You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/arch/ia64/sn/kernel/sn2/sn_hwperf.c

1006 lines
23 KiB

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2004-2006 Silicon Graphics, Inc. All rights reserved.
*
* SGI Altix topology and hardware performance monitoring API.
* Mark Goodwin <markgw@sgi.com>.
*
* Creates /proc/sgi_sn/sn_topology (read-only) to export
* info about Altix nodes, routers, CPUs and NumaLink
* interconnection/topology.
*
* Also creates a dynamic misc device named "sn_hwperf"
* that supports an ioctl interface to call down into SAL
* to discover hw objects, topology and to read/write
* memory mapped registers, e.g. for performance monitoring.
* The "sn_hwperf" device is registered only after the procfs
* file is first opened, i.e. only if/when it's needed.
*
* This API is used by SGI Performance Co-Pilot and other
* tools, see http://oss.sgi.com/projects/pcp
*/
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/seq_file.h>
#include <linux/miscdevice.h>
#include <linux/utsname.h>
#include <linux/cpumask.h>
#include <linux/smp_lock.h>
#include <linux/nodemask.h>
#include <linux/smp.h>
#include <linux/mutex.h>
#include <asm/processor.h>
#include <asm/topology.h>
#include <asm/uaccess.h>
#include <asm/sal.h>
#include <asm/sn/io.h>
#include <asm/sn/sn_sal.h>
#include <asm/sn/module.h>
#include <asm/sn/geo.h>
#include <asm/sn/sn2/sn_hwperf.h>
#include <asm/sn/addrs.h>
static void *sn_hwperf_salheap = NULL;
static int sn_hwperf_obj_cnt = 0;
static nasid_t sn_hwperf_master_nasid = INVALID_NASID;
static int sn_hwperf_init(void);
static DEFINE_MUTEX(sn_hwperf_init_mutex);
#define cnode_possible(n) ((n) < num_cnodes)
static int sn_hwperf_enum_objects(int *nobj, struct sn_hwperf_object_info **ret)
{
int e;
u64 sz;
struct sn_hwperf_object_info *objbuf = NULL;
if ((e = sn_hwperf_init()) < 0) {
printk(KERN_ERR "sn_hwperf_init failed: err %d\n", e);
goto out;
}
sz = sn_hwperf_obj_cnt * sizeof(struct sn_hwperf_object_info);
objbuf = vmalloc(sz);
if (objbuf == NULL) {
printk("sn_hwperf_enum_objects: vmalloc(%d) failed\n", (int)sz);
e = -ENOMEM;
goto out;
}
e = ia64_sn_hwperf_op(sn_hwperf_master_nasid, SN_HWPERF_ENUM_OBJECTS,
0, sz, (u64) objbuf, 0, 0, NULL);
if (e != SN_HWPERF_OP_OK) {
e = -EINVAL;
vfree(objbuf);
}
out:
*nobj = sn_hwperf_obj_cnt;
*ret = objbuf;
return e;
}
static int sn_hwperf_location_to_bpos(char *location,
int *rack, int *bay, int *slot, int *slab)
{
char type;
/* first scan for an old style geoid string */
if (sscanf(location, "%03d%c%02d#%d",
rack, &type, bay, slab) == 4)
*slot = 0;
else /* scan for a new bladed geoid string */
if (sscanf(location, "%03d%c%02d^%02d#%d",
rack, &type, bay, slot, slab) != 5)
return -1;
/* success */
return 0;
}
static int sn_hwperf_geoid_to_cnode(char *location)
{
int cnode;
geoid_t geoid;
moduleid_t module_id;
int rack, bay, slot, slab;
int this_rack, this_bay, this_slot, this_slab;
if (sn_hwperf_location_to_bpos(location, &rack, &bay, &slot, &slab))
return -1;
/*
* FIXME: replace with cleaner for_each_XXX macro which addresses
* both compute and IO nodes once ACPI3.0 is available.
