
*
* The default configuration for the synchronous service is
* TXA_ENA_FSYNC. This means if the size of
* the synchronous queue is unequal zero but no specific
* synchronous bandwidth is configured, the synchronous queue
* will always have the 'unlimited' transmit priority!
*
* This mode will be restored if the synchronous bandwidth is
* deallocated ('IntTime' = 0 and 'LimCount' = 0).
*
* Returns:
* 0: success
* 1: parameter configuration error
* 2: try to configure quality of service although no
* synchronous queue is configured
*/
int SkGeCfgSync(
SK_AC *pAC, /* adapter context */
SK_IOC IoC, /* IO context */
int Port, /* Port Index (MAC_1 + n) */
SK_U32 IntTime, /* Interval Timer Value in units of 8ns */
SK_U32 LimCount, /* Number of bytes to transfer during IntTime */
int SyncMode) /* Sync Mode: TXA_ENA_ALLOC | TXA_DIS_ALLOC | 0 */
{
int Rtv;
Rtv = 0;
/* check the parameters */
if (LimCount > IntTime ||
(LimCount == 0 && IntTime != 0) ||
(LimCount != 0 && IntTime == 0)) {
SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E010, SKERR_HWI_E010MSG);
return(1);
}
if (pAC->GIni.GP[Port].PXSQSize == 0) {
SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E009, SKERR_HWI_E009MSG);
return(2);
}
/* calculate register values */
IntTime = (IntTime / 2) * pAC->GIni.GIHstClkFact / 100;
LimCount = LimCount / 8;
if (IntTime > TXA_MAX_VAL || LimCount > TXA_MAX_VAL) {
SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E010, SKERR_HWI_E010MSG);
return(1);
}
/*
* - Enable 'Force Sync' to ensure the synchronous queue
* has the priority while configuring the new values.
* - Also 'disable alloc' to ensure the settings complies
* to the SyncMode parameter.
* - Disable 'Rate Control' to configure the new values.
* - write IntTime and LimCount
* - start 'Rate Control' and disable 'Force Sync'
* if Interval Timer or Limit Counter not zero.
*/
SK_OUT8(IoC, MR_ADDR(Port, TXA_CTRL),
TXA_ENA_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
SK_OUT32(IoC, MR_ADDR(Port, TXA_ITI_INI), IntTime);
SK_OUT32(IoC, MR_ADDR(Port, TXA_LIM_INI), LimCount);
SK_OUT8(IoC, MR_ADDR(Port, TXA_CTRL),
(SK_U8)(SyncMode & (TXA_ENA_ALLOC | TXA_DIS_ALLOC)));
if (IntTime != 0 || LimCount != 0) {
SK_OUT8(IoC, MR_ADDR(Port, TXA_CTRL), TXA_DIS_FSYNC | TXA_START_RC);
}
return(0);
} /* SkGeCfgSync */
#endif /* SK_DIAG || SK_CFG_SYNC*/
/******************************************************************************
*
* DoInitRamQueue() - Initialize the RAM Buffer Address of a single Queue
*
* Desccription:
* If the queue is used, enable and initialize it.
* Make sure the queue is still reset, if it is not used.
*
* Returns:
* nothing
*/
static void DoInitRamQueue(
SK_AC *pAC, /* adapter context */
SK_IOC IoC, /* IO context */
int QuIoOffs, /* Queue IO Address Offset */
SK_U32 QuStartAddr, /* Queue Start Address */
SK_U32 QuEndAddr, /* Queue End Address */
int QuType) /* Queue Type (SK_RX_SRAM_Q|SK_RX_BRAM_Q|SK_TX_RAM_Q) */
{
SK_U32 RxUpThresVal;
SK_U32 RxLoThresVal;
if (QuStartAddr != QuEndAddr) {
/* calculate thresholds, assume we have a big Rx queue */
RxUpThresVal = (QuEndAddr + 1 - QuStartAddr - SK_RB_ULPP) / 8;
RxLoThresVal = (QuEndAddr + 1 - QuStartAddr - SK_RB_LLPP_B)/8;
/* build HW address format */
QuStartAddr = QuStartAddr / 8;
QuEndAddr = QuEndAddr / 8;
/* release local reset */
SK_OUT8(IoC, RB_ADDR(QuIoOffs, RB_CTRL), RB_RST_CLR);
/* configure addresses */
SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_START), QuStartAddr);
SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_END), QuEndAddr);
SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_WP), QuStartAddr);
SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_RP), QuStartAddr);
switch (QuType) {
case SK_RX_SRAM_Q:
/* configure threshold for small Rx Queue */
RxLoThresVal += (SK_RB_LLPP_B - SK_RB_LLPP_S) / 8;
/* continue with SK_RX_BRAM_Q */
case SK_RX_BRAM_Q:
/* write threshold for Rx Queue */
SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_RX_UTPP), RxUpThresVal);
SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_RX_LTPP), RxLoThresVal);
/* the high priority threshold not used */
break;
case SK_TX_RAM_Q:
/*
* Do NOT use Store & Forward under normal operation due to
* performance optimization (GENESIS only).
* But if Jumbo Frames are configured (XMAC Tx FIFO is only 4 kB)
* or YUKON is used ((GMAC Tx FIFO is only 1 kB)
* we NEED Store & Forward of the RAM buffer.
*/
if (pAC->GIni.GIPortUsage == SK_JUMBO_LINK ||
pAC->GIni.GIYukon) {
/* enable Store & Forward Mode for the Tx Side */
SK_OUT8(IoC, RB_ADDR(QuIoOffs, RB_CTRL), RB_ENA_STFWD);
}
break;
}
/* set queue operational */
SK_OUT8(IoC, RB_ADDR(QuIoOffs, RB_CTRL), RB_ENA_OP_MD);
}
else {
/* ensure the queue is still disabled */
SK_OUT8(IoC, RB_ADDR(QuIoOffs, RB_CTRL), RB_RST_SET);
}
} /* DoInitRamQueue */
/******************************************************************************
*
* SkGeInitRamBufs() - Initialize the RAM Buffer Queues
*
* Description:
* Initialize all RAM Buffer Queues of the specified port
*
* Returns:
* nothing
*/
static void SkGeInitRamBufs(
SK_AC *pAC, /* adapter context */
SK_IOC IoC, /* IO context */
int Port) /* Port Index (MAC_1 + n) */
{
SK_GEPORT *pPrt;
int RxQType;
pPrt = &pAC->GIni.GP[Port];
if (pPrt->PRxQSize == SK_MIN_RXQ_SIZE) {
RxQType = SK_RX_SRAM_Q; /* small Rx Queue */
}
else {
RxQType = SK_RX_BRAM_Q; /* big Rx Queue */
}
DoInitRamQueue(pAC, IoC, pPrt->PRxQOff, pPrt->PRxQRamStart,
pPrt->PRxQRamEnd, RxQType);
DoInitRamQueue(pAC, IoC, pPrt->PXsQOff, pPrt->PXsQRamStart,
pPrt->PXsQRamEnd, SK_TX_RAM_Q);
DoInitRamQueue(pAC, IoC, pPrt->PXaQOff, pPrt->PXaQRamStart,
pPrt->PXaQRamEnd, SK_TX_RAM_Q);
} /* SkGeInitRamBufs */
/******************************************************************************
*
* SkGeInitRamIface() - Initialize the RAM Interface
*
* Description:
* This function initializes the Adapters RAM Interface.
