You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/kernel/sched/cpufreq_schedutil.c

1133 lines
30 KiB

/*
* CPUFreq governor based on scheduler-provided CPU utilization data.
*
* Copyright (C) 2016, Intel Corporation
* Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/cpufreq.h>
#include <linux/kthread.h>
#include <uapi/linux/sched/types.h>
#include <linux/slab.h>
#include <trace/events/power.h>
#include <linux/sched/sysctl.h>
#include "sched.h"
#define SUGOV_KTHREAD_PRIORITY 50
struct sugov_tunables {
struct gov_attr_set attr_set;
unsigned int up_rate_limit_us;
unsigned int down_rate_limit_us;
unsigned int hispeed_load;
unsigned int hispeed_freq;
bool pl;
};
struct sugov_policy {
struct cpufreq_policy *policy;
struct sugov_tunables *tunables;
struct list_head tunables_hook;
raw_spinlock_t update_lock; /* For shared policies */
u64 last_freq_update_time;
s64 min_rate_limit_ns;
s64 up_rate_delay_ns;
s64 down_rate_delay_ns;
s64 freq_update_delay_ns;
u64 last_ws;
u64 curr_cycles;
u64 last_cyc_update_time;
unsigned long avg_cap;
unsigned int next_freq;
unsigned int cached_raw_freq;
unsigned long hispeed_util;
unsigned long max;
/* The next fields are only needed if fast switch cannot be used. */
struct irq_work irq_work;
struct kthread_work work;
struct mutex work_lock;
struct kthread_worker worker;
struct task_struct *thread;
bool work_in_progress;
bool need_freq_update;
};
struct sugov_cpu {
struct update_util_data update_util;
struct sugov_policy *sg_policy;
unsigned int cpu;
bool iowait_boost_pending;
unsigned int iowait_boost;
unsigned int iowait_boost_max;
u64 last_update;
struct sched_walt_cpu_load walt_load;
/* The fields below are only needed when sharing a policy. */
unsigned long util;
unsigned long max;
unsigned int flags;
/* The field below is for single-CPU policies only. */
#ifdef CONFIG_NO_HZ_COMMON
unsigned long saved_idle_calls;
#endif
};
static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
static unsigned int stale_ns;
static DEFINE_PER_CPU(struct sugov_tunables *, cached_tunables);
/************************ Governor internals ***********************/
static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
{
s64 delta_ns;
/*
* Since cpufreq_update_util() is called with rq->lock held for
* the @target_cpu, our per-cpu data is fully serialized.
*
* However, drivers cannot in general deal with cross-cpu
* requests, so while get_next_freq() will work, our
* sugov_update_commit() call may not for the fast switching platforms.
*
* Hence stop here for remote requests if they aren't supported
* by the hardware, as calculating the frequency is pointless if
* we cannot in fact act on it.
*
* For the slow switching platforms, the kthread is always scheduled on
* the right set of CPUs and any CPU can find the next frequency and
* schedule the kthread.
*/
if (sg_policy->policy->fast_switch_enabled &&
!cpufreq_can_do_remote_dvfs(sg_policy->policy))
return false;
if (unlikely(sg_policy->need_freq_update)) {
sg_policy->need_freq_update = false;
/*
* This happens when limits change, so forget the previous
* next_freq value and force an update.
*/
sg_policy->next_freq = UINT_MAX;
return true;
}
/* No need to recalculate next freq for min_rate_limit_us
* at least. However we might still decide to further rate
* limit once frequency change direction is decided, according
* to the separate rate limits.
