You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
904 lines
21 KiB
904 lines
21 KiB
/*
|
|
* PPC64 (POWER4) Huge TLB Page Support for Kernel.
|
|
*
|
|
* Copyright (C) 2003 David Gibson, IBM Corporation.
|
|
*
|
|
* Based on the IA-32 version:
|
|
* Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/err.h>
|
|
#include <linux/sysctl.h>
|
|
#include <asm/mman.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/cputable.h>
|
|
#include <asm/tlb.h>
|
|
|
|
#include <linux/sysctl.h>
|
|
|
|
#define HUGEPGDIR_SHIFT (HPAGE_SHIFT + PAGE_SHIFT - 3)
|
|
#define HUGEPGDIR_SIZE (1UL << HUGEPGDIR_SHIFT)
|
|
#define HUGEPGDIR_MASK (~(HUGEPGDIR_SIZE-1))
|
|
|
|
#define HUGEPTE_INDEX_SIZE 9
|
|
#define HUGEPGD_INDEX_SIZE 10
|
|
|
|
#define PTRS_PER_HUGEPTE (1 << HUGEPTE_INDEX_SIZE)
|
|
#define PTRS_PER_HUGEPGD (1 << HUGEPGD_INDEX_SIZE)
|
|
|
|
static inline int hugepgd_index(unsigned long addr)
|
|
{
|
|
return (addr & ~REGION_MASK) >> HUGEPGDIR_SHIFT;
|
|
}
|
|
|
|
static pgd_t *hugepgd_offset(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
int index;
|
|
|
|
if (! mm->context.huge_pgdir)
|
|
return NULL;
|
|
|
|
|
|
index = hugepgd_index(addr);
|
|
BUG_ON(index >= PTRS_PER_HUGEPGD);
|
|
return mm->context.huge_pgdir + index;
|
|
}
|
|
|
|
static inline pte_t *hugepte_offset(pgd_t *dir, unsigned long addr)
|
|
{
|
|
int index;
|
|
|
|
if (pgd_none(*dir))
|
|
return NULL;
|
|
|
|
index = (addr >> HPAGE_SHIFT) % PTRS_PER_HUGEPTE;
|
|
return (pte_t *)pgd_page(*dir) + index;
|
|
}
|
|
|
|
static pgd_t *hugepgd_alloc(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
BUG_ON(! in_hugepage_area(mm->context, addr));
|
|
|
|
if (! mm->context.huge_pgdir) {
|
|
pgd_t *new;
|
|
spin_unlock(&mm->page_table_lock);
|
|
/* Don't use pgd_alloc(), because we want __GFP_REPEAT */
|
|
new = kmem_cache_alloc(zero_cache, GFP_KERNEL | __GFP_REPEAT);
|
|
BUG_ON(memcmp(new, empty_zero_page, PAGE_SIZE));
|
|
spin_lock(&mm->page_table_lock);
|
|
|
|
/*
|
|
* Because we dropped the lock, we should re-check the
|
|
* entry, as somebody else could have populated it..
|
|
*/
|
|
if (mm->context.huge_pgdir)
|
|
pgd_free(new);
|
|
else
|
|
mm->context.huge_pgdir = new;
|
|
}
|
|
return hugepgd_offset(mm, addr);
|
|
}
|
|
|
|
static pte_t *hugepte_alloc(struct mm_struct *mm, pgd_t *dir,
|
|
unsigned long addr)
|
|
{
|
|
if (! pgd_present(*dir)) {
|
|
pte_t *new;
|
|
|
|
spin_unlock(&mm->page_table_lock);
|
|
new = kmem_cache_alloc(zero_cache, GFP_KERNEL | __GFP_REPEAT);
|
|
BUG_ON(memcmp(new, empty_zero_page, PAGE_SIZE));
|
|
spin_lock(&mm->page_table_lock);
|
|
/*
|
|
* Because we dropped the lock, we should re-check the
|
|
* entry, as somebody else could have populated it..