*
* Note:
* This function is used in the diagnostics.
*
* Returns:
* nothing
*/
void SkGeInitRamIface(
SK_AC *pAC, /* adapter context */
SK_IOC IoC) /* IO context */
{
/* release local reset */
SK_OUT16(IoC, B3_RI_CTRL, RI_RST_CLR);
/* configure timeout values */
SK_OUT8(IoC, B3_RI_WTO_R1, SK_RI_TO_53);
SK_OUT8(IoC, B3_RI_WTO_XA1, SK_RI_TO_53);
SK_OUT8(IoC, B3_RI_WTO_XS1, SK_RI_TO_53);
SK_OUT8(IoC, B3_RI_RTO_R1, SK_RI_TO_53);
SK_OUT8(IoC, B3_RI_RTO_XA1, SK_RI_TO_53);
SK_OUT8(IoC, B3_RI_RTO_XS1, SK_RI_TO_53);
SK_OUT8(IoC, B3_RI_WTO_R2, SK_RI_TO_53);
SK_OUT8(IoC, B3_RI_WTO_XA2, SK_RI_TO_53);
SK_OUT8(IoC, B3_RI_WTO_XS2, SK_RI_TO_53);
SK_OUT8(IoC, B3_RI_RTO_R2, SK_RI_TO_53);
SK_OUT8(IoC, B3_RI_RTO_XA2, SK_RI_TO_53);
SK_OUT8(IoC, B3_RI_RTO_XS2, SK_RI_TO_53);
} /* SkGeInitRamIface */
/******************************************************************************
*
* SkGeInitBmu() - Initialize the BMU state machines
*
* Description:
* Initialize all BMU state machines of the specified port
*
* Returns:
* nothing
*/
static void SkGeInitBmu(
SK_AC *pAC, /* adapter context */
SK_IOC IoC, /* IO context */
int Port) /* Port Index (MAC_1 + n) */
{
SK_GEPORT *pPrt;
SK_U32 RxWm;
SK_U32 TxWm;
pPrt = &pAC->GIni.GP[Port];
RxWm = SK_BMU_RX_WM;
TxWm = SK_BMU_TX_WM;
if (!pAC->GIni.GIPciSlot64 && !pAC->GIni.GIPciClock66) {
/* for better performance */
RxWm /= 2;
TxWm /= 2;
}
/* Rx Queue: Release all local resets and set the watermark */
SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_CSR), CSR_CLR_RESET);
SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_F), RxWm);
/*
* Tx Queue: Release all local resets if the queue is used !
* set watermark
*/
if (pPrt->PXSQSize != 0) {
SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), CSR_CLR_RESET);
SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_F), TxWm);
}
if (pPrt->PXAQSize != 0) {
SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), CSR_CLR_RESET);
SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_F), TxWm);
}
/*
* Do NOT enable the descriptor poll timers here, because
* the descriptor addresses are not specified yet.
*/
} /* SkGeInitBmu */
/******************************************************************************
*
* TestStopBit() - Test the stop bit of the queue
*
* Description:
* Stopping a queue is not as simple as it seems to be.
* If descriptor polling is enabled, it may happen
* that RX/TX stop is done and SV idle is NOT set.
* In this case we have to issue another stop command.
*
* Returns:
* The queues control status register
*/
static SK_U32 TestStopBit(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* IO Context */
int QuIoOffs) /* Queue IO Address Offset */
{
SK_U32 QuCsr; /* CSR contents */
SK_IN32(IoC, Q_ADDR(QuIoOffs, Q_CSR), &QuCsr);
if ((QuCsr & (CSR_STOP | CSR_SV_IDLE)) == 0) {
/* Stop Descriptor overridden by start command */
SK_OUT32(IoC, Q_ADDR(QuIoOffs, Q_CSR), CSR_STOP);
SK_IN32(IoC, Q_ADDR(QuIoOffs, Q_CSR), &QuCsr);
}
return(QuCsr);
} /* TestStopBit */
/******************************************************************************
*
* SkGeStopPort() - Stop the Rx/Tx activity of the port 'Port'.
*
* Description:
* After calling this function the descriptor rings and Rx and Tx
* queues of this port may be reconfigured.
*
* It is possible to stop the receive and transmit path separate or
* both together.
*
* Dir = SK_STOP_TX Stops the transmit path only and resets the MAC.
* The receive queue is still active and
* the pending Rx frames may be still transferred
* into the RxD.
* SK_STOP_RX Stop the receive path. The tansmit path
* has to be stopped once before.
* SK_STOP_ALL SK_STOP_TX + SK_STOP_RX
*
* RstMode = SK_SOFT_RST Resets the MAC. The PHY is still alive.
* SK_HARD_RST Resets the MAC and the PHY.
*
* Example:
* 1) A Link Down event was signaled for a port. Therefore the activity
* of this port should be stopped and a hardware reset should be issued
* to enable the workaround of XMAC Errata #2. But the received frames
* should not be discarded.
* ...
* SkGeStopPort(pAC, IoC, Port, SK_STOP_TX, SK_HARD_RST);
* (transfer all pending Rx frames)
* SkGeStopPort(pAC, IoC, Port, SK_STOP_RX, SK_HARD_RST);
* ...