*/
delta_ns = time - sg_policy->last_freq_update_time;
return delta_ns >= sg_policy->min_rate_limit_ns;
}
static bool sugov_up_down_rate_limit(struct sugov_policy *sg_policy, u64 time,
unsigned int next_freq)
{
s64 delta_ns;
delta_ns = time - sg_policy->last_freq_update_time;
if (next_freq > sg_policy->next_freq &&
delta_ns < sg_policy->up_rate_delay_ns)
return true;
if (next_freq < sg_policy->next_freq &&
delta_ns < sg_policy->down_rate_delay_ns)
return true;
return false;
}
static inline bool use_pelt(void)
{
#ifdef CONFIG_SCHED_WALT
return (!sysctl_sched_use_walt_cpu_util || walt_disabled);
#else
return true;
#endif
}
static inline bool conservative_pl(void)
{
#ifdef CONFIG_SCHED_WALT
return sysctl_sched_conservative_pl;
#else
return false;
#endif
}
static unsigned long freq_to_util(struct sugov_policy *sg_policy,
unsigned int freq)
{
return mult_frac(sg_policy->max, freq,
sg_policy->policy->cpuinfo.max_freq);
}
#define KHZ 1000
static void sugov_track_cycles(struct sugov_policy *sg_policy,
unsigned int prev_freq,
u64 upto)
{
u64 delta_ns, cycles;
u64 next_ws = sg_policy->last_ws + sched_ravg_window;
if (unlikely(!sysctl_sched_use_walt_cpu_util))
return;
upto = min(upto, next_ws);
/* Track cycles in current window */
delta_ns = upto - sg_policy->last_cyc_update_time;
delta_ns *= prev_freq;
do_div(delta_ns, (NSEC_PER_SEC / KHZ));
cycles = delta_ns;
sg_policy->curr_cycles += cycles;
sg_policy->last_cyc_update_time = upto;
}
static void sugov_calc_avg_cap(struct sugov_policy *sg_policy, u64 curr_ws,
unsigned int prev_freq)
{
u64 last_ws = sg_policy->last_ws;
unsigned int avg_freq;
if (unlikely(!sysctl_sched_use_walt_cpu_util))
return;
BUG_ON(curr_ws < last_ws);
if (curr_ws <= last_ws)
return;
/* If we skipped some windows */
if (curr_ws > (last_ws + sched_ravg_window)) {
avg_freq = prev_freq;
/* Reset tracking history */
sg_policy->last_cyc_update_time = curr_ws;
} else {
sugov_track_cycles(sg_policy, prev_freq, curr_ws);
avg_freq = sg_policy->curr_cycles;
avg_freq /= sched_ravg_window / (NSEC_PER_SEC / KHZ);
}
sg_policy->avg_cap = freq_to_util(sg_policy, avg_freq);
sg_policy->curr_cycles = 0;
sg_policy->last_ws = curr_ws;
}
static void sugov_update_commit(struct sugov_policy *sg_policy, u64 time,
unsigned int next_freq)
{
struct cpufreq_policy *policy = sg_policy->policy;
unsigned int cpu;
if (sg_policy->next_freq == next_freq)
return;
if (sugov_up_down_rate_limit(sg_policy, time, next_freq))
return;
sg_policy->next_freq = next_freq;
sg_policy->last_freq_update_time = time;
if (policy->fast_switch_enabled) {
sugov_track_cycles(sg_policy, sg_policy->policy->cur, time);
next_freq = cpufreq_driver_fast_switch(policy, next_freq);
if (!next_freq)
return;
policy->cur = next_freq;
for_each_cpu(cpu, policy->cpus) {
trace_cpu_frequency(next_freq, cpu);
}
} else {
if (use_pelt())
sg_policy->work_in_progress = true;
irq_work_queue(&sg_policy->irq_work);
}
}
#define TARGET_LOAD 80
/**
* get_next_freq - Compute a new frequency for a given cpufreq policy.
* @sg_policy: schedutil policy object to compute the new frequency for.
* @util: Current CPU utilization.
* @max: CPU capacity.
*
* If the utilization is frequency-invariant, choose the new frequency to be
* proportional to it, that is
*
* next_freq = C * max_freq * util / max
*
* Otherwise, approximate the would-be frequency-invariant utilization by
* util_raw * (curr_freq / max_freq) which leads to
*
* next_freq = C * curr_freq * util_raw / max
*
* Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
*
* The lowest driver-supported frequency which is equal or greater than the raw
* next_freq (as calculated above) is returned, subject to policy min/max and
* cpufreq driver limitations.