|
|
*/
|
|
if (pgd_present(*dir)) {
|
|
if (new)
|
|
kmem_cache_free(zero_cache, new);
|
|
} else {
|
|
struct page *ptepage;
|
|
|
|
if (! new)
|
|
return NULL;
|
|
ptepage = virt_to_page(new);
|
|
ptepage->mapping = (void *) mm;
|
|
ptepage->index = addr & HUGEPGDIR_MASK;
|
|
pgd_populate(mm, dir, new);
|
|
}
|
|
}
|
|
|
|
return hugepte_offset(dir, addr);
|
|
}
|
|
|
|
static pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
pgd_t *pgd;
|
|
|
|
BUG_ON(! in_hugepage_area(mm->context, addr));
|
|
|
|
pgd = hugepgd_offset(mm, addr);
|
|
if (! pgd)
|
|
return NULL;
|
|
|
|
return hugepte_offset(pgd, addr);
|
|
}
|
|
|
|
static pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
pgd_t *pgd;
|
|
|
|
BUG_ON(! in_hugepage_area(mm->context, addr));
|
|
|
|
pgd = hugepgd_alloc(mm, addr);
|
|
if (! pgd)
|
|
return NULL;
|
|
|
|
return hugepte_alloc(mm, pgd, addr);
|
|
}
|
|
|
|
static void set_huge_pte(struct mm_struct *mm, struct vm_area_struct *vma,
|
|
unsigned long addr, struct page *page,
|
|
pte_t *ptep, int write_access)
|
|
{
|
|
pte_t entry;
|
|
|
|
add_mm_counter(mm, rss, HPAGE_SIZE / PAGE_SIZE);
|
|
if (write_access) {
|
|
entry =
|
|
pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
|
|
} else {
|
|
entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
|
|
}
|
|
entry = pte_mkyoung(entry);
|
|
entry = pte_mkhuge(entry);
|
|
|
|
set_pte_at(mm, addr, ptep, entry);
|
|
}
|
|
|
|
/*
|
|
* This function checks for proper alignment of input addr and len parameters.
|
|
*/
|
|
int is_aligned_hugepage_range(unsigned long addr, unsigned long len)
|
|
{
|
|
if (len & ~HPAGE_MASK)
|
|
return -EINVAL;
|
|
if (addr & ~HPAGE_MASK)
|
|
return -EINVAL;
|
|
if (! (within_hugepage_low_range(addr, len)
|
|
|| within_hugepage_high_range(addr, len)) )
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
static void flush_segments(void *parm)
|
|
{
|
|
u16 segs = (unsigned long) parm;
|
|
unsigned long i;
|
|
|
|
asm volatile("isync" : : : "memory");
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
if (! (segs & (1U << i)))
|
|
continue;
|
|
asm volatile("slbie %0" : : "r" (i << SID_SHIFT));
|
|
}
|
|
|
|
asm volatile("isync" : : : "memory");
|
|
}
|
|
|
|
static int prepare_low_seg_for_htlb(struct mm_struct *mm, unsigned long seg)
|
|
{
|
|
unsigned long start = seg << SID_SHIFT;
|
|
unsigned long end = (seg+1) << SID_SHIFT;
|
|
struct vm_area_struct *vma;
|
|
unsigned long addr;
|
|
struct mmu_gather *tlb;
|
|
|
|
BUG_ON(seg >= 16);
|
|
|
|
/* Check no VMAs are in the region */
|
|
vma = find_vma(mm, start);
|
|
if (vma && (vma->vm_start < end))
|
|
return -EBUSY;
|
|
|
|
/* Clean up any leftover PTE pages in the region */
|
|
spin_lock(&mm->page_table_lock);
|
|
tlb = tlb_gather_mmu(mm, 0);
|
|
for (addr = start; addr < end; addr += PMD_SIZE) {
|
|
pgd_t *pgd = pgd_offset(mm, addr);
|
|
pmd_t *pmd;
|
|
struct page *page;
|
|
pte_t *pte;
|
|
int i;
|
|
|
|
if (pgd_none(*pgd))
|
|
continue;
|
|
pmd = pmd_offset(pgd, addr);
|
|
if (!pmd || pmd_none(*pmd))
|
|
continue;