*
* 2) An event was issued which request the driver to switch
* the 'virtual active' link to an other already active port
* as soon as possible. The frames in the receive queue of this
* port may be lost. But the PHY must not be reset during this
* event.
* ...
* SkGeStopPort(pAC, IoC, Port, SK_STOP_ALL, SK_SOFT_RST);
* ...
*
* Extended Description:
* If SK_STOP_TX is set,
* o disable the MAC's receive and transmitter to prevent
* from sending incomplete frames
* o stop the port's transmit queues before terminating the
* BMUs to prevent from performing incomplete PCI cycles
* on the PCI bus
* - The network Rx and Tx activity and PCI Tx transfer is
* disabled now.
* o reset the MAC depending on the RstMode
* o Stop Interval Timer and Limit Counter of Tx Arbiter,
* also disable Force Sync bit and Enable Alloc bit.
* o perform a local reset of the port's Tx path
* - reset the PCI FIFO of the async Tx queue
* - reset the PCI FIFO of the sync Tx queue
* - reset the RAM Buffer async Tx queue
* - reset the RAM Buffer sync Tx queue
* - reset the MAC Tx FIFO
* o switch Link and Tx LED off, stop the LED counters
*
* If SK_STOP_RX is set,
* o stop the port's receive queue
* - The path data transfer activity is fully stopped now.
* o perform a local reset of the port's Rx path
* - reset the PCI FIFO of the Rx queue
* - reset the RAM Buffer receive queue
* - reset the MAC Rx FIFO
* o switch Rx LED off, stop the LED counter
*
* If all ports are stopped,
* o reset the RAM Interface.
*
* Notes:
* o This function may be called during the driver states RESET_PORT and
* SWITCH_PORT.
*/
void SkGeStopPort(
SK_AC *pAC, /* adapter context */
SK_IOC IoC, /* I/O context */
int Port, /* port to stop (MAC_1 + n) */
int Dir, /* Direction to Stop (SK_STOP_RX, SK_STOP_TX, SK_STOP_ALL) */
int RstMode)/* Reset Mode (SK_SOFT_RST, SK_HARD_RST) */
{
#ifndef SK_DIAG
SK_EVPARA Para;
#endif /* !SK_DIAG */
SK_GEPORT *pPrt;
SK_U32 DWord;
SK_U32 XsCsr;
SK_U32 XaCsr;
SK_U64 ToutStart;
int i;
int ToutCnt;
pPrt = &pAC->GIni.GP[Port];
if ((Dir & SK_STOP_TX) != 0) {
/* disable receiver and transmitter */
SkMacRxTxDisable(pAC, IoC, Port);
/* stop both transmit queues */
/*
* If the BMU is in the reset state CSR_STOP will terminate
* immediately.
*/
SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), CSR_STOP);
SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), CSR_STOP);
ToutStart = SkOsGetTime(pAC);
ToutCnt = 0;
do {
/*
* Clear packet arbiter timeout to make sure
* this loop will terminate.
*/
SK_OUT16(IoC, B3_PA_CTRL, (SK_U16)((Port == MAC_1) ?
PA_CLR_TO_TX1 : PA_CLR_TO_TX2));
/*
* If the transfer stucks at the MAC the STOP command will not
* terminate if we don't flush the XMAC's transmit FIFO !
*/
SkMacFlushTxFifo(pAC, IoC, Port);
XsCsr = TestStopBit(pAC, IoC, pPrt->PXsQOff);
XaCsr = TestStopBit(pAC, IoC, pPrt->PXaQOff);
if (SkOsGetTime(pAC) - ToutStart > (SK_TICKS_PER_SEC / 18)) {
/*
* Timeout of 1/18 second reached.
* This needs to be checked at 1/18 sec only.
*/
ToutCnt++;
if (ToutCnt > 1) {
/* Might be a problem when the driver event handler
* calls StopPort again. XXX.
*/
/* Fatal Error, Loop aborted */
SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_HWI_E018,
SKERR_HWI_E018MSG);
#ifndef SK_DIAG
Para.Para64 = Port;
SkEventQueue(pAC, SKGE_DRV, SK_DRV_PORT_FAIL, Para);
#endif /* !SK_DIAG */
return;
}
/*
* Cache incoherency workaround: Assume a start command
* has been lost while sending the frame.
*/
ToutStart = SkOsGetTime(pAC);
if ((XsCsr & CSR_STOP) != 0) {
SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), CSR_START);
}
if ((XaCsr & CSR_STOP) != 0) {
SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), CSR_START);
}
}
/*
* Because of the ASIC problem report entry from 21.08.1998 it is
* required to wait until CSR_STOP is reset and CSR_SV_IDLE is set.
*/
} while ((XsCsr & (CSR_STOP | CSR_SV_IDLE)) != CSR_SV_IDLE ||
(XaCsr & (CSR_STOP | CSR_SV_IDLE)) != CSR_SV_IDLE);
/* Reset the MAC depending on the RstMode */
if (RstMode == SK_SOFT_RST) {
SkMacSoftRst(pAC, IoC, Port);
}
else {
SkMacHardRst(pAC, IoC, Port);
}
/* Disable Force Sync bit and Enable Alloc bit */
SK_OUT8(IoC, MR_ADDR(Port, TXA_CTRL),
TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
/* Stop Interval Timer and Limit Counter of Tx Arbiter */
SK_OUT32(IoC, MR_ADDR(Port, TXA_ITI_INI), 0L);
SK_OUT32(IoC, MR_ADDR(Port, TXA_LIM_INI), 0L);
/* Perform a local reset of the port's Tx path */
/* Reset the PCI FIFO of the async Tx queue */
SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), CSR_SET_RESET);
/* Reset the PCI FIFO of the sync Tx queue */
SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), CSR_SET_RESET);
/* Reset the RAM Buffer async Tx queue */
SK_OUT8(IoC, RB_ADDR(pPrt->PXaQOff, RB_CTRL), RB_RST_SET);
/* Reset the RAM Buffer sync Tx queue */
SK_OUT8(IoC, RB_ADDR(pPrt->PXsQOff, RB_CTRL), RB_RST_SET);
/* Reset Tx MAC FIFO */
#ifdef GENESIS
if (pAC->GIni.GIGenesis) {
/* Note: MFF_RST_SET does NOT reset the XMAC ! */
SK_OUT8(IoC, MR_ADDR(Port, TX_MFF_CTRL2), MFF_RST_SET);
/* switch Link and Tx LED off, stop the LED counters */
/* Link LED is switched off by the RLMT and the Diag itself */
SkGeXmitLED(pAC, IoC, MR_ADDR(Port, TX_LED_INI), SK_LED_DIS);
}
#endif /* GENESIS */
#ifdef YUKON
if (pAC->GIni.GIYukon) {
/* Reset TX MAC FIFO */
SK_OUT8(IoC, MR_ADDR(Port, TX_GMF_CTRL_T), (SK_U8)GMF_RST_SET);
}
#endif /* YUKON */
}
if ((Dir & SK_STOP_RX) != 0) {
/*
* The RX Stop Command will not terminate if no buffers
* are queued in the RxD ring. But it will always reach
* the Idle state. Therefore we can use this feature to
* stop the transfer of received packets.