*/
for (cnode = 0; cnode < num_cnodes; cnode++) {
geoid = cnodeid_get_geoid(cnode);
module_id = geo_module(geoid);
this_rack = MODULE_GET_RACK(module_id);
this_bay = MODULE_GET_BPOS(module_id);
this_slot = geo_slot(geoid);
this_slab = geo_slab(geoid);
if (rack == this_rack && bay == this_bay &&
slot == this_slot && slab == this_slab) {
break;
}
}
return cnode_possible(cnode) ? cnode : -1;
}
static int sn_hwperf_obj_to_cnode(struct sn_hwperf_object_info * obj)
{
if (!SN_HWPERF_IS_NODE(obj) && !SN_HWPERF_IS_IONODE(obj))
BUG();
if (SN_HWPERF_FOREIGN(obj))
return -1;
return sn_hwperf_geoid_to_cnode(obj->location);
}
static int sn_hwperf_generic_ordinal(struct sn_hwperf_object_info *obj,
struct sn_hwperf_object_info *objs)
{
int ordinal;
struct sn_hwperf_object_info *p;
for (ordinal=0, p=objs; p != obj; p++) {
if (SN_HWPERF_FOREIGN(p))
continue;
if (SN_HWPERF_SAME_OBJTYPE(p, obj))
ordinal++;
}
return ordinal;
}
static const char *slabname_node = "node"; /* SHub asic */
static const char *slabname_ionode = "ionode"; /* TIO asic */
static const char *slabname_router = "router"; /* NL3R or NL4R */
static const char *slabname_other = "other"; /* unknown asic */
static const char *sn_hwperf_get_slabname(struct sn_hwperf_object_info *obj,
struct sn_hwperf_object_info *objs, int *ordinal)
{
int isnode;
const char *slabname = slabname_other;
if ((isnode = SN_HWPERF_IS_NODE(obj)) || SN_HWPERF_IS_IONODE(obj)) {
slabname = isnode ? slabname_node : slabname_ionode;
*ordinal = sn_hwperf_obj_to_cnode(obj);
}
else {
*ordinal = sn_hwperf_generic_ordinal(obj, objs);
if (SN_HWPERF_IS_ROUTER(obj))
slabname = slabname_router;
}
return slabname;
}
static void print_pci_topology(struct seq_file *s)
{
char *p;
size_t sz;
int e;
for (sz = PAGE_SIZE; sz < 16 * PAGE_SIZE; sz += PAGE_SIZE) {
if (!(p = kmalloc(sz, GFP_KERNEL)))
break;
e = ia64_sn_ioif_get_pci_topology(__pa(p), sz);
if (e == SALRET_OK)
seq_puts(s, p);
kfree(p);
if (e == SALRET_OK || e == SALRET_NOT_IMPLEMENTED)
break;
}
}
static inline int sn_hwperf_has_cpus(cnodeid_t node)
{
return node < MAX_NUMNODES && node_online(node) && nr_cpus_node(node);
}
static inline int sn_hwperf_has_mem(cnodeid_t node)
{
return node < MAX_NUMNODES && node_online(node) && NODE_DATA(node)->node_present_pages;
}
static struct sn_hwperf_object_info *
sn_hwperf_findobj_id(struct sn_hwperf_object_info *objbuf,
int nobj, int id)
{
int i;
struct sn_hwperf_object_info *p = objbuf;
for (i=0; i < nobj; i++, p++) {
if (p->id == id)
return p;
}
return NULL;
}
static int sn_hwperf_get_nearest_node_objdata(struct sn_hwperf_object_info *objbuf,
int nobj, cnodeid_t node, cnodeid_t *near_mem_node, cnodeid_t *near_cpu_node)
{
int e;
struct sn_hwperf_object_info *nodeobj = NULL;
struct sn_hwperf_object_info *op;
struct sn_hwperf_object_info *dest;
struct sn_hwperf_object_info *router;
struct sn_hwperf_port_info ptdata[16];
int sz, i, j;
cnodeid_t c;
int found_mem = 0;
int found_cpu = 0;
if (!cnode_possible(node))
return -EINVAL;
if (sn_hwperf_has_cpus(node)) {
if (near_cpu_node)
*near_cpu_node = node;
found_cpu++;
}
if (sn_hwperf_has_mem(node)) {
if (near_mem_node)
*near_mem_node = node;
found_mem++;
}
if (found_cpu && found_mem)