|
|
if (pmd_bad(*pmd)) {
|
|
pmd_ERROR(*pmd);
|
|
pmd_clear(pmd);
|
|
continue;
|
|
}
|
|
pte = (pte_t *)pmd_page_kernel(*pmd);
|
|
/* No VMAs, so there should be no PTEs, check just in case. */
|
|
for (i = 0; i < PTRS_PER_PTE; i++) {
|
|
BUG_ON(!pte_none(*pte));
|
|
pte++;
|
|
}
|
|
page = pmd_page(*pmd);
|
|
pmd_clear(pmd);
|
|
mm->nr_ptes--;
|
|
dec_page_state(nr_page_table_pages);
|
|
pte_free_tlb(tlb, page);
|
|
}
|
|
tlb_finish_mmu(tlb, start, end);
|
|
spin_unlock(&mm->page_table_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int open_low_hpage_segs(struct mm_struct *mm, u16 newsegs)
|
|
{
|
|
unsigned long i;
|
|
|
|
newsegs &= ~(mm->context.htlb_segs);
|
|
if (! newsegs)
|
|
return 0; /* The segments we want are already open */
|
|
|
|
for (i = 0; i < 16; i++)
|
|
if ((1 << i) & newsegs)
|
|
if (prepare_low_seg_for_htlb(mm, i) != 0)
|
|
return -EBUSY;
|
|
|
|
mm->context.htlb_segs |= newsegs;
|
|
|
|
/* update the paca copy of the context struct */
|
|
get_paca()->context = mm->context;
|
|
|
|
/* the context change must make it to memory before the flush,
|
|
* so that further SLB misses do the right thing. */
|
|
mb();
|
|
on_each_cpu(flush_segments, (void *)(unsigned long)newsegs, 0, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int prepare_hugepage_range(unsigned long addr, unsigned long len)
|
|
{
|
|
if (within_hugepage_high_range(addr, len))
|
|
return 0;
|
|
else if ((addr < 0x100000000UL) && ((addr+len) < 0x100000000UL)) {
|
|
int err;
|
|
/* Yes, we need both tests, in case addr+len overflows
|
|
* 64-bit arithmetic */
|
|
err = open_low_hpage_segs(current->mm,
|
|
LOW_ESID_MASK(addr, len));
|
|
if (err)
|
|
printk(KERN_DEBUG "prepare_hugepage_range(%lx, %lx)"
|
|
" failed (segs: 0x%04hx)\n", addr, len,
|
|
LOW_ESID_MASK(addr, len));
|
|
return err;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
pte_t *src_pte, *dst_pte, entry;
|
|
struct page *ptepage;
|
|
unsigned long addr = vma->vm_start;
|
|
unsigned long end = vma->vm_end;
|
|
int err = -ENOMEM;
|
|
|
|
while (addr < end) {
|
|
dst_pte = huge_pte_alloc(dst, addr);
|
|
if (!dst_pte)
|
|
goto out;
|
|
|
|
src_pte = huge_pte_offset(src, addr);
|
|
entry = *src_pte;
|
|
|
|
ptepage = pte_page(entry);
|
|
get_page(ptepage);
|
|
add_mm_counter(dst, rss, HPAGE_SIZE / PAGE_SIZE);
|
|
set_pte_at(dst, addr, dst_pte, entry);
|
|
|
|
addr += HPAGE_SIZE;
|
|
}
|
|
|
|
err = 0;
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
int
|
|
follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
|
|
struct page **pages, struct vm_area_struct **vmas,
|
|
unsigned long *position, int *length, int i)
|
|
{
|
|
unsigned long vpfn, vaddr = *position;
|
|
int remainder = *length;
|
|
|
|
WARN_ON(!is_vm_hugetlb_page(vma));
|
|
|
|
vpfn = vaddr/PAGE_SIZE;
|
|
while (vaddr < vma->vm_end && remainder) {
|
|
if (pages) {
|
|
pte_t *pte;
|
|
struct page *page;
|
|
|
|
pte = huge_pte_offset(mm, vaddr);
|
|
|
|
/* hugetlb should be locked, and hence, prefaulted */
|
|
WARN_ON(!pte || pte_none(*pte));
|