*/
/* stop the port's receive queue */
SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_CSR), CSR_STOP);
i = 100;
do {
/*
* Clear packet arbiter timeout to make sure
* this loop will terminate
*/
SK_OUT16(IoC, B3_PA_CTRL, (SK_U16)((Port == MAC_1) ?
PA_CLR_TO_RX1 : PA_CLR_TO_RX2));
DWord = TestStopBit(pAC, IoC, pPrt->PRxQOff);
/* timeout if i==0 (bug fix for #10748) */
if (--i == 0) {
SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_HWI_E024,
SKERR_HWI_E024MSG);
break;
}
/*
* because of the ASIC problem report entry from 21.08.98
* it is required to wait until CSR_STOP is reset and
* CSR_SV_IDLE is set.
*/
} while ((DWord & (CSR_STOP | CSR_SV_IDLE)) != CSR_SV_IDLE);
/* The path data transfer activity is fully stopped now */
/* Perform a local reset of the port's Rx path */
/* Reset the PCI FIFO of the Rx queue */
SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_CSR), CSR_SET_RESET);
/* Reset the RAM Buffer receive queue */
SK_OUT8(IoC, RB_ADDR(pPrt->PRxQOff, RB_CTRL), RB_RST_SET);
/* Reset Rx MAC FIFO */
#ifdef GENESIS
if (pAC->GIni.GIGenesis) {
SK_OUT8(IoC, MR_ADDR(Port, RX_MFF_CTRL2), MFF_RST_SET);
/* switch Rx LED off, stop the LED counter */
SkGeXmitLED(pAC, IoC, MR_ADDR(Port, RX_LED_INI), SK_LED_DIS);
}
#endif /* GENESIS */
#ifdef YUKON
if (pAC->GIni.GIYukon) {
/* Reset Rx MAC FIFO */
SK_OUT8(IoC, MR_ADDR(Port, RX_GMF_CTRL_T), (SK_U8)GMF_RST_SET);
}
#endif /* YUKON */
}
} /* SkGeStopPort */
/******************************************************************************
*
* SkGeInit0() - Level 0 Initialization
*
* Description:
* - Initialize the BMU address offsets
*
* Returns:
* nothing
*/
static void SkGeInit0(
SK_AC *pAC, /* adapter context */
SK_IOC IoC) /* IO context */
{
int i;
SK_GEPORT *pPrt;
for (i = 0; i < SK_MAX_MACS; i++) {
pPrt = &pAC->GIni.GP[i];
pPrt->PState = SK_PRT_RESET;
pPrt->PRxQOff = QOffTab[i].RxQOff;
pPrt->PXsQOff = QOffTab[i].XsQOff;
pPrt->PXaQOff = QOffTab[i].XaQOff;
pPrt->PCheckPar = SK_FALSE;
pPrt->PIsave = 0;
pPrt->PPrevShorts = 0;
pPrt->PLinkResCt = 0;
pPrt->PAutoNegTOCt = 0;
pPrt->PPrevRx = 0;
pPrt->PPrevFcs = 0;
pPrt->PRxLim = SK_DEF_RX_WA_LIM;
pPrt->PLinkMode = (SK_U8)SK_LMODE_AUTOFULL;
pPrt->PLinkSpeedCap = (SK_U8)SK_LSPEED_CAP_1000MBPS;
pPrt->PLinkSpeed = (SK_U8)SK_LSPEED_1000MBPS;
pPrt->PLinkSpeedUsed = (SK_U8)SK_LSPEED_STAT_UNKNOWN;
pPrt->PLinkModeConf = (SK_U8)SK_LMODE_AUTOSENSE;
pPrt->PFlowCtrlMode = (SK_U8)SK_FLOW_MODE_SYM_OR_REM;
pPrt->PLinkCap = (SK_U8)(SK_LMODE_CAP_HALF | SK_LMODE_CAP_FULL |
SK_LMODE_CAP_AUTOHALF | SK_LMODE_CAP_AUTOFULL);
pPrt->PLinkModeStatus = (SK_U8)SK_LMODE_STAT_UNKNOWN;
pPrt->PFlowCtrlCap = (SK_U8)SK_FLOW_MODE_SYM_OR_REM;
pPrt->PFlowCtrlStatus = (SK_U8)SK_FLOW_STAT_NONE;
pPrt->PMSCap = 0;
pPrt->PMSMode = (SK_U8)SK_MS_MODE_AUTO;
pPrt->PMSStatus = (SK_U8)SK_MS_STAT_UNSET;
pPrt->PLipaAutoNeg = (SK_U8)SK_LIPA_UNKNOWN;
pPrt->PAutoNegFail = SK_FALSE;
pPrt->PHWLinkUp = SK_FALSE;
pPrt->PLinkBroken = SK_TRUE; /* See WA code */
pPrt->PPhyPowerState = PHY_PM_OPERATIONAL_MODE;
pPrt->PMacColThres = TX_COL_DEF;
pPrt->PMacJamLen = TX_JAM_LEN_DEF;
pPrt->PMacJamIpgVal = TX_JAM_IPG_DEF;
pPrt->PMacJamIpgData = TX_IPG_JAM_DEF;
pPrt->PMacIpgData = IPG_DATA_DEF;
pPrt->PMacLimit4 = SK_FALSE;
}
pAC->GIni.GIPortUsage = SK_RED_LINK;
pAC->GIni.GILedBlinkCtrl = (SK_U16)OemConfig.Value;
pAC->GIni.GIValIrqMask = IS_ALL_MSK;
} /* SkGeInit0*/
#ifdef SK_PCI_RESET
/******************************************************************************
*
* SkGePciReset() - Reset PCI interface
*
* Description:
* o Read PCI configuration.
