You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/drivers/s390/crypto/ap_bus.c

1297 lines
32 KiB

/*
* Copyright IBM Corp. 2006, 2012
* Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
* Martin Schwidefsky <schwidefsky@de.ibm.com>
* Ralph Wuerthner <rwuerthn@de.ibm.com>
* Felix Beck <felix.beck@de.ibm.com>
* Holger Dengler <hd@linux.vnet.ibm.com>
*
* Adjunct processor bus.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#define KMSG_COMPONENT "ap"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/kernel_stat.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
#include <asm/reset.h>
#include <asm/airq.h>
#include <linux/atomic.h>
#include <asm/isc.h>
#include <linux/hrtimer.h>
#include <linux/ktime.h>
#include <asm/facility.h>
#include <linux/crypto.h>
#include <linux/mod_devicetable.h>
#include <linux/debugfs.h>
#include "ap_bus.h"
#include "ap_asm.h"
#include "ap_debug.h"
/*
* Module parameters; note though this file itself isn't modular.
*/
int ap_domain_index = -1; /* Adjunct Processor Domain Index */
static DEFINE_SPINLOCK(ap_domain_lock);
module_param_named(domain, ap_domain_index, int, S_IRUSR|S_IRGRP);
MODULE_PARM_DESC(domain, "domain index for ap devices");
EXPORT_SYMBOL(ap_domain_index);
static int ap_thread_flag = 0;
module_param_named(poll_thread, ap_thread_flag, int, S_IRUSR|S_IRGRP);
MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
static struct device *ap_root_device;
DEFINE_SPINLOCK(ap_list_lock);
LIST_HEAD(ap_card_list);
static struct ap_config_info *ap_configuration;
static bool initialised;
/*
* AP bus related debug feature things.
*/
debug_info_t *ap_dbf_info;
/*
* Workqueue timer for bus rescan.
*/
static struct timer_list ap_config_timer;
static int ap_config_time = AP_CONFIG_TIME;
static void ap_scan_bus(struct work_struct *);
static DECLARE_WORK(ap_scan_work, ap_scan_bus);
/*
* Tasklet & timer for AP request polling and interrupts
*/
static void ap_tasklet_fn(unsigned long);
static DECLARE_TASKLET(ap_tasklet, ap_tasklet_fn, 0);
static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
static struct task_struct *ap_poll_kthread = NULL;
static DEFINE_MUTEX(ap_poll_thread_mutex);
static DEFINE_SPINLOCK(ap_poll_timer_lock);
static struct hrtimer ap_poll_timer;
/* In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
* If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.*/
static unsigned long long poll_timeout = 250000;
/* Suspend flag */
static int ap_suspend_flag;
/* Maximum domain id */
static int ap_max_domain_id;
/* Flag to check if domain was set through module parameter domain=. This is
* important when supsend and resume is done in a z/VM environment where the
* domain might change. */
static int user_set_domain = 0;
static struct bus_type ap_bus_type;
/* Adapter interrupt definitions */
static void ap_interrupt_handler(struct airq_struct *airq);
static int ap_airq_flag;
static struct airq_struct ap_airq = {
.handler = ap_interrupt_handler,
.isc = AP_ISC,
};
/**
* ap_using_interrupts() - Returns non-zero if interrupt support is
* available.
*/
static inline int ap_using_interrupts(void)
{
return ap_airq_flag;
}
/**
* ap_airq_ptr() - Get the address of the adapter interrupt indicator
*
* Returns the address of the local-summary-indicator of the adapter
* interrupt handler for AP, or NULL if adapter interrupts are not
* available.
*/
void *ap_airq_ptr(void)
{
if (ap_using_interrupts())
return ap_airq.lsi_ptr;
return NULL;
}
/**
* ap_interrupts_available(): Test if AP interrupts are available.
*
* Returns 1 if AP interrupts are available.
*/
static int ap_interrupts_available(void)
{
return test_facility(65);
}
/**
* ap_configuration_available(): Test if AP configuration
* information is available.
*
* Returns 1 if AP configuration information is available.
*/
static int ap_configuration_available(void)
{
return test_facility(12);
}
/**
* ap_apft_available(): Test if AP facilities test (APFT)
* facility is available.
*
* Returns 1 if APFT is is available.
*/
static int ap_apft_available(void)
{
return test_facility(15);
}
/**
* ap_test_queue(): Test adjunct processor queue.