|
|
|
page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
|
|
|
|
WARN_ON(!PageCompound(page));
|
|
|
|
get_page(page);
|
|
pages[i] = page;
|
|
}
|
|
|
|
if (vmas)
|
|
vmas[i] = vma;
|
|
|
|
vaddr += PAGE_SIZE;
|
|
++vpfn;
|
|
--remainder;
|
|
++i;
|
|
}
|
|
|
|
*length = remainder;
|
|
*position = vaddr;
|
|
|
|
return i;
|
|
}
|
|
|
|
struct page *
|
|
follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
|
|
{
|
|
pte_t *ptep;
|
|
struct page *page;
|
|
|
|
if (! in_hugepage_area(mm->context, address))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
ptep = huge_pte_offset(mm, address);
|
|
page = pte_page(*ptep);
|
|
if (page)
|
|
page += (address % HPAGE_SIZE) / PAGE_SIZE;
|
|
|
|
return page;
|
|
}
|
|
|
|
int pmd_huge(pmd_t pmd)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
struct page *
|
|
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
|
|
pmd_t *pmd, int write)
|
|
{
|
|
BUG();
|
|
return NULL;
|
|
}
|
|
|
|
void unmap_hugepage_range(struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
unsigned long addr;
|
|
pte_t *ptep;
|
|
struct page *page;
|
|
|
|
WARN_ON(!is_vm_hugetlb_page(vma));
|
|
BUG_ON((start % HPAGE_SIZE) != 0);
|
|
BUG_ON((end % HPAGE_SIZE) != 0);
|
|
|
|
for (addr = start; addr < end; addr += HPAGE_SIZE) {
|
|
pte_t pte;
|
|
|
|
ptep = huge_pte_offset(mm, addr);
|
|
if (!ptep || pte_none(*ptep))
|
|
continue;
|
|
|
|
pte = *ptep;
|
|
page = pte_page(pte);
|
|
pte_clear(mm, addr, ptep);
|
|
|
|
put_page(page);
|
|
}
|
|
add_mm_counter(mm, rss, -((end - start) >> PAGE_SHIFT));
|
|
flush_tlb_pending();
|
|
}
|
|
|
|
void hugetlb_free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *prev,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
/* Because the huge pgtables are only 2 level, they can take
|
|
* at most around 4M, much less than one hugepage which the
|
|
* process is presumably entitled to use. So we don't bother
|
|
* freeing up the pagetables on unmap, and wait until
|
|
* destroy_context() to clean up the lot. */
|
|
}
|
|
|
|
int hugetlb_prefault(struct address_space *mapping, struct vm_area_struct *vma)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
unsigned long addr;
|
|
int ret = 0;
|
|
|
|
WARN_ON(!is_vm_hugetlb_page(vma));
|
|
BUG_ON((vma->vm_start % HPAGE_SIZE) != 0);
|
|
BUG_ON((vma->vm_end % HPAGE_SIZE) != 0);
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
|
|
unsigned long idx;
|
|
pte_t *pte = huge_pte_alloc(mm, addr);
|
|
struct page *page;
|
|
|
|
if (!pte) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
if (! pte_none(*pte))
|
|
continue;
|
|
|
|
idx = ((addr - vma->vm_start) >> HPAGE_SHIFT)
|
|
+ (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
|
|
page = find_get_page(mapping, idx);
|
|
if (!page) {
|
|
/* charge the fs quota first */
|
|
if (hugetlb_get_quota(mapping)) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
page = alloc_huge_page();
|
|
if (!page) {
|
|
hugetlb_put_quota(mapping);
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