* o Change power state to 3.
* o Change power state to 0.
* o Restore PCI configuration.
*
* Returns:
* 0: Success.
* 1: Power state could not be changed to 3.
*/
static int SkGePciReset(
SK_AC *pAC, /* adapter context */
SK_IOC IoC) /* IO context */
{
int i;
SK_U16 PmCtlSts;
SK_U32 Bp1;
SK_U32 Bp2;
SK_U16 PciCmd;
SK_U8 Cls;
SK_U8 Lat;
SK_U8 ConfigSpace[PCI_CFG_SIZE];
/*
* Note: Switching to D3 state is like a software reset.
* Switching from D3 to D0 is a hardware reset.
* We have to save and restore the configuration space.
*/
for (i = 0; i < PCI_CFG_SIZE; i++) {
SkPciReadCfgDWord(pAC, i*4, &ConfigSpace[i]);
}
/* We know the RAM Interface Arbiter is enabled. */
SkPciWriteCfgWord(pAC, PCI_PM_CTL_STS, PCI_PM_STATE_D3);
SkPciReadCfgWord(pAC, PCI_PM_CTL_STS, &PmCtlSts);
if ((PmCtlSts & PCI_PM_STATE_MSK) != PCI_PM_STATE_D3) {
return(1);
}
/* Return to D0 state. */
SkPciWriteCfgWord(pAC, PCI_PM_CTL_STS, PCI_PM_STATE_D0);
/* Check for D0 state. */
SkPciReadCfgWord(pAC, PCI_PM_CTL_STS, &PmCtlSts);
if ((PmCtlSts & PCI_PM_STATE_MSK) != PCI_PM_STATE_D0) {
return(1);
}
/* Check PCI Config Registers. */
SkPciReadCfgWord(pAC, PCI_COMMAND, &PciCmd);
SkPciReadCfgByte(pAC, PCI_CACHE_LSZ, &Cls);
SkPciReadCfgDWord(pAC, PCI_BASE_1ST, &Bp1);
SkPciReadCfgDWord(pAC, PCI_BASE_2ND, &Bp2);
SkPciReadCfgByte(pAC, PCI_LAT_TIM, &Lat);
if (PciCmd != 0 || Cls != (SK_U8)0 || Lat != (SK_U8)0 ||
(Bp1 & 0xfffffff0L) != 0 || Bp2 != 1) {
return(1);
}
/* Restore PCI Config Space. */
for (i = 0; i < PCI_CFG_SIZE; i++) {
SkPciWriteCfgDWord(pAC, i*4, ConfigSpace[i]);
}
return(0);
} /* SkGePciReset */
#endif /* SK_PCI_RESET */
/******************************************************************************
*
* SkGeInit1() - Level 1 Initialization
*
* Description:
* o Do a software reset.
* o Clear all reset bits.
* o Verify that the detected hardware is present.
* Return an error if not.
* o Get the hardware configuration
* + Read the number of MACs/Ports.
* + Read the RAM size.
* + Read the PCI Revision Id.
* + Find out the adapters host clock speed
* + Read and check the PHY type
*
* Returns:
* 0: success
* 5: Unexpected PHY type detected
* 6: HW self test failed
*/
static int SkGeInit1(
SK_AC *pAC, /* adapter context */
SK_IOC IoC) /* IO context */
{
SK_U8 Byte;
SK_U16 Word;
SK_U16 CtrlStat;
SK_U32 DWord;
int RetVal;
int i;
RetVal = 0;
/* save CLK_RUN bits (YUKON-Lite) */
SK_IN16(IoC, B0_CTST, &CtrlStat);
#ifdef SK_PCI_RESET
(void)SkGePciReset(pAC, IoC);
#endif /* SK_PCI_RESET */
/* do the SW-reset */
SK_OUT8(IoC, B0_CTST, CS_RST_SET);
/* release the SW-reset */
SK_OUT8(IoC, B0_CTST, CS_RST_CLR);
/* reset all error bits in the PCI STATUS register */
/*
* Note: PCI Cfg cycles cannot be used, because they are not
* available on some platforms after 'boot time'.
*/
SK_IN16(IoC, PCI_C(PCI_STATUS), &Word);
SK_OUT8(IoC, B2_TST_CTRL1, TST_CFG_WRITE_ON);
SK_OUT16(IoC, PCI_C(PCI_STATUS), (SK_U16)(Word | PCI_ERRBITS));
SK_OUT8(IoC, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
/* release Master Reset */
SK_OUT8(IoC, B0_CTST, CS_MRST_CLR);
#ifdef CLK_RUN
CtrlStat |= CS_CLK_RUN_ENA;
#endif /* CLK_RUN */
/* restore CLK_RUN bits */
SK_OUT16(IoC, B0_CTST, (SK_U16)(CtrlStat &
(CS_CLK_RUN_HOT | CS_CLK_RUN_RST | CS_CLK_RUN_ENA)));
/* read Chip Identification Number */
SK_IN8(IoC, B2_CHIP_ID, &Byte);
pAC->GIni.GIChipId = Byte;
/* read number of MACs */
SK_IN8(IoC, B2_MAC_CFG, &Byte);
pAC->GIni.GIMacsFound = (Byte & CFG_SNG_MAC) ? 1 : 2;
/* get Chip Revision Number */
pAC->GIni.GIChipRev = (SK_U8)((Byte & CFG_CHIP_R_MSK) >> 4);
/* get diff. PCI parameters */
SK_IN16(IoC, B0_CTST, &CtrlStat);
/* read the adapters RAM size */
SK_IN8(IoC, B2_E_0, &Byte);
pAC->GIni.GIGenesis = SK_FALSE;
pAC->GIni.GIYukon = SK_FALSE;
pAC->GIni.GIYukonLite = SK_FALSE;
#ifdef GENESIS
if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) {
pAC->GIni.GIGenesis = SK_TRUE;
if (Byte == (SK_U8)3) {
/* special case: 4 x 64k x 36, offset = 0x80000 */
pAC->GIni.GIRamSize = 1024;
pAC->GIni.GIRamOffs = (SK_U32)512 * 1024;
}
else {
pAC->GIni.GIRamSize = (int)Byte * 512;
pAC->GIni.GIRamOffs = 0;
}
/* all GE adapters work with 53.125 MHz host clock */
pAC->GIni.GIHstClkFact = SK_FACT_53;
/* set Descr. Poll Timer Init Value to 250 ms */
pAC->GIni.GIPollTimerVal =
SK_DPOLL_DEF * (SK_U32)pAC->GIni.GIHstClkFact / 100;
}
#endif /* GENESIS */
#ifdef YUKON
if (pAC->GIni.GIChipId != CHIP_ID_GENESIS) {