*/
static unsigned int get_next_freq(struct sugov_policy *sg_policy,
unsigned long util, unsigned long max)
{
struct cpufreq_policy *policy = sg_policy->policy;
unsigned int freq = arch_scale_freq_invariant() ?
policy->cpuinfo.max_freq : policy->cur;
freq = (freq + (freq >> 2)) * util / max;
trace_sugov_next_freq(policy->cpu, util, max, freq);
if (freq == sg_policy->cached_raw_freq && sg_policy->next_freq != UINT_MAX)
return sg_policy->next_freq;
sg_policy->cached_raw_freq = freq;
return cpufreq_driver_resolve_freq(policy, freq);
}
static void sugov_get_util(unsigned long *util, unsigned long *max, int cpu)
{
struct rq *rq = cpu_rq(cpu);
unsigned long cfs_max;
struct sugov_cpu *loadcpu = &per_cpu(sugov_cpu, cpu);
cfs_max = arch_scale_cpu_capacity(NULL, cpu);
*util = min(rq->cfs.avg.util_avg, cfs_max);
*max = cfs_max;
*util = boosted_cpu_util(cpu, &loadcpu->walt_load);
}
static void sugov_set_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
unsigned int flags)
{
if (flags & SCHED_CPUFREQ_IOWAIT) {
if (sg_cpu->iowait_boost_pending)
return;
sg_cpu->iowait_boost_pending = true;
if (sg_cpu->iowait_boost) {
sg_cpu->iowait_boost <<= 1;
if (sg_cpu->iowait_boost > sg_cpu->iowait_boost_max)
sg_cpu->iowait_boost = sg_cpu->iowait_boost_max;
} else {
sg_cpu->iowait_boost = sg_cpu->sg_policy->policy->min;
}
} else if (sg_cpu->iowait_boost) {
s64 delta_ns = time - sg_cpu->last_update;
/* Clear iowait_boost if the CPU apprears to have been idle. */
if (delta_ns > TICK_NSEC) {
sg_cpu->iowait_boost = 0;
sg_cpu->iowait_boost_pending = false;
}
}
}
static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, unsigned long *util,
unsigned long *max)
{
unsigned int boost_util, boost_max;
if (!sg_cpu->iowait_boost)
return;
if (sg_cpu->iowait_boost_pending) {
sg_cpu->iowait_boost_pending = false;
} else {
sg_cpu->iowait_boost >>= 1;
if (sg_cpu->iowait_boost < sg_cpu->sg_policy->policy->min) {
sg_cpu->iowait_boost = 0;
return;
}
}
boost_util = sg_cpu->iowait_boost;
boost_max = sg_cpu->iowait_boost_max;
if (*util * boost_max < *max * boost_util) {
*util = boost_util;
*max = boost_max;
}
}
#ifdef CONFIG_NO_HZ_COMMON
static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
{
unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
bool ret = idle_calls == sg_cpu->saved_idle_calls;
sg_cpu->saved_idle_calls = idle_calls;
return ret;
}
#else
static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
#endif /* CONFIG_NO_HZ_COMMON */
#define NL_RATIO 75
#define DEFAULT_HISPEED_LOAD 90
static void sugov_walt_adjust(struct sugov_cpu *sg_cpu, unsigned long *util,
unsigned long *max)
{
struct sugov_policy *sg_policy = sg_cpu->sg_policy;
bool is_migration = sg_cpu->flags & SCHED_CPUFREQ_INTERCLUSTER_MIG;
unsigned long nl = sg_cpu->walt_load.nl;
unsigned long cpu_util = sg_cpu->util;
bool is_hiload;
unsigned long pl = sg_cpu->walt_load.pl;
if (unlikely(!sysctl_sched_use_walt_cpu_util))
return;
is_hiload = (cpu_util >= mult_frac(sg_policy->avg_cap,
sg_policy->tunables->hispeed_load,
100));
if (is_hiload && !is_migration)
*util = max(*util, sg_policy->hispeed_util);
if (is_hiload && nl >= mult_frac(cpu_util, NL_RATIO, 100))