ret = add_to_page_cache(page, mapping, idx, GFP_ATOMIC);
|
|
if (! ret) {
|
|
unlock_page(page);
|
|
} else {
|
|
hugetlb_put_quota(mapping);
|
|
free_huge_page(page);
|
|
goto out;
|
|
}
|
|
}
|
|
set_huge_pte(mm, vma, addr, page, pte, vma->vm_flags & VM_WRITE);
|
|
}
|
|
out:
|
|
spin_unlock(&mm->page_table_lock);
|
|
return ret;
|
|
}
|
|
|
|
/* Because we have an exclusive hugepage region which lies within the
|
|
* normal user address space, we have to take special measures to make
|
|
* non-huge mmap()s evade the hugepage reserved regions. */
|
|
unsigned long arch_get_unmapped_area(struct file *filp, unsigned long addr,
|
|
unsigned long len, unsigned long pgoff,
|
|
unsigned long flags)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
struct vm_area_struct *vma;
|
|
unsigned long start_addr;
|
|
|
|
if (len > TASK_SIZE)
|
|
return -ENOMEM;
|
|
|
|
if (addr) {
|
|
addr = PAGE_ALIGN(addr);
|
|
vma = find_vma(mm, addr);
|
|
if (((TASK_SIZE - len) >= addr)
|
|
&& (!vma || (addr+len) <= vma->vm_start)
|
|
&& !is_hugepage_only_range(mm, addr,len))
|
|
return addr;
|
|
}
|
|
start_addr = addr = mm->free_area_cache;
|
|
|
|
full_search:
|
|
vma = find_vma(mm, addr);
|
|
while (TASK_SIZE - len >= addr) {
|
|
BUG_ON(vma && (addr >= vma->vm_end));
|
|
|
|
if (touches_hugepage_low_range(mm, addr, len)) {
|
|
addr = ALIGN(addr+1, 1<<SID_SHIFT);
|
|
vma = find_vma(mm, addr);
|
|
continue;
|
|
}
|
|
if (touches_hugepage_high_range(addr, len)) {
|
|
addr = TASK_HPAGE_END;
|
|
vma = find_vma(mm, addr);
|
|
continue;
|
|
}
|
|
if (!vma || addr + len <= vma->vm_start) {
|
|
/*
|
|
* Remember the place where we stopped the search:
|
|
*/
|
|
mm->free_area_cache = addr + len;
|
|
return addr;
|
|
}
|
|
addr = vma->vm_end;
|
|
vma = vma->vm_next;
|
|
}
|
|
|
|
/* Make sure we didn't miss any holes */
|
|
if (start_addr != TASK_UNMAPPED_BASE) {
|
|
start_addr = addr = TASK_UNMAPPED_BASE;
|
|
goto full_search;
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* This mmap-allocator allocates new areas top-down from below the
|
|
* stack's low limit (the base):
|
|
*
|
|
* Because we have an exclusive hugepage region which lies within the
|
|
* normal user address space, we have to take special measures to make
|
|
* non-huge mmap()s evade the hugepage reserved regions.
|
|
*/
|
|
unsigned long
|
|
arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
|
|
const unsigned long len, const unsigned long pgoff,
|
|
const unsigned long flags)
|
|
{
|
|
struct vm_area_struct *vma, *prev_vma;
|
|
struct mm_struct *mm = current->mm;
|
|
unsigned long base = mm->mmap_base, addr = addr0;
|
|
int first_time = 1;
|
|
|
|
/* requested length too big for entire address space */
|
|
if (len > TASK_SIZE)
|
|
return -ENOMEM;
|
|
|
|
/* dont allow allocations above current base */
|
|
if (mm->free_area_cache > base)
|
|
mm->free_area_cache = base;
|
|
|
|
/* requesting a specific address */
|
|
if (addr) {
|
|
addr = PAGE_ALIGN(addr);
|
|
vma = find_vma(mm, addr);
|
|
if (TASK_SIZE - len >= addr &&
|
|