pAC->GIni.GIYukon = SK_TRUE;
pAC->GIni.GIRamSize = (Byte == (SK_U8)0) ? 128 : (int)Byte * 4;
pAC->GIni.GIRamOffs = 0;
/* WA for chip Rev. A */
pAC->GIni.GIWolOffs = (pAC->GIni.GIChipId == CHIP_ID_YUKON &&
pAC->GIni.GIChipRev == 0) ? WOL_REG_OFFS : 0;
/* get PM Capabilities of PCI config space */
SK_IN16(IoC, PCI_C(PCI_PM_CAP_REG), &Word);
/* check if VAUX is available */
if (((CtrlStat & CS_VAUX_AVAIL) != 0) &&
/* check also if PME from D3cold is set */
((Word & PCI_PME_D3C_SUP) != 0)) {
/* set entry in GE init struct */
pAC->GIni.GIVauxAvail = SK_TRUE;
}
if (pAC->GIni.GIChipId == CHIP_ID_YUKON_LITE) {
/* this is Rev. A1 */
pAC->GIni.GIYukonLite = SK_TRUE;
}
else {
/* save Flash-Address Register */
SK_IN32(IoC, B2_FAR, &DWord);
/* test Flash-Address Register */
SK_OUT8(IoC, B2_FAR + 3, 0xff);
SK_IN8(IoC, B2_FAR + 3, &Byte);
if (Byte != 0) {
/* this is Rev. A0 */
pAC->GIni.GIYukonLite = SK_TRUE;
/* restore Flash-Address Register */
SK_OUT32(IoC, B2_FAR, DWord);
}
}
/* switch power to VCC (WA for VAUX problem) */
SK_OUT8(IoC, B0_POWER_CTRL, (SK_U8)(PC_VAUX_ENA | PC_VCC_ENA |
PC_VAUX_OFF | PC_VCC_ON));
/* read the Interrupt source */
SK_IN32(IoC, B0_ISRC, &DWord);
if ((DWord & IS_HW_ERR) != 0) {
/* read the HW Error Interrupt source */
SK_IN32(IoC, B0_HWE_ISRC, &DWord);
if ((DWord & IS_IRQ_SENSOR) != 0) {
/* disable HW Error IRQ */
pAC->GIni.GIValIrqMask &= ~IS_HW_ERR;
}
}
for (i = 0; i < pAC->GIni.GIMacsFound; i++) {
/* set GMAC Link Control reset */
SK_OUT16(IoC, MR_ADDR(i, GMAC_LINK_CTRL), GMLC_RST_SET);
/* clear GMAC Link Control reset */
SK_OUT16(IoC, MR_ADDR(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
}
/* all YU chips work with 78.125 MHz host clock */
pAC->GIni.GIHstClkFact = SK_FACT_78;
pAC->GIni.GIPollTimerVal = SK_DPOLL_MAX; /* 215 ms */
}
#endif /* YUKON */
/* check if 64-bit PCI Slot is present */
pAC->GIni.GIPciSlot64 = (SK_BOOL)((CtrlStat & CS_BUS_SLOT_SZ) != 0);
/* check if 66 MHz PCI Clock is active */
pAC->GIni.GIPciClock66 = (SK_BOOL)((CtrlStat & CS_BUS_CLOCK) != 0);
/* read PCI HW Revision Id. */
SK_IN8(IoC, PCI_C(PCI_REV_ID), &Byte);
pAC->GIni.GIPciHwRev = Byte;
/* read the PMD type */
SK_IN8(IoC, B2_PMD_TYP, &Byte);
pAC->GIni.GICopperType = (SK_U8)(Byte == 'T');
/* read the PHY type */
SK_IN8(IoC, B2_E_1, &Byte);
Byte &= 0x0f; /* the PHY type is stored in the lower nibble */
for (i = 0; i < pAC->GIni.GIMacsFound; i++) {
#ifdef GENESIS
if (pAC->GIni.GIGenesis) {
switch (Byte) {
case SK_PHY_XMAC:
pAC->GIni.GP[i].PhyAddr = PHY_ADDR_XMAC;
break;
case SK_PHY_BCOM:
pAC->GIni.GP[i].PhyAddr = PHY_ADDR_BCOM;
pAC->GIni.GP[i].PMSCap = (SK_U8)(SK_MS_CAP_AUTO |
SK_MS_CAP_MASTER | SK_MS_CAP_SLAVE);
break;
#ifdef OTHER_PHY
case SK_PHY_LONE:
pAC->GIni.GP[i].PhyAddr = PHY_ADDR_LONE;
break;
case SK_PHY_NAT:
pAC->GIni.GP[i].PhyAddr = PHY_ADDR_NAT;
break;
#endif /* OTHER_PHY */
default:
/* ERROR: unexpected PHY type detected */
RetVal = 5;
break;
}
}
#endif /* GENESIS */
#ifdef YUKON
if (pAC->GIni.GIYukon) {
if (Byte < (SK_U8)SK_PHY_MARV_COPPER) {
/* if this field is not initialized */
Byte = (SK_U8)SK_PHY_MARV_COPPER;
pAC->GIni.GICopperType = SK_TRUE;
}
pAC->GIni.GP[i].PhyAddr = PHY_ADDR_MARV;
if (pAC->GIni.GICopperType) {
pAC->GIni.GP[i].PLinkSpeedCap = (SK_U8)(SK_LSPEED_CAP_AUTO |
SK_LSPEED_CAP_10MBPS | SK_LSPEED_CAP_100MBPS |
SK_LSPEED_CAP_1000MBPS);
pAC->GIni.GP[i].PLinkSpeed = (SK_U8)SK_LSPEED_AUTO;
pAC->GIni.GP[i].PMSCap = (SK_U8)(SK_MS_CAP_AUTO |
SK_MS_CAP_MASTER | SK_MS_CAP_SLAVE);
}
else {
Byte = (SK_U8)SK_PHY_MARV_FIBER;
}
}
#endif /* YUKON */
pAC->GIni.GP[i].PhyType = (int)Byte;
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_INIT,
("PHY type: %d PHY addr: %04x\n", Byte,
pAC->GIni.GP[i].PhyAddr));
}
/* get MAC Type & set function pointers dependent on */
#ifdef GENESIS
if (pAC->GIni.GIGenesis) {
pAC->GIni.GIMacType = SK_MAC_XMAC;
pAC->GIni.GIFunc.pFnMacUpdateStats = SkXmUpdateStats;
pAC->GIni.GIFunc.pFnMacStatistic = SkXmMacStatistic;
pAC->GIni.GIFunc.pFnMacResetCounter = SkXmResetCounter;
pAC->GIni.GIFunc.pFnMacOverflow = SkXmOverflowStatus;
}
#endif /* GENESIS */
#ifdef YUKON
if (pAC->GIni.GIYukon) {
pAC->GIni.GIMacType = SK_MAC_GMAC;
pAC->GIni.GIFunc.pFnMacUpdateStats = SkGmUpdateStats;
pAC->GIni.GIFunc.pFnMacStatistic = SkGmMacStatistic;
pAC->GIni.GIFunc.pFnMacResetCounter = SkGmResetCounter;
pAC->GIni.GIFunc.pFnMacOverflow = SkGmOverflowStatus;
#ifdef SPECIAL_HANDLING
if (pAC->GIni.GIChipId == CHIP_ID_YUKON) {