*util = *max;
if (sg_policy->tunables->pl) {
if (conservative_pl())
pl = mult_frac(pl, TARGET_LOAD, 100);
*util = max(*util, pl);
}
}
static void sugov_update_single(struct update_util_data *hook, u64 time,
unsigned int flags)
{
struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
struct sugov_policy *sg_policy = sg_cpu->sg_policy;
struct cpufreq_policy *policy = sg_policy->policy;
unsigned long util, max, hs_util;
unsigned int next_f;
bool busy;
if (!sg_policy->tunables->pl && flags & SCHED_CPUFREQ_PL)
return;
flags &= ~SCHED_CPUFREQ_RT_DL;
sugov_set_iowait_boost(sg_cpu, time, flags);
sg_cpu->last_update = time;
if (!sugov_should_update_freq(sg_policy, time))
return;
busy = use_pelt() && sugov_cpu_is_busy(sg_cpu);
raw_spin_lock(&sg_policy->update_lock);
if (flags & SCHED_CPUFREQ_RT_DL) {
next_f = policy->cpuinfo.max_freq;
} else {
sugov_get_util(&util, &max, sg_cpu->cpu);
if (sg_policy->max != max) {
sg_policy->max = max;
hs_util = freq_to_util(sg_policy,
sg_policy->tunables->hispeed_freq);
hs_util = mult_frac(hs_util, TARGET_LOAD, 100);
sg_policy->hispeed_util = hs_util;
}
sg_cpu->util = util;
sg_cpu->max = max;
sg_cpu->flags = flags;
sugov_calc_avg_cap(sg_policy, sg_cpu->walt_load.ws,
sg_policy->policy->cur);
trace_sugov_util_update(sg_cpu->cpu, sg_cpu->util,
sg_policy->avg_cap, max, sg_cpu->walt_load.nl,
sg_cpu->walt_load.pl, flags);
sugov_iowait_boost(sg_cpu, &util, &max);
sugov_walt_adjust(sg_cpu, &util, &max);
next_f = get_next_freq(sg_policy, util, max);
/*
* Do not reduce the frequency if the CPU has not been idle
* recently, as the reduction is likely to be premature then.
*/
if (busy && next_f < sg_policy->next_freq &&
sg_policy->next_freq != UINT_MAX) {
next_f = sg_policy->next_freq;
/* Reset cached freq as next_freq has changed */
sg_policy->cached_raw_freq = 0;
}
}
sugov_update_commit(sg_policy, time, next_f);
raw_spin_unlock(&sg_policy->update_lock);
}
static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
{
struct sugov_policy *sg_policy = sg_cpu->sg_policy;
struct cpufreq_policy *policy = sg_policy->policy;
u64 last_freq_update_time = sg_policy->last_freq_update_time;
unsigned long util = 0, max = 1;
unsigned int j;
for_each_cpu(j, policy->cpus) {
struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
unsigned long j_util, j_max;
s64 delta_ns;
/*
* If the CPU utilization was last updated before the previous
* frequency update and the time elapsed between the last update
* of the CPU utilization and the last frequency update is long
* enough, don't take the CPU into account as it probably is
* idle now (and clear iowait_boost for it).
*/
delta_ns = last_freq_update_time - j_sg_cpu->last_update;
if (delta_ns > stale_ns) {
j_sg_cpu->iowait_boost = 0;
j_sg_cpu->iowait_boost_pending = false;
continue;
}
if (j_sg_cpu->flags & SCHED_CPUFREQ_RT_DL)
return policy->cpuinfo.max_freq;
/*
* If the util value for all CPUs in a policy is 0, just using >
* will result in a max value of 1. WALT stats can later update
* the aggregated util value, causing get_next_freq() to compute
* freq = max_freq * 1.25 * (util / max) for nonzero util,
* leading to spurious jumps to fmax.