(!vma || addr + len <= vma->vm_start)
|
|
&& !is_hugepage_only_range(mm, addr,len))
|
|
return addr;
|
|
}
|
|
|
|
try_again:
|
|
/* make sure it can fit in the remaining address space */
|
|
if (mm->free_area_cache < len)
|
|
goto fail;
|
|
|
|
/* either no address requested or cant fit in requested address hole */
|
|
addr = (mm->free_area_cache - len) & PAGE_MASK;
|
|
do {
|
|
hugepage_recheck:
|
|
if (touches_hugepage_low_range(mm, addr, len)) {
|
|
addr = (addr & ((~0) << SID_SHIFT)) - len;
|
|
goto hugepage_recheck;
|
|
} else if (touches_hugepage_high_range(addr, len)) {
|
|
addr = TASK_HPAGE_BASE - len;
|
|
}
|
|
|
|
/*
|
|
* Lookup failure means no vma is above this address,
|
|
* i.e. return with success:
|
|
*/
|
|
if (!(vma = find_vma_prev(mm, addr, &prev_vma)))
|
|
return addr;
|
|
|
|
/*
|
|
* new region fits between prev_vma->vm_end and
|
|
* vma->vm_start, use it:
|
|
*/
|
|
if (addr+len <= vma->vm_start &&
|
|
(!prev_vma || (addr >= prev_vma->vm_end)))
|
|
/* remember the address as a hint for next time */
|
|
return (mm->free_area_cache = addr);
|
|
else
|
|
/* pull free_area_cache down to the first hole */
|
|
if (mm->free_area_cache == vma->vm_end)
|
|
mm->free_area_cache = vma->vm_start;
|
|
|
|
/* try just below the current vma->vm_start */
|
|
addr = vma->vm_start-len;
|
|
} while (len <= vma->vm_start);
|
|
|
|
fail:
|
|
/*
|
|
* if hint left us with no space for the requested
|
|
* mapping then try again:
|
|
*/
|
|
if (first_time) {
|
|
mm->free_area_cache = base;
|
|
first_time = 0;
|
|
goto try_again;
|
|
}
|
|
/*
|
|
* A failed mmap() very likely causes application failure,
|
|
* so fall back to the bottom-up function here. This scenario
|
|
* can happen with large stack limits and large mmap()
|
|
* allocations.
|
|
*/
|
|
mm->free_area_cache = TASK_UNMAPPED_BASE;
|
|
addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
|
|
/*
|
|
* Restore the topdown base:
|
|
*/
|
|
mm->free_area_cache = base;
|
|
|
|
return addr;
|
|
}
|
|
|
|
static unsigned long htlb_get_low_area(unsigned long len, u16 segmask)
|
|
{
|
|
unsigned long addr = 0;
|
|
struct vm_area_struct *vma;
|
|
|
|
vma = find_vma(current->mm, addr);
|
|
while (addr + len <= 0x100000000UL) {
|
|
BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
|
|
|
|
if (! __within_hugepage_low_range(addr, len, segmask)) {
|
|
addr = ALIGN(addr+1, 1<<SID_SHIFT);
|
|
vma = find_vma(current->mm, addr);
|
|
continue;
|
|
}
|
|
|
|
if (!vma || (addr + len) <= vma->vm_start)
|
|
return addr;
|
|
addr = ALIGN(vma->vm_end, HPAGE_SIZE);
|
|
/* Depending on segmask this might not be a confirmed
|
|
* hugepage region, so the ALIGN could have skipped
|
|
* some VMAs */
|
|
vma = find_vma(current->mm, addr);
|
|
}
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static unsigned long htlb_get_high_area(unsigned long len)
|
|
{
|
|
unsigned long addr = TASK_HPAGE_BASE;
|
|
struct vm_area_struct *vma;
|
|
|
|
vma = find_vma(current->mm, addr);
|
|
for (vma = find_vma(current->mm, addr);
|
|