return 0; /* trivially successful */
/* find the argument node object */
for (i=0, op=objbuf; i < nobj; i++, op++) {
if (!SN_HWPERF_IS_NODE(op) && !SN_HWPERF_IS_IONODE(op))
continue;
if (node == sn_hwperf_obj_to_cnode(op)) {
nodeobj = op;
break;
}
}
if (!nodeobj) {
e = -ENOENT;
goto err;
}
/* get it's interconnect topology */
sz = op->ports * sizeof(struct sn_hwperf_port_info);
if (sz > sizeof(ptdata))
BUG();
e = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
SN_HWPERF_ENUM_PORTS, nodeobj->id, sz,
(u64)&ptdata, 0, 0, NULL);
if (e != SN_HWPERF_OP_OK) {
e = -EINVAL;
goto err;
}
/* find nearest node with cpus and nearest memory */
for (router=NULL, j=0; j < op->ports; j++) {
dest = sn_hwperf_findobj_id(objbuf, nobj, ptdata[j].conn_id);
if (dest && SN_HWPERF_IS_ROUTER(dest))
router = dest;
if (!dest || SN_HWPERF_FOREIGN(dest) ||
!SN_HWPERF_IS_NODE(dest) || SN_HWPERF_IS_IONODE(dest)) {
continue;
}
c = sn_hwperf_obj_to_cnode(dest);
if (!found_cpu && sn_hwperf_has_cpus(c)) {
if (near_cpu_node)
*near_cpu_node = c;
found_cpu++;
}
if (!found_mem && sn_hwperf_has_mem(c)) {
if (near_mem_node)
*near_mem_node = c;
found_mem++;
}
}
if (router && (!found_cpu || !found_mem)) {
/* search for a node connected to the same router */
sz = router->ports * sizeof(struct sn_hwperf_port_info);
if (sz > sizeof(ptdata))
BUG();
e = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
SN_HWPERF_ENUM_PORTS, router->id, sz,
(u64)&ptdata, 0, 0, NULL);
if (e != SN_HWPERF_OP_OK) {
e = -EINVAL;
goto err;
}
for (j=0; j < router->ports; j++) {
dest = sn_hwperf_findobj_id(objbuf, nobj,
ptdata[j].conn_id);
if (!dest || dest->id == node ||
SN_HWPERF_FOREIGN(dest) ||
!SN_HWPERF_IS_NODE(dest) ||
SN_HWPERF_IS_IONODE(dest)) {
continue;
}
c = sn_hwperf_obj_to_cnode(dest);
if (!found_cpu && sn_hwperf_has_cpus(c)) {
if (near_cpu_node)
*near_cpu_node = c;
found_cpu++;
}
if (!found_mem && sn_hwperf_has_mem(c)) {
if (near_mem_node)
*near_mem_node = c;
found_mem++;
}
if (found_cpu && found_mem)
break;
}
}
if (!found_cpu || !found_mem) {
/* resort to _any_ node with CPUs and memory */
for (i=0, op=objbuf; i < nobj; i++, op++) {
if (SN_HWPERF_FOREIGN(op) ||
SN_HWPERF_IS_IONODE(op) ||
!SN_HWPERF_IS_NODE(op)) {
continue;
}
c = sn_hwperf_obj_to_cnode(op);
if (!found_cpu && sn_hwperf_has_cpus(c)) {
if (near_cpu_node)
*near_cpu_node = c;
found_cpu++;
}
if (!found_mem && sn_hwperf_has_mem(c)) {
if (near_mem_node)
*near_mem_node = c;
found_mem++;
}
if (found_cpu && found_mem)
break;
}
}
if (!found_cpu || !found_mem)
e = -ENODATA;
err:
return e;
}
static int sn_topology_show(struct seq_file *s, void *d)
{
int sz;
int pt;
int e = 0;
int i;
int j;
const char *slabname;
int ordinal;
cpumask_t cpumask;
char slice;
struct cpuinfo_ia64 *c;
struct sn_hwperf_port_info *ptdata;
struct sn_hwperf_object_info *p;
struct sn_hwperf_object_info *obj = d; /* this object */
struct sn_hwperf_object_info *objs = s->private; /* all objects */
u8 shubtype;
u8 system_size;
u8 sharing_size;
u8 partid;
u8 coher;
u8 nasid_shift;
u8 region_size;
u16 nasid_mask;
int nasid_msb;
if (obj == objs) {
seq_printf(s, "# sn_topology version 2\n");
seq_printf(s, "# objtype ordinal location partition"
" [attribute value [, ...]]\n");
if (ia64_sn_get_sn_info(0,