*/
j_util = j_sg_cpu->util;
j_max = j_sg_cpu->max;
if (j_util * max >= j_max * util) {
util = j_util;
max = j_max;
}
sugov_iowait_boost(j_sg_cpu, &util, &max);
sugov_walt_adjust(j_sg_cpu, &util, &max);
}
return get_next_freq(sg_policy, util, max);
}
static void sugov_update_shared(struct update_util_data *hook, u64 time,
unsigned int flags)
{
struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
struct sugov_policy *sg_policy = sg_cpu->sg_policy;
unsigned long util, max, hs_util;
unsigned int next_f;
if (!sg_policy->tunables->pl && flags & SCHED_CPUFREQ_PL)
return;
sugov_get_util(&util, &max, sg_cpu->cpu);
flags &= ~SCHED_CPUFREQ_RT_DL;
raw_spin_lock(&sg_policy->update_lock);
if (sg_policy->max != max) {
sg_policy->max = max;
hs_util = freq_to_util(sg_policy,
sg_policy->tunables->hispeed_freq);
hs_util = mult_frac(hs_util, TARGET_LOAD, 100);
sg_policy->hispeed_util = hs_util;
}
sg_cpu->util = util;
sg_cpu->max = max;
sg_cpu->flags = flags;
sugov_set_iowait_boost(sg_cpu, time, flags);
sg_cpu->last_update = time;
sugov_calc_avg_cap(sg_policy, sg_cpu->walt_load.ws,
sg_policy->policy->cur);
trace_sugov_util_update(sg_cpu->cpu, sg_cpu->util, sg_policy->avg_cap,
max, sg_cpu->walt_load.nl,
sg_cpu->walt_load.pl, flags);
if (sugov_should_update_freq(sg_policy, time) &&
!(flags & SCHED_CPUFREQ_CONTINUE)) {
if (flags & SCHED_CPUFREQ_RT_DL)
next_f = sg_policy->policy->cpuinfo.max_freq;
else
next_f = sugov_next_freq_shared(sg_cpu, time);
sugov_update_commit(sg_policy, time, next_f);
}
raw_spin_unlock(&sg_policy->update_lock);
}
static void sugov_work(struct kthread_work *work)
{
struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
unsigned long flags;
mutex_lock(&sg_policy->work_lock);
raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
sugov_track_cycles(sg_policy, sg_policy->policy->cur,
sched_ktime_clock());
raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
__cpufreq_driver_target(sg_policy->policy, sg_policy->next_freq,
CPUFREQ_RELATION_L);
mutex_unlock(&sg_policy->work_lock);
if (use_pelt())
sg_policy->work_in_progress = false;
}
static void sugov_irq_work(struct irq_work *irq_work)
{
struct sugov_policy *sg_policy;
sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
/*
* For RT and deadline tasks, the schedutil governor shoots the
* frequency to maximum. Special care must be taken to ensure that this
* kthread doesn't result in the same behavior.
*
* This is (mostly) guaranteed by the work_in_progress flag. The flag is
* updated only at the end of the sugov_work() function and before that
* the schedutil governor rejects all other frequency scaling requests.
*
* There is a very rare case though, where the RT thread yields right
* after the work_in_progress flag is cleared. The effects of that are
* neglected for now.
*/
kthread_queue_work(&sg_policy->worker, &sg_policy->work);
}
/************************** sysfs interface ************************/
static struct sugov_tunables *global_tunables;
static DEFINE_MUTEX(global_tunables_lock);
static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
{
return container_of(attr_set, struct sugov_tunables, attr_set);
}
static DEFINE_MUTEX(min_rate_lock);
static void update_min_rate_limit_ns(struct sugov_policy *sg_policy)
{
mutex_lock(&min_rate_lock);
sg_policy->min_rate_limit_ns = min(sg_policy->up_rate_delay_ns,
sg_policy->down_rate_delay_ns);
mutex_unlock(&min_rate_lock);
}
static ssize_t up_rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
{
struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
return sprintf(buf, "%u\n", tunables->up_rate_limit_us);
}
static ssize_t down_rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
{
struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
return sprintf(buf, "%u\n", tunables->down_rate_limit_us);
}
static ssize_t up_rate_limit_us_store(struct gov_attr_set *attr_set,