/* check HW self test result */
SK_IN8(IoC, B2_E_3, &Byte);
if (Byte & B2_E3_RES_MASK) {
RetVal = 6;
}
}
#endif
}
#endif /* YUKON */
return(RetVal);
} /* SkGeInit1 */
/******************************************************************************
*
* SkGeInit2() - Level 2 Initialization
*
* Description:
* - start the Blink Source Counter
* - start the Descriptor Poll Timer
* - configure the MAC-Arbiter
* - configure the Packet-Arbiter
* - enable the Tx Arbiters
* - enable the RAM Interface Arbiter
*
* Returns:
* nothing
*/
static void SkGeInit2(
SK_AC *pAC, /* adapter context */
SK_IOC IoC) /* IO context */
{
#ifdef GENESIS
SK_U32 DWord;
#endif /* GENESIS */
int i;
/* start the Descriptor Poll Timer */
if (pAC->GIni.GIPollTimerVal != 0) {
if (pAC->GIni.GIPollTimerVal > SK_DPOLL_MAX) {
pAC->GIni.GIPollTimerVal = SK_DPOLL_MAX;
SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E017, SKERR_HWI_E017MSG);
}
SK_OUT32(IoC, B28_DPT_INI, pAC->GIni.GIPollTimerVal);
SK_OUT8(IoC, B28_DPT_CTRL, DPT_START);
}
#ifdef GENESIS
if (pAC->GIni.GIGenesis) {
/* start the Blink Source Counter */
DWord = SK_BLK_DUR * (SK_U32)pAC->GIni.GIHstClkFact / 100;
SK_OUT32(IoC, B2_BSC_INI, DWord);
SK_OUT8(IoC, B2_BSC_CTRL, BSC_START);
/*
* Configure the MAC Arbiter and the Packet Arbiter.
* They will be started once and never be stopped.
*/
SkGeInitMacArb(pAC, IoC);
SkGeInitPktArb(pAC, IoC);
}
#endif /* GENESIS */
#ifdef YUKON
if (pAC->GIni.GIYukon) {
/* start Time Stamp Timer */
SK_OUT8(IoC, GMAC_TI_ST_CTRL, (SK_U8)GMT_ST_START);
}
#endif /* YUKON */
/* enable the Tx Arbiters */
for (i = 0; i < pAC->GIni.GIMacsFound; i++) {
SK_OUT8(IoC, MR_ADDR(i, TXA_CTRL), TXA_ENA_ARB);
}
/* enable the RAM Interface Arbiter */
SkGeInitRamIface(pAC, IoC);
} /* SkGeInit2 */
/******************************************************************************
*
* SkGeInit() - Initialize the GE Adapter with the specified level.
*
* Description:
* Level 0: Initialize the Module structures.
* Level 1: Generic Hardware Initialization. The IOP/MemBase pointer has
* to be set before calling this level.
*
* o Do a software reset.
* o Clear all reset bits.
* o Verify that the detected hardware is present.
* Return an error if not.
* o Get the hardware configuration
* + Set GIMacsFound with the number of MACs.
* + Store the RAM size in GIRamSize.
* + Save the PCI Revision ID in GIPciHwRev.
* o return an error
* if Number of MACs > SK_MAX_MACS
*
* After returning from Level 0 the adapter
* may be accessed with IO operations.
*
* Level 2: start the Blink Source Counter
*
* Returns:
* 0: success
* 1: Number of MACs exceeds SK_MAX_MACS (after level 1)
* 2: Adapter not present or not accessible
* 3: Illegal initialization level
* 4: Initialization Level 1 Call missing
* 5: Unexpected PHY type detected
* 6: HW self test failed
*/
int SkGeInit(
SK_AC *pAC, /* adapter context */
SK_IOC IoC, /* IO context */
int Level) /* initialization level */
{
int RetVal; /* return value */
SK_U32 DWord;
RetVal = 0;
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_INIT,
("SkGeInit(Level %d)\n", Level));
switch (Level) {
case SK_INIT_DATA:
/* Initialization Level 0 */
SkGeInit0(pAC, IoC);
pAC->GIni.GILevel = SK_INIT_DATA;
break;
case SK_INIT_IO:
/* Initialization Level 1 */
RetVal = SkGeInit1(pAC, IoC);
if (RetVal != 0) {
break;
}
/* check if the adapter seems to be accessible */
SK_OUT32(IoC, B2_IRQM_INI, SK_TEST_VAL);
SK_IN32(IoC, B2_IRQM_INI, &DWord);
SK_OUT32(IoC, B2_IRQM_INI, 0L);
if (DWord != SK_TEST_VAL) {
RetVal = 2;
break;
}
/* check if the number of GIMacsFound matches SK_MAX_MACS */
if (pAC->GIni.GIMacsFound > SK_MAX_MACS) {
RetVal = 1;
break;
}
/* Level 1 successfully passed */
pAC->GIni.GILevel = SK_INIT_IO;
break;
case SK_INIT_RUN:
/* Initialization Level 2 */
if (pAC->GIni.GILevel != SK_INIT_IO) {
#ifndef SK_DIAG
SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E002, SKERR_HWI_E002MSG);
#endif /* !SK_DIAG */
RetVal = 4;
break;
}
SkGeInit2(pAC, IoC);
/* Level 2 successfully passed */
pAC->GIni.GILevel = SK_INIT_RUN;
break;
default:
SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E003, SKERR_HWI_E003MSG);
RetVal = 3;
break;
}
return(RetVal);
} /* SkGeInit */
/******************************************************************************
*
* SkGeDeInit() - Deinitialize the adapter
*
* Description:
* All ports of the adapter will be stopped if not already done.