* @qid: The AP queue number
* @tbit: Test facilities bit
* @info: Pointer to queue descriptor
*
* Returns AP queue status structure.
*/
struct ap_queue_status ap_test_queue(ap_qid_t qid,
int tbit,
unsigned long *info)
{
if (tbit)
qid |= 1UL << 23; /* set T bit*/
return ap_tapq(qid, info);
}
EXPORT_SYMBOL(ap_test_queue);
/*
* ap_query_configuration(): Fetch cryptographic config info
*
* Returns the ap configuration info fetched via PQAP(QCI).
* On success 0 is returned, on failure a negative errno
* is returned, e.g. if the PQAP(QCI) instruction is not
* available, the return value will be -EOPNOTSUPP.
*/
int ap_query_configuration(struct ap_config_info *info)
{
if (!ap_configuration_available())
return -EOPNOTSUPP;
if (!info)
return -EINVAL;
return ap_qci(info);
}
EXPORT_SYMBOL(ap_query_configuration);
/**
* ap_init_configuration(): Allocate and query configuration array.
*/
static void ap_init_configuration(void)
{
if (!ap_configuration_available())
return;
ap_configuration = kzalloc(sizeof(*ap_configuration), GFP_KERNEL);
if (!ap_configuration)
return;
if (ap_query_configuration(ap_configuration) != 0) {
kfree(ap_configuration);
ap_configuration = NULL;
return;
}
}
/*
* ap_test_config(): helper function to extract the nrth bit
* within the unsigned int array field.
*/
static inline int ap_test_config(unsigned int *field, unsigned int nr)
{
return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
}
/*
* ap_test_config_card_id(): Test, whether an AP card ID is configured.
* @id AP card ID
*
* Returns 0 if the card is not configured
* 1 if the card is configured or
* if the configuration information is not available
*/
static inline int ap_test_config_card_id(unsigned int id)
{
if (!ap_configuration) /* QCI not supported */
return 1;
return ap_test_config(ap_configuration->apm, id);
}
/*
* ap_test_config_domain(): Test, whether an AP usage domain is configured.
* @domain AP usage domain ID
*
* Returns 0 if the usage domain is not configured
* 1 if the usage domain is configured or
* if the configuration information is not available
*/
static inline int ap_test_config_domain(unsigned int domain)
{
if (!ap_configuration) /* QCI not supported */
return domain < 16;
return ap_test_config(ap_configuration->aqm, domain);
}
/**
* ap_query_queue(): Check if an AP queue is available.
* @qid: The AP queue number
* @queue_depth: Pointer to queue depth value
* @device_type: Pointer to device type value
* @facilities: Pointer to facility indicator
*/
static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type,
unsigned int *facilities)
{
struct ap_queue_status status;
unsigned long info;
int nd;
if (!ap_test_config_card_id(AP_QID_CARD(qid)))
return -ENODEV;
status = ap_test_queue(qid, ap_apft_available(), &info);
switch (status.response_code) {
case AP_RESPONSE_NORMAL:
*queue_depth = (int)(info & 0xff);
*device_type = (int)((info >> 24) & 0xff);
*facilities = (unsigned int)(info >> 32);
/* Update maximum domain id */
nd = (info >> 16) & 0xff;
/* if N bit is available, z13 and newer */
if ((info & (1UL << 57)) && nd > 0)
ap_max_domain_id = nd;
else /* older machine types */
ap_max_domain_id = 15;
switch (*device_type) {
/* For CEX2 and CEX3 the available functions
* are not refrected by the facilities bits.
* Instead it is coded into the type. So here
* modify the function bits based on the type.