addr + len <= TASK_HPAGE_END;
|
|
vma = vma->vm_next) {
|
|
BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
|
|
BUG_ON(! within_hugepage_high_range(addr, len));
|
|
|
|
if (!vma || (addr + len) <= vma->vm_start)
|
|
return addr;
|
|
addr = ALIGN(vma->vm_end, HPAGE_SIZE);
|
|
/* Because we're in a hugepage region, this alignment
|
|
* should not skip us over any VMAs */
|
|
}
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
|
|
unsigned long len, unsigned long pgoff,
|
|
unsigned long flags)
|
|
{
|
|
if (len & ~HPAGE_MASK)
|
|
return -EINVAL;
|
|
|
|
if (!cpu_has_feature(CPU_FTR_16M_PAGE))
|
|
return -EINVAL;
|
|
|
|
if (test_thread_flag(TIF_32BIT)) {
|
|
int lastshift = 0;
|
|
u16 segmask, cursegs = current->mm->context.htlb_segs;
|
|
|
|
/* First see if we can do the mapping in the existing
|
|
* low hpage segments */
|
|
addr = htlb_get_low_area(len, cursegs);
|
|
if (addr != -ENOMEM)
|
|
return addr;
|
|
|
|
for (segmask = LOW_ESID_MASK(0x100000000UL-len, len);
|
|
! lastshift; segmask >>=1) {
|
|
if (segmask & 1)
|
|
lastshift = 1;
|
|
|
|
addr = htlb_get_low_area(len, cursegs | segmask);
|
|
if ((addr != -ENOMEM)
|
|
&& open_low_hpage_segs(current->mm, segmask) == 0)
|
|
return addr;
|
|
}
|
|
printk(KERN_DEBUG "hugetlb_get_unmapped_area() unable to open"
|
|
" enough segments\n");
|
|
return -ENOMEM;
|
|
} else {
|
|
return htlb_get_high_area(len);
|
|
}
|
|
}
|
|
|
|
void hugetlb_mm_free_pgd(struct mm_struct *mm)
|
|
{
|
|
int i;
|
|
pgd_t *pgdir;
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
|
|
pgdir = mm->context.huge_pgdir;
|
|
if (! pgdir)
|
|
goto out;
|
|
|
|
mm->context.huge_pgdir = NULL;
|
|
|
|
/* cleanup any hugepte pages leftover */
|
|
for (i = 0; i < PTRS_PER_HUGEPGD; i++) {
|
|
pgd_t *pgd = pgdir + i;
|
|
|
|
if (! pgd_none(*pgd)) {
|
|
pte_t *pte = (pte_t *)pgd_page(*pgd);
|
|
struct page *ptepage = virt_to_page(pte);
|
|
|
|
ptepage->mapping = NULL;
|
|
|
|
BUG_ON(memcmp(pte, empty_zero_page, PAGE_SIZE));
|
|
kmem_cache_free(zero_cache, pte);
|
|
}
|
|
pgd_clear(pgd);
|
|
}
|
|
|
|
BUG_ON(memcmp(pgdir, empty_zero_page, PAGE_SIZE));
|
|
kmem_cache_free(zero_cache, pgdir);
|
|
|
|
out:
|
|
spin_unlock(&mm->page_table_lock);
|
|
}
|
|
|
|
int hash_huge_page(struct mm_struct *mm, unsigned long access,
|
|
unsigned long ea, unsigned long vsid, int local)
|
|
{
|
|
pte_t *ptep;
|
|
unsigned long va, vpn;
|
|
pte_t old_pte, new_pte;
|
|
unsigned long hpteflags, prpn;
|
|
long slot;
|
|
int err = 1;
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
|
|
ptep = huge_pte_offset(mm, ea);
|
|
|
|
/* Search the Linux page table for a match with va */
|
|
va = (vsid << 28) | (ea & 0x0fffffff);
|
|
vpn = va >> HPAGE_SHIFT;
|
|
|
|
/*
|
|
* If no pte found or not present, send the problem up to
|
|
* do_page_fault
|
|
*/
|
|
if (unlikely(!ptep || pte_none(*ptep)))
|
|
goto out;
|
|
|
|
/* BUG_ON(pte_bad(*ptep)); */
|
|
|
|
/*
|
|
* Check the user's access rights to the page. If access should be
|
|
* prevented then send the problem up to do_page_fault.