&shubtype, &nasid_mask, &nasid_shift, &system_size,
&sharing_size, &partid, &coher, &region_size))
BUG();
for (nasid_msb=63; nasid_msb > 0; nasid_msb--) {
if (((u64)nasid_mask << nasid_shift) & (1ULL << nasid_msb))
break;
}
seq_printf(s, "partition %u %s local "
"shubtype %s, "
"nasid_mask 0x%016lx, "
"nasid_bits %d:%d, "
"system_size %d, "
"sharing_size %d, "
"coherency_domain %d, "
"region_size %d\n",
partid, utsname()->nodename,
shubtype ? "shub2" : "shub1",
(u64)nasid_mask << nasid_shift, nasid_msb, nasid_shift,
system_size, sharing_size, coher, region_size);
print_pci_topology(s);
}
if (SN_HWPERF_FOREIGN(obj)) {
/* private in another partition: not interesting */
return 0;
}
for (i = 0; i < SN_HWPERF_MAXSTRING && obj->name[i]; i++) {
if (obj->name[i] == ' ')
obj->name[i] = '_';
}
slabname = sn_hwperf_get_slabname(obj, objs, &ordinal);
seq_printf(s, "%s %d %s %s asic %s", slabname, ordinal, obj->location,
obj->sn_hwp_this_part ? "local" : "shared", obj->name);
if (ordinal < 0 || (!SN_HWPERF_IS_NODE(obj) && !SN_HWPERF_IS_IONODE(obj)))
seq_putc(s, '\n');
else {
cnodeid_t near_mem = -1;
cnodeid_t near_cpu = -1;
seq_printf(s, ", nasid 0x%x", cnodeid_to_nasid(ordinal));
if (sn_hwperf_get_nearest_node_objdata(objs, sn_hwperf_obj_cnt,
ordinal, &near_mem, &near_cpu) == 0) {
seq_printf(s, ", near_mem_nodeid %d, near_cpu_nodeid %d",
near_mem, near_cpu);
}
if (!SN_HWPERF_IS_IONODE(obj)) {
for_each_online_node(i) {
seq_printf(s, i ? ":%d" : ", dist %d",
node_distance(ordinal, i));
}
}
seq_putc(s, '\n');
/*
* CPUs on this node, if any
*/
if (!SN_HWPERF_IS_IONODE(obj)) {
cpumask = node_to_cpumask(ordinal);
for_each_online_cpu(i) {
if (cpu_isset(i, cpumask)) {
slice = 'a' + cpuid_to_slice(i);
c = cpu_data(i);
seq_printf(s, "cpu %d %s%c local"
" freq %luMHz, arch ia64",
i, obj->location, slice,
c->proc_freq / 1000000);
for_each_online_cpu(j) {
seq_printf(s, j ? ":%d" : ", dist %d",
node_distance(
cpu_to_node(i),
cpu_to_node(j)));
}
seq_putc(s, '\n');
}
}
}
}
if (obj->ports) {
/*
* numalink ports
*/
sz = obj->ports * sizeof(struct sn_hwperf_port_info);
if ((ptdata = kmalloc(sz, GFP_KERNEL)) == NULL)
return -ENOMEM;
e = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
SN_HWPERF_ENUM_PORTS, obj->id, sz,
(u64) ptdata, 0, 0, NULL);
if (e != SN_HWPERF_OP_OK)
return -EINVAL;
for (ordinal=0, p=objs; p != obj; p++) {
if (!SN_HWPERF_FOREIGN(p))
ordinal += p->ports;
}
for (pt = 0; pt < obj->ports; pt++) {
for (p = objs, i = 0; i < sn_hwperf_obj_cnt; i++, p++) {
if (ptdata[pt].conn_id == p->id) {
break;
}
}
seq_printf(s, "numalink %d %s-%d",
ordinal+pt, obj->location, ptdata[pt].port);
if (i >= sn_hwperf_obj_cnt) {
/* no connection */
seq_puts(s, " local endpoint disconnected"
", protocol unknown\n");
continue;
}
if (obj->sn_hwp_this_part && p->sn_hwp_this_part)
/* both ends local to this partition */
seq_puts(s, " local");
else if (SN_HWPERF_FOREIGN(p))
/* both ends of the link in foreign partiton */
seq_puts(s, " foreign");
else
/* link straddles a partition */
seq_puts(s, " shared");
/*
* Unlikely, but strictly should query the LLP config
* registers because an NL4R can be configured to run
* NL3 protocol, even when not talking to an NL3 router.