*/
case AP_DEVICE_TYPE_CEX2A:
case AP_DEVICE_TYPE_CEX3A:
*facilities |= 0x08000000;
break;
case AP_DEVICE_TYPE_CEX2C:
case AP_DEVICE_TYPE_CEX3C:
*facilities |= 0x10000000;
break;
default:
break;
}
return 0;
case AP_RESPONSE_Q_NOT_AVAIL:
case AP_RESPONSE_DECONFIGURED:
case AP_RESPONSE_CHECKSTOPPED:
case AP_RESPONSE_INVALID_ADDRESS:
return -ENODEV;
case AP_RESPONSE_RESET_IN_PROGRESS:
case AP_RESPONSE_OTHERWISE_CHANGED:
case AP_RESPONSE_BUSY:
return -EBUSY;
default:
BUG();
}
}
void ap_wait(enum ap_wait wait)
{
ktime_t hr_time;
switch (wait) {
case AP_WAIT_AGAIN:
case AP_WAIT_INTERRUPT:
if (ap_using_interrupts())
break;
if (ap_poll_kthread) {
wake_up(&ap_poll_wait);
break;
}
/* Fall through */
case AP_WAIT_TIMEOUT:
spin_lock_bh(&ap_poll_timer_lock);
if (!hrtimer_is_queued(&ap_poll_timer)) {
hr_time = poll_timeout;
hrtimer_forward_now(&ap_poll_timer, hr_time);
hrtimer_restart(&ap_poll_timer);
}
spin_unlock_bh(&ap_poll_timer_lock);
break;
case AP_WAIT_NONE:
default:
break;
}
}
/**
* ap_request_timeout(): Handling of request timeouts
* @data: Holds the AP device.
*
* Handles request timeouts.
*/
void ap_request_timeout(unsigned long data)
{
struct ap_queue *aq = (struct ap_queue *) data;
if (ap_suspend_flag)
return;
spin_lock_bh(&aq->lock);
ap_wait(ap_sm_event(aq, AP_EVENT_TIMEOUT));
spin_unlock_bh(&aq->lock);
}
/**
* ap_poll_timeout(): AP receive polling for finished AP requests.
* @unused: Unused pointer.
*
* Schedules the AP tasklet using a high resolution timer.
*/
static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
{
if (!ap_suspend_flag)
tasklet_schedule(&ap_tasklet);
return HRTIMER_NORESTART;
}
/**
* ap_interrupt_handler() - Schedule ap_tasklet on interrupt
* @airq: pointer to adapter interrupt descriptor
*/
static void ap_interrupt_handler(struct airq_struct *airq)
{
inc_irq_stat(IRQIO_APB);
if (!ap_suspend_flag)
tasklet_schedule(&ap_tasklet);
}
/**
* ap_tasklet_fn(): Tasklet to poll all AP devices.
* @dummy: Unused variable
*
* Poll all AP devices on the bus.
*/
static void ap_tasklet_fn(unsigned long dummy)
{
struct ap_card *ac;
struct ap_queue *aq;
enum ap_wait wait = AP_WAIT_NONE;
/* Reset the indicator if interrupts are used. Thus new interrupts can
* be received. Doing it in the beginning of the tasklet is therefor
* important that no requests on any AP get lost.
*/
if (ap_using_interrupts())
xchg(ap_airq.lsi_ptr, 0);
spin_lock_bh(&ap_list_lock);
for_each_ap_card(ac) {
for_each_ap_queue(aq, ac) {
spin_lock_bh(&aq->lock);
wait = min(wait, ap_sm_event_loop(aq, AP_EVENT_POLL));
spin_unlock_bh(&aq->lock);
}
}
spin_unlock_bh(&ap_list_lock);
ap_wait(wait);
}
static int ap_pending_requests(void)
{
struct ap_card *ac;
struct ap_queue *aq;
spin_lock_bh(&ap_list_lock);
for_each_ap_card(ac) {
for_each_ap_queue(aq, ac) {
if (aq->queue_count == 0)
continue;
spin_unlock_bh(&ap_list_lock);
return 1;
}
}
spin_unlock_bh(&ap_list_lock);
return 0;
}
/**
* ap_poll_thread(): Thread that polls for finished requests.
* @data: Unused pointer
*
* AP bus poll thread. The purpose of this thread is to poll for
* finished requests in a loop if there is a "free" cpu - that is
* a cpu that doesn't have anything better to do. The polling stops
* as soon as there is another task or if all messages have been
* delivered.