const char *buf, size_t count)
{
struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
struct sugov_policy *sg_policy;
unsigned int rate_limit_us;
if (kstrtouint(buf, 10, &rate_limit_us))
return -EINVAL;
tunables->up_rate_limit_us = rate_limit_us;
list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook) {
sg_policy->up_rate_delay_ns = rate_limit_us * NSEC_PER_USEC;
update_min_rate_limit_ns(sg_policy);
}
return count;
}
static ssize_t down_rate_limit_us_store(struct gov_attr_set *attr_set,
const char *buf, size_t count)
{
struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
struct sugov_policy *sg_policy;
unsigned int rate_limit_us;
if (kstrtouint(buf, 10, &rate_limit_us))
return -EINVAL;
tunables->down_rate_limit_us = rate_limit_us;
list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook) {
sg_policy->down_rate_delay_ns = rate_limit_us * NSEC_PER_USEC;
update_min_rate_limit_ns(sg_policy);
}
return count;
}
static ssize_t hispeed_load_show(struct gov_attr_set *attr_set, char *buf)
{
struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
return scnprintf(buf, PAGE_SIZE, "%u\n", tunables->hispeed_load);
}
static ssize_t hispeed_load_store(struct gov_attr_set *attr_set,
const char *buf, size_t count)
{
struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
if (kstrtouint(buf, 10, &tunables->hispeed_load))
return -EINVAL;
tunables->hispeed_load = min(100U, tunables->hispeed_load);
return count;
}
static ssize_t hispeed_freq_show(struct gov_attr_set *attr_set, char *buf)
{
struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
return scnprintf(buf, PAGE_SIZE, "%u\n", tunables->hispeed_freq);
}
static ssize_t hispeed_freq_store(struct gov_attr_set *attr_set,
const char *buf, size_t count)
{
struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
unsigned int val;
struct sugov_policy *sg_policy;
unsigned long hs_util;
unsigned long flags;
if (kstrtouint(buf, 10, &val))
return -EINVAL;
tunables->hispeed_freq = val;
list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook) {
raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
hs_util = freq_to_util(sg_policy,
sg_policy->tunables->hispeed_freq);
hs_util = mult_frac(hs_util, TARGET_LOAD, 100);
sg_policy->hispeed_util = hs_util;
raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
}
return count;
}
static ssize_t pl_show(struct gov_attr_set *attr_set, char *buf)
{
struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
return scnprintf(buf, PAGE_SIZE, "%u\n", tunables->pl);
}
static ssize_t pl_store(struct gov_attr_set *attr_set, const char *buf,
size_t count)
{
struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
if (kstrtobool(buf, &tunables->pl))
return -EINVAL;
return count;
}
static struct governor_attr up_rate_limit_us = __ATTR_RW(up_rate_limit_us);
static struct governor_attr down_rate_limit_us = __ATTR_RW(down_rate_limit_us);
static struct governor_attr hispeed_load = __ATTR_RW(hispeed_load);
static struct governor_attr hispeed_freq = __ATTR_RW(hispeed_freq);
static struct governor_attr pl = __ATTR_RW(pl);
static struct attribute *sugov_attributes[] = {
&up_rate_limit_us.attr,
&down_rate_limit_us.attr,
&hispeed_load.attr,
&hispeed_freq.attr,
&pl.attr,
NULL
};
static struct kobj_type sugov_tunables_ktype = {
.default_attrs = sugov_attributes,
.sysfs_ops = &governor_sysfs_ops,
};
/********************** cpufreq governor interface *********************/
static struct cpufreq_governor schedutil_gov;
static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy;
sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
if (!sg_policy)
return NULL;
sg_policy->policy = policy;
raw_spin_lock_init(&sg_policy->update_lock);
return sg_policy;
}
static void sugov_policy_free(struct sugov_policy *sg_policy)
{
kfree(sg_policy);
}
static int sugov_kthread_create(struct sugov_policy *sg_policy)
{
struct task_struct *thread;