* Ditto for node-node.
*/
seq_printf(s, " endpoint %s-%d, protocol %s\n",
p->location, ptdata[pt].conn_port,
(SN_HWPERF_IS_NL3ROUTER(obj) ||
SN_HWPERF_IS_NL3ROUTER(p)) ? "LLP3" : "LLP4");
}
kfree(ptdata);
}
return 0;
}
static void *sn_topology_start(struct seq_file *s, loff_t * pos)
{
struct sn_hwperf_object_info *objs = s->private;
if (*pos < sn_hwperf_obj_cnt)
return (void *)(objs + *pos);
return NULL;
}
static void *sn_topology_next(struct seq_file *s, void *v, loff_t * pos)
{
++*pos;
return sn_topology_start(s, pos);
}
static void sn_topology_stop(struct seq_file *m, void *v)
{
return;
}
/*
* /proc/sgi_sn/sn_topology, read-only using seq_file
*/
static const struct seq_operations sn_topology_seq_ops = {
.start = sn_topology_start,
.next = sn_topology_next,
.stop = sn_topology_stop,
.show = sn_topology_show
};
struct sn_hwperf_op_info {
u64 op;
struct sn_hwperf_ioctl_args *a;
void *p;
int *v0;
int ret;
};
static void sn_hwperf_call_sal(void *info)
{
struct sn_hwperf_op_info *op_info = info;
int r;
r = ia64_sn_hwperf_op(sn_hwperf_master_nasid, op_info->op,
op_info->a->arg, op_info->a->sz,
(u64) op_info->p, 0, 0, op_info->v0);
op_info->ret = r;
}
static int sn_hwperf_op_cpu(struct sn_hwperf_op_info *op_info)
{
u32 cpu;
u32 use_ipi;
int r = 0;
cpumask_t save_allowed;
cpu = (op_info->a->arg & SN_HWPERF_ARG_CPU_MASK) >> 32;
use_ipi = op_info->a->arg & SN_HWPERF_ARG_USE_IPI_MASK;
op_info->a->arg &= SN_HWPERF_ARG_OBJID_MASK;
if (cpu != SN_HWPERF_ARG_ANY_CPU) {
if (cpu >= NR_CPUS || !cpu_online(cpu)) {
r = -EINVAL;
goto out;
}
}
if (cpu == SN_HWPERF_ARG_ANY_CPU || cpu == get_cpu()) {
/* don't care, or already on correct cpu */
sn_hwperf_call_sal(op_info);
}
else {
if (use_ipi) {
/* use an interprocessor interrupt to call SAL */
smp_call_function_single(cpu, sn_hwperf_call_sal,
op_info, 1);
}
else {
/* migrate the task before calling SAL */
save_allowed = current->cpus_allowed;
set_cpus_allowed(current, cpumask_of_cpu(cpu));
sn_hwperf_call_sal(op_info);
set_cpus_allowed(current, save_allowed);
}
}
r = op_info->ret;
out:
return r;
}
/* map SAL hwperf error code to system error code */
static int sn_hwperf_map_err(int hwperf_err)
{
int e;
switch(hwperf_err) {
case SN_HWPERF_OP_OK:
e = 0;
break;
case SN_HWPERF_OP_NOMEM:
e = -ENOMEM;
break;
case SN_HWPERF_OP_NO_PERM:
e = -EPERM;
break;
case SN_HWPERF_OP_IO_ERROR:
e = -EIO;
break;
case SN_HWPERF_OP_BUSY:
e = -EBUSY;
break;
case SN_HWPERF_OP_RECONFIGURE:
e = -EAGAIN;
break;
case SN_HWPERF_OP_INVAL:
default:
e = -EINVAL;
break;
}
return e;
}
/*
* ioctl for "sn_hwperf" misc device
*/
static int
sn_hwperf_ioctl(struct inode *in, struct file *fp, u32 op, u64 arg)
{
struct sn_hwperf_ioctl_args a;
struct cpuinfo_ia64 *cdata;
struct sn_hwperf_object_info *objs;
struct sn_hwperf_object_info *cpuobj;
struct sn_hwperf_op_info op_info;
void *p = NULL;
int nobj;
char slice;
int node;
int r;
int v0;
int i;
int j;
unlock_kernel();
/* only user requests are allowed here */
if ((op & SN_HWPERF_OP_MASK) < 10) {
r = -EINVAL;
goto error;
}
r = copy_from_user(&a, (const void __user *)arg,
sizeof(struct sn_hwperf_ioctl_args));
if (r != 0) {
r = -EFAULT;
goto error;
}
/*
* Allocate memory to hold a kernel copy of the user buffer. The
* buffer contents are either copied in or out (or both) of user
* space depending on the flags encoded in the requested operation.