*/
static int ap_poll_thread(void *data)
{
DECLARE_WAITQUEUE(wait, current);
set_user_nice(current, MAX_NICE);
set_freezable();
while (!kthread_should_stop()) {
add_wait_queue(&ap_poll_wait, &wait);
set_current_state(TASK_INTERRUPTIBLE);
if (ap_suspend_flag || !ap_pending_requests()) {
schedule();
try_to_freeze();
}
set_current_state(TASK_RUNNING);
remove_wait_queue(&ap_poll_wait, &wait);
if (need_resched()) {
schedule();
try_to_freeze();
continue;
}
ap_tasklet_fn(0);
}
return 0;
}
static int ap_poll_thread_start(void)
{
int rc;
if (ap_using_interrupts() || ap_poll_kthread)
return 0;
mutex_lock(&ap_poll_thread_mutex);
ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
rc = PTR_RET(ap_poll_kthread);
if (rc)
ap_poll_kthread = NULL;
mutex_unlock(&ap_poll_thread_mutex);
return rc;
}
static void ap_poll_thread_stop(void)
{
if (!ap_poll_kthread)
return;
mutex_lock(&ap_poll_thread_mutex);
kthread_stop(ap_poll_kthread);
ap_poll_kthread = NULL;
mutex_unlock(&ap_poll_thread_mutex);
}
#define is_card_dev(x) ((x)->parent == ap_root_device)
#define is_queue_dev(x) ((x)->parent != ap_root_device)
/**
* ap_bus_match()
* @dev: Pointer to device
* @drv: Pointer to device_driver
*
* AP bus driver registration/unregistration.
*/
static int ap_bus_match(struct device *dev, struct device_driver *drv)
{
struct ap_driver *ap_drv = to_ap_drv(drv);
struct ap_device_id *id;
/*
* Compare device type of the device with the list of
* supported types of the device_driver.
*/
for (id = ap_drv->ids; id->match_flags; id++) {
if (is_card_dev(dev) &&
id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
id->dev_type == to_ap_dev(dev)->device_type)
return 1;
if (is_queue_dev(dev) &&
id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
id->dev_type == to_ap_dev(dev)->device_type)
return 1;
}
return 0;
}
/**
* ap_uevent(): Uevent function for AP devices.
* @dev: Pointer to device
* @env: Pointer to kobj_uevent_env
*
* It sets up a single environment variable DEV_TYPE which contains the
* hardware device type.
*/
static int ap_uevent (struct device *dev, struct kobj_uevent_env *env)
{
struct ap_device *ap_dev = to_ap_dev(dev);
int retval = 0;
if (!ap_dev)
return -ENODEV;
/* Set up DEV_TYPE environment variable. */
retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
if (retval)
return retval;
/* Add MODALIAS= */
retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
return retval;
}
static int ap_dev_suspend(struct device *dev)
{
struct ap_device *ap_dev = to_ap_dev(dev);
if (ap_dev->drv && ap_dev->drv->suspend)
ap_dev->drv->suspend(ap_dev);
return 0;
}
static int ap_dev_resume(struct device *dev)
{
struct ap_device *ap_dev = to_ap_dev(dev);
if (ap_dev->drv && ap_dev->drv->resume)
ap_dev->drv->resume(ap_dev);
return 0;
}
static void ap_bus_suspend(void)
{
AP_DBF(DBF_DEBUG, "ap_bus_suspend running\n");
ap_suspend_flag = 1;
/*
* Disable scanning for devices, thus we do not want to scan
* for them after removing.
*/
flush_work(&ap_scan_work);
tasklet_disable(&ap_tasklet);
}
static int __ap_card_devices_unregister(struct device *dev, void *dummy)
{
if (is_card_dev(dev))
device_unregister(dev);
return 0;
}
static int __ap_queue_devices_unregister(struct device *dev, void *dummy)
{
if (is_queue_dev(dev))
device_unregister(dev);
return 0;
}
static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
{
if (is_queue_dev(dev) &&
AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long) data)
device_unregister(dev);
return 0;
}
static void ap_bus_resume(void)
{
int rc;
AP_DBF(DBF_DEBUG, "ap_bus_resume running\n");
/* remove all queue devices */
bus_for_each_dev(&ap_bus_type, NULL, NULL,
__ap_queue_devices_unregister);
/* remove all card devices */
bus_for_each_dev(&ap_bus_type, NULL, NULL,
__ap_card_devices_unregister);
/* Reset thin interrupt setting */
if (ap_interrupts_available() && !ap_using_interrupts()) {
rc = register_adapter_interrupt(&ap_airq);
ap_airq_flag = (rc == 0);
}
if (!ap_interrupts_available() && ap_using_interrupts()) {
unregister_adapter_interrupt(&ap_airq);
ap_airq_flag = 0;
}
/* Reset domain */
if (!user_set_domain)
ap_domain_index = -1;
/* Get things going again */
ap_suspend_flag = 0;
if (ap_airq_flag)
xchg(ap_airq.lsi_ptr, 0);
tasklet_enable(&ap_tasklet);
queue_work(system_long_wq, &ap_scan_work);
}
static int ap_power_event(struct notifier_block *this, unsigned long event,
void *ptr)
{
switch (event) {
case PM_HIBERNATION_PREPARE:
case PM_SUSPEND_PREPARE:
ap_bus_suspend();
break;
case PM_POST_HIBERNATION:
case PM_POST_SUSPEND:
ap_bus_resume();
break;
default:
break;
}
return NOTIFY_DONE;
}
static struct notifier_block ap_power_notifier = {
.notifier_call = ap_power_event,
};
static SIMPLE_DEV_PM_OPS(ap_bus_pm_ops, ap_dev_suspend, ap_dev_resume);
static struct bus_type ap_bus_type = {
.name = "ap",
.match = &ap_bus_match,
.uevent = &ap_uevent,
.pm = &ap_bus_pm_ops,
};
static int ap_device_probe(struct device *dev)
{
struct ap_device *ap_dev = to_ap_dev(dev);
struct ap_driver *ap_drv = to_ap_drv(dev->driver);
int rc;
/* Add queue/card to list of active queues/cards */
spin_lock_bh(&ap_list_lock);
if (is_card_dev(dev))
list_add(&to_ap_card(dev)->list, &ap_card_list);
else
list_add(&to_ap_queue(dev)->list,
&to_ap_queue(dev)->card->queues);
spin_unlock_bh(&ap_list_lock);
ap_dev->drv = ap_drv;
rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
if (rc) {
spin_lock_bh(&ap_list_lock);
if (is_card_dev(dev))
list_del_init(&to_ap_card(dev)->list);
else
list_del_init(&to_ap_queue(dev)->list);
spin_unlock_bh(&ap_list_lock);
ap_dev->drv = NULL;
}
return rc;
}
static int ap_device_remove(struct device *dev)
{
struct ap_device *ap_dev = to_ap_dev(dev);
struct ap_driver *ap_drv = ap_dev->drv;
if (ap_drv->remove)
ap_drv->remove(ap_dev);
/* Remove queue/card from list of active queues/cards */
spin_lock_bh(&ap_list_lock);
if (is_card_dev(dev))
list_del_init(&to_ap_card(dev)->list);
else
list_del_init(&to_ap_queue(dev)->list);
spin_unlock_bh(&ap_list_lock);
return 0;
}
int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
char *name)
{
struct device_driver *drv = &ap_drv->driver;
if (!initialised)
return -ENODEV;
drv->bus = &ap_bus_type;
drv->probe = ap_device_probe;
drv->remove = ap_device_remove;
drv->owner = owner;
drv->name = name;
return driver_register(drv);
}
EXPORT_SYMBOL(ap_driver_register);
void ap_driver_unregister(struct ap_driver *ap_drv)
{
driver_unregister(&ap_drv->driver);
}
EXPORT_SYMBOL(ap_driver_unregister);
void ap_bus_force_rescan(void)
{
if (ap_suspend_flag)
return;
/* processing a asynchronous bus rescan */
del_timer(&ap_config_timer);
queue_work(system_long_wq, &ap_scan_work);
flush_work(&ap_scan_work);
}
EXPORT_SYMBOL(ap_bus_force_rescan);
/*
* AP bus attributes.