struct sched_param param = { .sched_priority = MAX_USER_RT_PRIO / 2 };
struct cpufreq_policy *policy = sg_policy->policy;
int ret;
/* kthread only required for slow path */
if (policy->fast_switch_enabled)
return 0;
kthread_init_work(&sg_policy->work, sugov_work);
kthread_init_worker(&sg_policy->worker);
thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
"sugov:%d",
cpumask_first(policy->related_cpus));
if (IS_ERR(thread)) {
pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
return PTR_ERR(thread);
}
ret = sched_setscheduler_nocheck(thread, SCHED_FIFO, &param);
if (ret) {
kthread_stop(thread);
pr_warn("%s: failed to set SCHED_FIFO\n", __func__);
return ret;
}
sg_policy->thread = thread;
/* Kthread is bound to all CPUs by default */
if (!policy->dvfs_possible_from_any_cpu)
kthread_bind_mask(thread, policy->related_cpus);
init_irq_work(&sg_policy->irq_work, sugov_irq_work);
mutex_init(&sg_policy->work_lock);
wake_up_process(thread);
return 0;
}
static void sugov_kthread_stop(struct sugov_policy *sg_policy)
{
/* kthread only required for slow path */
if (sg_policy->policy->fast_switch_enabled)
return;
kthread_flush_worker(&sg_policy->worker);
kthread_stop(sg_policy->thread);
mutex_destroy(&sg_policy->work_lock);
}
static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
{
struct sugov_tunables *tunables;
tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
if (tunables) {
gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
if (!have_governor_per_policy())
global_tunables = tunables;
}
return tunables;
}
static void sugov_tunables_save(struct cpufreq_policy *policy,
struct sugov_tunables *tunables)
{
int cpu;
struct sugov_tunables *cached = per_cpu(cached_tunables, policy->cpu);
if (!have_governor_per_policy())
return;
if (!cached) {
cached = kzalloc(sizeof(*tunables), GFP_KERNEL);
if (!cached)
return;
for_each_cpu(cpu, policy->related_cpus)
per_cpu(cached_tunables, cpu) = cached;
}
cached->pl = tunables->pl;
cached->hispeed_load = tunables->hispeed_load;
cached->hispeed_freq = tunables->hispeed_freq;
cached->up_rate_limit_us = tunables->up_rate_limit_us;
cached->down_rate_limit_us = tunables->down_rate_limit_us;
}
static void sugov_tunables_free(struct sugov_tunables *tunables)
{
if (!have_governor_per_policy())
global_tunables = NULL;
kfree(tunables);
}
static void sugov_tunables_restore(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy = policy->governor_data;
struct sugov_tunables *tunables = sg_policy->tunables;
struct sugov_tunables *cached = per_cpu(cached_tunables, policy->cpu);
if (!cached)
return;
tunables->pl = cached->pl;
tunables->hispeed_load = cached->hispeed_load;
tunables->hispeed_freq = cached->hispeed_freq;
tunables->up_rate_limit_us = cached->up_rate_limit_us;
tunables->down_rate_limit_us = cached->down_rate_limit_us;
update_min_rate_limit_ns(sg_policy);
}
static int sugov_init(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy;
struct sugov_tunables *tunables;
int ret = 0;
/* State should be equivalent to EXIT */
if (policy->governor_data)
return -EBUSY;
cpufreq_enable_fast_switch(policy);
sg_policy = sugov_policy_alloc(policy);
if (!sg_policy) {
ret = -ENOMEM;
goto disable_fast_switch;
}
ret = sugov_kthread_create(sg_policy);
if (ret)
goto free_sg_policy;
mutex_lock(&global_tunables_lock);
if (global_tunables) {
if (WARN_ON(have_governor_per_policy())) {
ret = -EINVAL;
goto stop_kthread;
}
policy->governor_data = sg_policy;
sg_policy->tunables = global_tunables;
gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
goto out;
}
tunables = sugov_tunables_alloc(sg_policy);
if (!tunables) {
ret = -ENOMEM;
goto stop_kthread;
}
tunables->up_rate_limit_us =
cpufreq_policy_transition_delay_us(policy);
tunables->down_rate_limit_us =
cpufreq_policy_transition_delay_us(policy);
tunables->hispeed_load = DEFAULT_HISPEED_LOAD;
tunables->hispeed_freq = 0;