*/
if (a.ptr) {
p = vmalloc(a.sz);
if (!p) {
r = -ENOMEM;
goto error;
}
}
if (op & SN_HWPERF_OP_MEM_COPYIN) {
r = copy_from_user(p, (const void __user *)a.ptr, a.sz);
if (r != 0) {
r = -EFAULT;
goto error;
}
}
switch (op) {
case SN_HWPERF_GET_CPU_INFO:
if (a.sz == sizeof(u64)) {
/* special case to get size needed */
*(u64 *) p = (u64) num_online_cpus() *
sizeof(struct sn_hwperf_object_info);
} else
if (a.sz < num_online_cpus() * sizeof(struct sn_hwperf_object_info)) {
r = -ENOMEM;
goto error;
} else
if ((r = sn_hwperf_enum_objects(&nobj, &objs)) == 0) {
int cpuobj_index = 0;
memset(p, 0, a.sz);
for (i = 0; i < nobj; i++) {
if (!SN_HWPERF_IS_NODE(objs + i))
continue;
node = sn_hwperf_obj_to_cnode(objs + i);
for_each_online_cpu(j) {
if (node != cpu_to_node(j))
continue;
cpuobj = (struct sn_hwperf_object_info *) p + cpuobj_index++;
slice = 'a' + cpuid_to_slice(j);
cdata = cpu_data(j);
cpuobj->id = j;
snprintf(cpuobj->name,
sizeof(cpuobj->name),
"CPU %luMHz %s",
cdata->proc_freq / 1000000,
cdata->vendor);
snprintf(cpuobj->location,
sizeof(cpuobj->location),
"%s%c", objs[i].location,
slice);
}
}
vfree(objs);
}
break;
case SN_HWPERF_GET_NODE_NASID:
if (a.sz != sizeof(u64) ||
(node = a.arg) < 0 || !cnode_possible(node)) {
r = -EINVAL;
goto error;
}
*(u64 *)p = (u64)cnodeid_to_nasid(node);
break;
case SN_HWPERF_GET_OBJ_NODE:
if (a.sz != sizeof(u64) || a.arg < 0) {
r = -EINVAL;
goto error;
}
if ((r = sn_hwperf_enum_objects(&nobj, &objs)) == 0) {
if (a.arg >= nobj) {
r = -EINVAL;
vfree(objs);
goto error;
}
if (objs[(i = a.arg)].id != a.arg) {
for (i = 0; i < nobj; i++) {
if (objs[i].id == a.arg)
break;
}
}
if (i == nobj) {
r = -EINVAL;
vfree(objs);
goto error;
}
if (!SN_HWPERF_IS_NODE(objs + i) &&
!SN_HWPERF_IS_IONODE(objs + i)) {
r = -ENOENT;
vfree(objs);
goto error;
}
*(u64 *)p = (u64)sn_hwperf_obj_to_cnode(objs + i);
vfree(objs);
}
break;
case SN_HWPERF_GET_MMRS:
case SN_HWPERF_SET_MMRS:
case SN_HWPERF_OBJECT_DISTANCE:
op_info.p = p;
op_info.a = &a;
op_info.v0 = &v0;
op_info.op = op;
r = sn_hwperf_op_cpu(&op_info);
if (r) {
r = sn_hwperf_map_err(r);
a.v0 = v0;
goto error;
}
break;
default:
/* all other ops are a direct SAL call */
r = ia64_sn_hwperf_op(sn_hwperf_master_nasid, op,
a.arg, a.sz, (u64) p, 0, 0, &v0);
if (r) {
r = sn_hwperf_map_err(r);
goto error;
}
a.v0 = v0;
break;
}
if (op & SN_HWPERF_OP_MEM_COPYOUT) {
r = copy_to_user((void __user *)a.ptr, p, a.sz);
if (r != 0) {
r = -EFAULT;
goto error;
}
}
error:
vfree(p);
lock_kernel();
return r;
}
static const struct file_operations sn_hwperf_fops = {
.ioctl = sn_hwperf_ioctl,
};
static struct miscdevice sn_hwperf_dev = {
MISC_DYNAMIC_MINOR,
"sn_hwperf",
&sn_hwperf_fops
};
static int sn_hwperf_init(void)
{
u64 v;
int salr;
int e = 0;
/* single threaded, once-only initialization */
mutex_lock(&sn_hwperf_init_mutex);
if (sn_hwperf_salheap) {
mutex_unlock(&sn_hwperf_init_mutex);
return e;
}
/*
* The PROM code needs a fixed reference node. For convenience the
* same node as the console I/O is used.