*/
static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
}
static ssize_t ap_domain_store(struct bus_type *bus,
const char *buf, size_t count)
{
int domain;
if (sscanf(buf, "%i\n", &domain) != 1 ||
domain < 0 || domain > ap_max_domain_id)
return -EINVAL;
spin_lock_bh(&ap_domain_lock);
ap_domain_index = domain;
spin_unlock_bh(&ap_domain_lock);
AP_DBF(DBF_DEBUG, "stored new default domain=%d\n", domain);
return count;
}
static BUS_ATTR(ap_domain, 0644, ap_domain_show, ap_domain_store);
static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf)
{
if (!ap_configuration) /* QCI not supported */
return snprintf(buf, PAGE_SIZE, "not supported\n");
return snprintf(buf, PAGE_SIZE,
"0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
ap_configuration->adm[0], ap_configuration->adm[1],
ap_configuration->adm[2], ap_configuration->adm[3],
ap_configuration->adm[4], ap_configuration->adm[5],
ap_configuration->adm[6], ap_configuration->adm[7]);
}
static BUS_ATTR(ap_control_domain_mask, 0444,
ap_control_domain_mask_show, NULL);
static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf)
{
if (!ap_configuration) /* QCI not supported */
return snprintf(buf, PAGE_SIZE, "not supported\n");
return snprintf(buf, PAGE_SIZE,
"0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
ap_configuration->aqm[0], ap_configuration->aqm[1],
ap_configuration->aqm[2], ap_configuration->aqm[3],
ap_configuration->aqm[4], ap_configuration->aqm[5],
ap_configuration->aqm[6], ap_configuration->aqm[7]);
}
static BUS_ATTR(ap_usage_domain_mask, 0444,
ap_usage_domain_mask_show, NULL);
static ssize_t ap_config_time_show(struct bus_type *bus, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
}
static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n",
ap_using_interrupts() ? 1 : 0);
}
static BUS_ATTR(ap_interrupts, 0444, ap_interrupts_show, NULL);
static ssize_t ap_config_time_store(struct bus_type *bus,
const char *buf, size_t count)
{
int time;
if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
return -EINVAL;
ap_config_time = time;
mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
return count;
}
static BUS_ATTR(config_time, 0644, ap_config_time_show, ap_config_time_store);
static ssize_t ap_poll_thread_show(struct bus_type *bus, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
}
static ssize_t ap_poll_thread_store(struct bus_type *bus,
const char *buf, size_t count)
{
int flag, rc;
if (sscanf(buf, "%d\n", &flag) != 1)
return -EINVAL;
if (flag) {
rc = ap_poll_thread_start();
if (rc)
count = rc;
} else
ap_poll_thread_stop();
return count;
}
static BUS_ATTR(poll_thread, 0644, ap_poll_thread_show, ap_poll_thread_store);
static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
}
static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
size_t count)
{
unsigned long long time;
ktime_t hr_time;
/* 120 seconds = maximum poll interval */
if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
time > 120000000000ULL)
return -EINVAL;
poll_timeout = time;
hr_time = poll_timeout;
spin_lock_bh(&ap_poll_timer_lock);
hrtimer_cancel(&ap_poll_timer);
hrtimer_set_expires(&ap_poll_timer, hr_time);
hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
spin_unlock_bh(&ap_poll_timer_lock);
return count;
}
static BUS_ATTR(poll_timeout, 0644, poll_timeout_show, poll_timeout_store);
static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf)
{
int max_domain_id;
if (ap_configuration)
max_domain_id = ap_max_domain_id ? : -1;
else
max_domain_id = 15;
return snprintf(buf, PAGE_SIZE, "%d\n", max_domain_id);
}
static BUS_ATTR(ap_max_domain_id, 0444, ap_max_domain_id_show, NULL);
static struct bus_attribute *const ap_bus_attrs[] = {
&bus_attr_ap_domain,
&bus_attr_ap_control_domain_mask,
&bus_attr_ap_usage_domain_mask,
&bus_attr_config_time,
&bus_attr_poll_thread,
&bus_attr_ap_interrupts,
&bus_attr_poll_timeout,
&bus_attr_ap_max_domain_id,
NULL,
};
/**
* ap_select_domain(): Select an AP domain.
*
* Pick one of the 16 AP domains.
*/
static int ap_select_domain(void)
{
int count, max_count, best_domain;
struct ap_queue_status status;
int i, j;
/*
* We want to use a single domain. Either the one specified with
* the "domain=" parameter or the domain with the maximum number
* of devices.