* Do a software reset and switch off all LEDs.
*
* Returns:
* nothing
*/
void SkGeDeInit(
SK_AC *pAC, /* adapter context */
SK_IOC IoC) /* IO context */
{
int i;
SK_U16 Word;
#ifdef SK_PHY_LP_MODE
SK_U8 Byte;
SK_U16 PmCtlSts;
#endif /* SK_PHY_LP_MODE */
#if (!defined(SK_SLIM) && !defined(VCPU))
/* ensure I2C is ready */
SkI2cWaitIrq(pAC, IoC);
#endif
/* stop all current transfer activity */
for (i = 0; i < pAC->GIni.GIMacsFound; i++) {
if (pAC->GIni.GP[i].PState != SK_PRT_STOP &&
pAC->GIni.GP[i].PState != SK_PRT_RESET) {
SkGeStopPort(pAC, IoC, i, SK_STOP_ALL, SK_HARD_RST);
}
}
#ifdef SK_PHY_LP_MODE
/*
* for power saving purposes within mobile environments
* we set the PHY to coma mode and switch to D3 power state.
*/
if (pAC->GIni.GIYukonLite &&
pAC->GIni.GIChipRev == CHIP_REV_YU_LITE_A3) {
/* for all ports switch PHY to coma mode */
for (i = 0; i < pAC->GIni.GIMacsFound; i++) {
SkGmEnterLowPowerMode(pAC, IoC, i, PHY_PM_DEEP_SLEEP);
}
if (pAC->GIni.GIVauxAvail) {
/* switch power to VAUX */
Byte = PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF;
SK_OUT8(IoC, B0_POWER_CTRL, Byte);
}
/* switch to D3 state */
SK_IN16(IoC, PCI_C(PCI_PM_CTL_STS), &PmCtlSts);
PmCtlSts |= PCI_PM_STATE_D3;
SK_OUT8(IoC, B2_TST_CTRL1, TST_CFG_WRITE_ON);
SK_OUT16(IoC, PCI_C(PCI_PM_CTL_STS), PmCtlSts);
}
#endif /* SK_PHY_LP_MODE */
/* Reset all bits in the PCI STATUS register */
/*
* Note: PCI Cfg cycles cannot be used, because they are not
* available on some platforms after 'boot time'.
*/
SK_IN16(IoC, PCI_C(PCI_STATUS), &Word);
SK_OUT8(IoC, B2_TST_CTRL1, TST_CFG_WRITE_ON);
SK_OUT16(IoC, PCI_C(PCI_STATUS), (SK_U16)(Word | PCI_ERRBITS));
SK_OUT8(IoC, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
/* do the reset, all LEDs are switched off now */
SK_OUT8(IoC, B0_CTST, CS_RST_SET);
pAC->GIni.GILevel = SK_INIT_DATA;
} /* SkGeDeInit */
/******************************************************************************
*
* SkGeInitPort() Initialize the specified port.
*
* Description:
* PRxQSize, PXSQSize, and PXAQSize has to be
* configured for the specified port before calling this function.
* The descriptor rings has to be initialized too.
*
* o (Re)configure queues of the specified port.
* o configure the MAC of the specified port.
* o put ASIC and MAC(s) in operational mode.
* o initialize Rx/Tx and Sync LED
* o initialize RAM Buffers and MAC FIFOs
*
* The port is ready to connect when returning.
*
* Note:
* The MAC's Rx and Tx state machine is still disabled when returning.
*
* Returns:
* 0: success
* 1: Queue size initialization error. The configured values
* for PRxQSize, PXSQSize, or PXAQSize are invalid for one
* or more queues. The specified port was NOT initialized.
* An error log entry was generated.
* 2: The port has to be stopped before it can be initialized again.
*/
int SkGeInitPort(
SK_AC *pAC, /* adapter context */
SK_IOC IoC, /* IO context */
int Port) /* Port to configure */
{
SK_GEPORT *pPrt;
pPrt = &pAC->GIni.GP[Port];
if (SkGeCheckQSize(pAC, Port) != 0) {
SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E004, SKERR_HWI_E004MSG);
return(1);
}
if (pPrt->PState == SK_PRT_INIT || pPrt->PState == SK_PRT_RUN) {
SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E005, SKERR_HWI_E005MSG);
return(2);
}
/* configuration ok, initialize the Port now */
#ifdef GENESIS
if (pAC->GIni.GIGenesis) {
/* initialize Rx, Tx and Link LED */
/*
* If 1000BT Phy needs LED initialization than swap
* LED and XMAC initialization order
*/
SkGeXmitLED(pAC, IoC, MR_ADDR(Port, TX_LED_INI), SK_LED_ENA);
SkGeXmitLED(pAC, IoC, MR_ADDR(Port, RX_LED_INI), SK_LED_ENA);
/* The Link LED is initialized by RLMT or Diagnostics itself */
SkXmInitMac(pAC, IoC, Port);
}
#endif /* GENESIS */
#ifdef YUKON
if (pAC->GIni.GIYukon) {
SkGmInitMac(pAC, IoC, Port);
}
#endif /* YUKON */
/* do NOT initialize the Link Sync Counter */
SkGeInitMacFifo(pAC, IoC, Port);
SkGeInitRamBufs(pAC, IoC, Port);
if (pPrt->PXSQSize != 0) {
/* enable Force Sync bit if synchronous queue available */
SK_OUT8(IoC, MR_ADDR(Port, TXA_CTRL), TXA_ENA_FSYNC);
}
SkGeInitBmu(pAC, IoC, Port);
/* mark port as initialized */
pPrt->PState = SK_PRT_INIT;
return(0);
} /* SkGeInitPort */