*/
sn_hwperf_master_nasid = (nasid_t) ia64_sn_get_console_nasid();
/*
* Request the needed size and install the PROM scratch area.
* The PROM keeps various tracking bits in this memory area.
*/
salr = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
(u64) SN_HWPERF_GET_HEAPSIZE, 0,
(u64) sizeof(u64), (u64) &v, 0, 0, NULL);
if (salr != SN_HWPERF_OP_OK) {
e = -EINVAL;
goto out;
}
if ((sn_hwperf_salheap = vmalloc(v)) == NULL) {
e = -ENOMEM;
goto out;
}
salr = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
SN_HWPERF_INSTALL_HEAP, 0, v,
(u64) sn_hwperf_salheap, 0, 0, NULL);
if (salr != SN_HWPERF_OP_OK) {
e = -EINVAL;
goto out;
}
salr = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
SN_HWPERF_OBJECT_COUNT, 0,
sizeof(u64), (u64) &v, 0, 0, NULL);
if (salr != SN_HWPERF_OP_OK) {
e = -EINVAL;
goto out;
}
sn_hwperf_obj_cnt = (int)v;
out:
if (e < 0 && sn_hwperf_salheap) {
vfree(sn_hwperf_salheap);
sn_hwperf_salheap = NULL;
sn_hwperf_obj_cnt = 0;
}
mutex_unlock(&sn_hwperf_init_mutex);
return e;
}
int sn_topology_open(struct inode *inode, struct file *file)
{
int e;
struct seq_file *seq;
struct sn_hwperf_object_info *objbuf;
int nobj;
if ((e = sn_hwperf_enum_objects(&nobj, &objbuf)) == 0) {
e = seq_open(file, &sn_topology_seq_ops);
seq = file->private_data;
seq->private = objbuf;
}
return e;
}
int sn_topology_release(struct inode *inode, struct file *file)
{
struct seq_file *seq = file->private_data;
vfree(seq->private);
return seq_release(inode, file);
}
int sn_hwperf_get_nearest_node(cnodeid_t node,
cnodeid_t *near_mem_node, cnodeid_t *near_cpu_node)
{
int e;
int nobj;
struct sn_hwperf_object_info *objbuf;
if ((e = sn_hwperf_enum_objects(&nobj, &objbuf)) == 0) {
e = sn_hwperf_get_nearest_node_objdata(objbuf, nobj,
node, near_mem_node, near_cpu_node);
vfree(objbuf);
}
return e;
}
static int __devinit sn_hwperf_misc_register_init(void)
{
int e;
if (!ia64_platform_is("sn2"))
return 0;
sn_hwperf_init();
/*
* Register a dynamic misc device for hwperf ioctls. Platforms
* supporting hotplug will create /dev/sn_hwperf, else user
* can to look up the minor number in /proc/misc.
*/
if ((e = misc_register(&sn_hwperf_dev)) != 0) {
printk(KERN_ERR "sn_hwperf_misc_register_init: failed to "
"register misc device for \"%s\"\n", sn_hwperf_dev.name);
}
return e;
}
device_initcall(sn_hwperf_misc_register_init); /* after misc_init() */
EXPORT_SYMBOL(sn_hwperf_get_nearest_node);