*/
spin_lock_bh(&ap_domain_lock);
if (ap_domain_index >= 0) {
/* Domain has already been selected. */
spin_unlock_bh(&ap_domain_lock);
return 0;
}
best_domain = -1;
max_count = 0;
for (i = 0; i < AP_DOMAINS; i++) {
if (!ap_test_config_domain(i))
continue;
count = 0;
for (j = 0; j < AP_DEVICES; j++) {
if (!ap_test_config_card_id(j))
continue;
status = ap_test_queue(AP_MKQID(j, i),
ap_apft_available(),
NULL);
if (status.response_code != AP_RESPONSE_NORMAL)
continue;
count++;
}
if (count > max_count) {
max_count = count;
best_domain = i;
}
}
if (best_domain >= 0){
ap_domain_index = best_domain;
AP_DBF(DBF_DEBUG, "new ap_domain_index=%d\n", ap_domain_index);
spin_unlock_bh(&ap_domain_lock);
return 0;
}
spin_unlock_bh(&ap_domain_lock);
return -ENODEV;
}
/*
* helper function to be used with bus_find_dev
* matches for the card device with the given id
*/
static int __match_card_device_with_id(struct device *dev, void *data)
{
return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long) data;
}
/* helper function to be used with bus_find_dev
* matches for the queue device with a given qid
*/
static int __match_queue_device_with_qid(struct device *dev, void *data)
{
return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long) data;
}
/**
* ap_scan_bus(): Scan the AP bus for new devices
* Runs periodically, workqueue timer (ap_config_time)
*/
static void ap_scan_bus(struct work_struct *unused)
{
struct ap_queue *aq;
struct ap_card *ac;
struct device *dev;
ap_qid_t qid;
int depth = 0, type = 0;
unsigned int functions = 0;
int rc, id, dom, borked, domains, defdomdevs = 0;
AP_DBF(DBF_DEBUG, "ap_scan_bus running\n");
ap_query_configuration(ap_configuration);
if (ap_select_domain() != 0)
goto out;
for (id = 0; id < AP_DEVICES; id++) {
/* check if device is registered */
dev = bus_find_device(&ap_bus_type, NULL,
(void *)(long) id,
__match_card_device_with_id);
ac = dev ? to_ap_card(dev) : NULL;
if (!ap_test_config_card_id(id)) {
if (dev) {
/* Card device has been removed from
* configuration, remove the belonging
* queue devices.
*/
bus_for_each_dev(&ap_bus_type, NULL,
(void *)(long) id,
__ap_queue_devices_with_id_unregister);
/* now remove the card device */
device_unregister(dev);
put_device(dev);
}
continue;
}
/* According to the configuration there should be a card
* device, so check if there is at least one valid queue
* and maybe create queue devices and the card device.
*/
domains = 0;
for (dom = 0; dom < AP_DOMAINS; dom++) {
qid = AP_MKQID(id, dom);
dev = bus_find_device(&ap_bus_type, NULL,
(void *)(long) qid,
__match_queue_device_with_qid);
aq = dev ? to_ap_queue(dev) : NULL;
if (!ap_test_config_domain(dom)) {
if (dev) {
/* Queue device exists but has been
* removed from configuration.
*/
device_unregister(dev);
put_device(dev);
}
continue;
}
rc = ap_query_queue(qid, &depth, &type, &functions);
if (dev) {
spin_lock_bh(&aq->lock);
if (rc == -ENODEV ||
/* adapter reconfiguration */
(ac && ac->functions != functions))
aq->state = AP_STATE_BORKED;
borked = aq->state == AP_STATE_BORKED;
spin_unlock_bh(&aq->lock);
if (borked) /* Remove broken device */
device_unregister(dev);
put_device(dev);
if (!borked) {
domains++;
if (dom == ap_domain_index)
defdomdevs++;
continue;
}
}
if (rc)
continue;
/* new queue device needed */
if (!ac) {
/* but first create the card device */
ac = ap_card_create(id, depth,
type, functions);
if (!ac)
continue;
ac->ap_dev.device.bus = &ap_bus_type;
ac->ap_dev.device.parent = ap_root_device;
dev_set_name(&ac->ap_dev.device,
"card%02x", id);
/* Register card with AP bus */
rc = device_register(&ac->ap_dev.device);
if (rc) {
put_device(&ac->ap_dev.device);
ac = NULL;
break;
}
/* get it and thus adjust reference counter */
get_device(&ac->ap_dev.device);
}
/* now create the new queue device */
aq = ap_queue_create(qid, type);
if (!aq)
continue;