|
|
*/
|
|
if (unlikely(access & ~pte_val(*ptep)))
|
|
goto out;
|
|
/*
|
|
* At this point, we have a pte (old_pte) which can be used to build
|
|
* or update an HPTE. There are 2 cases:
|
|
*
|
|
* 1. There is a valid (present) pte with no associated HPTE (this is
|
|
* the most common case)
|
|
* 2. There is a valid (present) pte with an associated HPTE. The
|
|
* current values of the pp bits in the HPTE prevent access
|
|
* because we are doing software DIRTY bit management and the
|
|
* page is currently not DIRTY.
|
|
*/
|
|
|
|
|
|
old_pte = *ptep;
|
|
new_pte = old_pte;
|
|
|
|
hpteflags = 0x2 | (! (pte_val(new_pte) & _PAGE_RW));
|
|
/* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
|
|
hpteflags |= ((pte_val(new_pte) & _PAGE_EXEC) ? 0 : HW_NO_EXEC);
|
|
|
|
/* Check if pte already has an hpte (case 2) */
|
|
if (unlikely(pte_val(old_pte) & _PAGE_HASHPTE)) {
|
|
/* There MIGHT be an HPTE for this pte */
|
|
unsigned long hash, slot;
|
|
|
|
hash = hpt_hash(vpn, 1);
|
|
if (pte_val(old_pte) & _PAGE_SECONDARY)
|
|
hash = ~hash;
|
|
slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
|
|
slot += (pte_val(old_pte) & _PAGE_GROUP_IX) >> 12;
|
|
|
|
if (ppc_md.hpte_updatepp(slot, hpteflags, va, 1, local) == -1)
|
|
pte_val(old_pte) &= ~_PAGE_HPTEFLAGS;
|
|
}
|
|
|
|
if (likely(!(pte_val(old_pte) & _PAGE_HASHPTE))) {
|
|
unsigned long hash = hpt_hash(vpn, 1);
|
|
unsigned long hpte_group;
|
|
|
|
prpn = pte_pfn(old_pte);
|
|
|
|
repeat:
|
|
hpte_group = ((hash & htab_hash_mask) *
|
|
HPTES_PER_GROUP) & ~0x7UL;
|
|
|
|
/* Update the linux pte with the HPTE slot */
|
|
pte_val(new_pte) &= ~_PAGE_HPTEFLAGS;
|
|
pte_val(new_pte) |= _PAGE_HASHPTE;
|
|
|
|
/* Add in WIMG bits */
|
|
/* XXX We should store these in the pte */
|
|
hpteflags |= _PAGE_COHERENT;
|
|
|
|
slot = ppc_md.hpte_insert(hpte_group, va, prpn, 0,
|
|
hpteflags, 0, 1);
|
|
|
|
/* Primary is full, try the secondary */
|
|
if (unlikely(slot == -1)) {
|
|
pte_val(new_pte) |= _PAGE_SECONDARY;
|
|
hpte_group = ((~hash & htab_hash_mask) *
|
|
HPTES_PER_GROUP) & ~0x7UL;
|
|
slot = ppc_md.hpte_insert(hpte_group, va, prpn,
|
|
1, hpteflags, 0, 1);
|
|
if (slot == -1) {
|
|
if (mftb() & 0x1)
|
|
hpte_group = ((hash & htab_hash_mask) * HPTES_PER_GROUP) & ~0x7UL;
|
|
|
|
ppc_md.hpte_remove(hpte_group);
|
|
goto repeat;
|
|
}
|
|
}
|
|
|
|
if (unlikely(slot == -2))
|
|
panic("hash_huge_page: pte_insert failed\n");
|
|
|
|
pte_val(new_pte) |= (slot<<12) & _PAGE_GROUP_IX;
|
|
|
|
/*
|
|
* No need to use ldarx/stdcx here because all who
|
|
* might be updating the pte will hold the
|
|
* page_table_lock
|
|
*/
|
|
*ptep = new_pte;
|
|
}
|
|
|
|
err = 0;
|
|
|
|
out:
|
|
spin_unlock(&mm->page_table_lock);
|
|
|
|
return err;
|
|
}
|
|
|