policy->governor_data = sg_policy;
sg_policy->tunables = tunables;
stale_ns = sched_ravg_window + (sched_ravg_window >> 3);
sugov_tunables_restore(policy);
ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
get_governor_parent_kobj(policy), "%s",
schedutil_gov.name);
if (ret)
goto fail;
out:
mutex_unlock(&global_tunables_lock);
return 0;
fail:
kobject_put(&tunables->attr_set.kobj);
policy->governor_data = NULL;
sugov_tunables_free(tunables);
stop_kthread:
sugov_kthread_stop(sg_policy);
mutex_unlock(&global_tunables_lock);
free_sg_policy:
sugov_policy_free(sg_policy);
disable_fast_switch:
cpufreq_disable_fast_switch(policy);
pr_err("initialization failed (error %d)\n", ret);
return ret;
}
static void sugov_exit(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy = policy->governor_data;
struct sugov_tunables *tunables = sg_policy->tunables;
unsigned int count;
mutex_lock(&global_tunables_lock);
count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
policy->governor_data = NULL;
if (!count) {
sugov_tunables_save(policy, tunables);
sugov_tunables_free(tunables);
}
mutex_unlock(&global_tunables_lock);
sugov_kthread_stop(sg_policy);
sugov_policy_free(sg_policy);
cpufreq_disable_fast_switch(policy);
}
static int sugov_start(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy = policy->governor_data;
unsigned int cpu;
sg_policy->up_rate_delay_ns =
sg_policy->tunables->up_rate_limit_us * NSEC_PER_USEC;
sg_policy->down_rate_delay_ns =
sg_policy->tunables->down_rate_limit_us * NSEC_PER_USEC;
sg_policy->last_freq_update_time = 0;
sg_policy->next_freq = UINT_MAX;
sg_policy->work_in_progress = false;
sg_policy->need_freq_update = false;
sg_policy->cached_raw_freq = 0;
for_each_cpu(cpu, policy->cpus) {
struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
memset(sg_cpu, 0, sizeof(*sg_cpu));
sg_cpu->cpu = cpu;
sg_cpu->sg_policy = sg_policy;
sg_cpu->flags = SCHED_CPUFREQ_RT;
sg_cpu->iowait_boost_max = policy->cpuinfo.max_freq;
}
for_each_cpu(cpu, policy->cpus) {
struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
policy_is_shared(policy) ?
sugov_update_shared :
sugov_update_single);
}
return 0;
}
static void sugov_stop(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy = policy->governor_data;
unsigned int cpu;
for_each_cpu(cpu, policy->cpus)
cpufreq_remove_update_util_hook(cpu);
synchronize_sched();
if (!policy->fast_switch_enabled) {
irq_work_sync(&sg_policy->irq_work);
kthread_cancel_work_sync(&sg_policy->work);
}
}
static void sugov_limits(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy = policy->governor_data;
unsigned long flags;
unsigned int ret;
int cpu;
if (!policy->fast_switch_enabled) {
mutex_lock(&sg_policy->work_lock);
raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
sugov_track_cycles(sg_policy, sg_policy->policy->cur,
sched_ktime_clock());
raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
cpufreq_policy_apply_limits(policy);
mutex_unlock(&sg_policy->work_lock);
} else {
raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
sugov_track_cycles(sg_policy, sg_policy->policy->cur,
ktime_get_ns());
ret = cpufreq_policy_apply_limits_fast(policy);
if (ret && policy->cur != ret) {
policy->cur = ret;
for_each_cpu(cpu, policy->cpus)
trace_cpu_frequency(ret, cpu);
}
raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
}
sg_policy->need_freq_update = true;
}
static struct cpufreq_governor schedutil_gov = {
.name = "schedutil",
.owner = THIS_MODULE,
.dynamic_switching = true,
.init = sugov_init,
.exit = sugov_exit,
.start = sugov_start,
.stop = sugov_stop,
.limits = sugov_limits,
};
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
struct cpufreq_governor *cpufreq_default_governor(void)
{
return &schedutil_gov;
}
#endif
static int __init sugov_register(void)
{
return cpufreq_register_governor(&schedutil_gov);
}
fs_initcall(sugov_register);