aq->card = ac;
aq->ap_dev.device.bus = &ap_bus_type;
aq->ap_dev.device.parent = &ac->ap_dev.device;
dev_set_name(&aq->ap_dev.device,
"%02x.%04x", id, dom);
/* Start with a device reset */
spin_lock_bh(&aq->lock);
ap_wait(ap_sm_event(aq, AP_EVENT_POLL));
spin_unlock_bh(&aq->lock);
/* Register device */
rc = device_register(&aq->ap_dev.device);
if (rc) {
put_device(&aq->ap_dev.device);
continue;
}
domains++;
if (dom == ap_domain_index)
defdomdevs++;
} /* end domain loop */
if (ac) {
/* remove card dev if there are no queue devices */
if (!domains)
device_unregister(&ac->ap_dev.device);
put_device(&ac->ap_dev.device);
}
} /* end device loop */
if (defdomdevs < 1)
AP_DBF(DBF_INFO, "no queue device with default domain %d available\n",
ap_domain_index);
out:
mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
}
static void ap_config_timeout(unsigned long ptr)
{
if (ap_suspend_flag)
return;
queue_work(system_long_wq, &ap_scan_work);
}
static void ap_reset_all(void)
{
int i, j;
for (i = 0; i < AP_DOMAINS; i++) {
if (!ap_test_config_domain(i))
continue;
for (j = 0; j < AP_DEVICES; j++) {
if (!ap_test_config_card_id(j))
continue;
ap_rapq(AP_MKQID(j, i));
}
}
}
static struct reset_call ap_reset_call = {
.fn = ap_reset_all,
};
int __init ap_debug_init(void)
{
ap_dbf_info = debug_register("ap", 1, 1,
DBF_MAX_SPRINTF_ARGS * sizeof(long));
debug_register_view(ap_dbf_info, &debug_sprintf_view);
debug_set_level(ap_dbf_info, DBF_ERR);
return 0;
}
void ap_debug_exit(void)
{
debug_unregister(ap_dbf_info);
}
/**
* ap_module_init(): The module initialization code.
*
* Initializes the module.
*/
int __init ap_module_init(void)
{
int max_domain_id;
int rc, i;
rc = ap_debug_init();
if (rc)
return rc;
if (ap_instructions_available() != 0) {
pr_warn("The hardware system does not support AP instructions\n");
return -ENODEV;
}
/* Get AP configuration data if available */
ap_init_configuration();
if (ap_configuration)
max_domain_id =
ap_max_domain_id ? ap_max_domain_id : AP_DOMAINS - 1;
else
max_domain_id = 15;
if (ap_domain_index < -1 || ap_domain_index > max_domain_id) {
pr_warn("%d is not a valid cryptographic domain\n",
ap_domain_index);
ap_domain_index = -1;
}
/* In resume callback we need to know if the user had set the domain.
* If so, we can not just reset it.
*/
if (ap_domain_index >= 0)
user_set_domain = 1;
if (ap_interrupts_available()) {
rc = register_adapter_interrupt(&ap_airq);
ap_airq_flag = (rc == 0);
}
register_reset_call(&ap_reset_call);
/* Create /sys/bus/ap. */
rc = bus_register(&ap_bus_type);
if (rc)
goto out;
for (i = 0; ap_bus_attrs[i]; i++) {
rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]);
if (rc)
goto out_bus;
}
/* Create /sys/devices/ap. */
ap_root_device = root_device_register("ap");
rc = PTR_RET(ap_root_device);
if (rc)
goto out_bus;
/* Setup the AP bus rescan timer. */
setup_timer(&ap_config_timer, ap_config_timeout, 0);
/*
* Setup the high resultion poll timer.
* If we are running under z/VM adjust polling to z/VM polling rate.
*/
if (MACHINE_IS_VM)
poll_timeout = 1500000;
spin_lock_init(&ap_poll_timer_lock);
hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
ap_poll_timer.function = ap_poll_timeout;
/* Start the low priority AP bus poll thread. */
if (ap_thread_flag) {
rc = ap_poll_thread_start();
if (rc)
goto out_work;
}
rc = register_pm_notifier(&ap_power_notifier);
if (rc)
goto out_pm;
queue_work(system_long_wq, &ap_scan_work);
initialised = true;
return 0;
out_pm:
ap_poll_thread_stop();
out_work:
hrtimer_cancel(&ap_poll_timer);
root_device_unregister(ap_root_device);
out_bus:
while (i--)
bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
bus_unregister(&ap_bus_type);
out:
unregister_reset_call(&ap_reset_call);
if (ap_using_interrupts())
unregister_adapter_interrupt(&ap_airq);
kfree(ap_configuration);
return rc;
}
device_initcall(ap_module_init);