You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
569 lines
16 KiB
569 lines
16 KiB
/*
|
|
* linux/arch/alpha/kernel/time.c
|
|
*
|
|
* Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds
|
|
*
|
|
* This file contains the PC-specific time handling details:
|
|
* reading the RTC at bootup, etc..
|
|
* 1994-07-02 Alan Modra
|
|
* fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
|
|
* 1995-03-26 Markus Kuhn
|
|
* fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
|
|
* precision CMOS clock update
|
|
* 1997-09-10 Updated NTP code according to technical memorandum Jan '96
|
|
* "A Kernel Model for Precision Timekeeping" by Dave Mills
|
|
* 1997-01-09 Adrian Sun
|
|
* use interval timer if CONFIG_RTC=y
|
|
* 1997-10-29 John Bowman (bowman@math.ualberta.ca)
|
|
* fixed tick loss calculation in timer_interrupt
|
|
* (round system clock to nearest tick instead of truncating)
|
|
* fixed algorithm in time_init for getting time from CMOS clock
|
|
* 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net)
|
|
* fixed algorithm in do_gettimeofday() for calculating the precise time
|
|
* from processor cycle counter (now taking lost_ticks into account)
|
|
* 2000-08-13 Jan-Benedict Glaw <jbglaw@lug-owl.de>
|
|
* Fixed time_init to be aware of epoches != 1900. This prevents
|
|
* booting up in 2048 for me;) Code is stolen from rtc.c.
|
|
* 2003-06-03 R. Scott Bailey <scott.bailey@eds.com>
|
|
* Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
|
|
*/
|
|
#include <linux/errno.h>
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/param.h>
|
|
#include <linux/string.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/init.h>
|
|
#include <linux/bcd.h>
|
|
#include <linux/profile.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
#include <asm/io.h>
|
|
#include <asm/hwrpb.h>
|
|
#include <asm/8253pit.h>
|
|
|
|
#include <linux/mc146818rtc.h>
|
|
#include <linux/time.h>
|
|
#include <linux/timex.h>
|
|
|
|
#include "proto.h"
|
|
#include "irq_impl.h"
|
|
|
|
static int set_rtc_mmss(unsigned long);
|
|
|
|
DEFINE_SPINLOCK(rtc_lock);
|
|
EXPORT_SYMBOL(rtc_lock);
|
|
|
|
#define TICK_SIZE (tick_nsec / 1000)
|
|
|
|
/*
|
|
* Shift amount by which scaled_ticks_per_cycle is scaled. Shifting
|
|
* by 48 gives us 16 bits for HZ while keeping the accuracy good even
|
|
* for large CPU clock rates.
|
|
*/
|
|
#define FIX_SHIFT 48
|
|
|
|
/* lump static variables together for more efficient access: */
|
|
static struct {
|
|
/* cycle counter last time it got invoked */
|
|
__u32 last_time;
|
|
/* ticks/cycle * 2^48 */
|
|
unsigned long scaled_ticks_per_cycle;
|
|
/* last time the CMOS clock got updated */
|
|
time_t last_rtc_update;
|
|
/* partial unused tick */
|
|
unsigned long partial_tick;
|
|
} state;
|
|
|
|
unsigned long est_cycle_freq;
|
|
|
|
|
|
static inline __u32 rpcc(void)
|
|
{
|
|
__u32 result;
|
|
asm volatile ("rpcc %0" : "=r"(result));
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* timer_interrupt() needs to keep up the real-time clock,
|
|
* as well as call the "do_timer()" routine every clocktick
|
|
*/
|
|
irqreturn_t timer_interrupt(int irq, void *dev)
|
|
{
|
|
unsigned long delta;
|
|
__u32 now;
|
|
long nticks;
|
|
|
|
#ifndef CONFIG_SMP
|
|
/* Not SMP, do kernel PC profiling here. */
|
|
profile_tick(CPU_PROFILING);
|
|
#endif
|
|
|
|
write_seqlock(&xtime_lock);
|
|
|
|
/*
|
|
* Calculate how many ticks have passed since the last update,
|
|
* including any previous partial leftover. Save any resulting
|
|
* fraction for the next pass.
|
|
*/
|
|
now = rpcc();
|
|
delta = now - state.last_time;
|
|
state.last_time = now;
|
|
delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
|
|
state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1);
|
|
nticks = delta >> FIX_SHIFT;
|
|
|
|
while (nticks > 0) {
|
|
do_timer(1);
|
|
#ifndef CONFIG_SMP
|
|
update_process_times(user_mode(get_irq_regs()));
|
|
#endif
|
|
nticks--;
|
|
}
|
|
|
|
/*
|
|
* If we have an externally synchronized Linux clock, then update
|
|
* CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
|
|
* called as close as possible to 500 ms before the new second starts.
|
|
*/
|
|
if (ntp_synced()
|
|
&& xtime.tv_sec > state.last_rtc_update + 660
|
|
&& xtime.tv_nsec >= 500000 - ((unsigned) TICK_SIZE) / 2
|
|
&& xtime.tv_nsec <= 500000 + ((unsigned) TICK_SIZE) / 2) {
|
|
int tmp = set_rtc_mmss(xtime.tv_sec);
|
|
state.last_rtc_update = xtime.tv_sec - (tmp ? 600 : 0);
|
|
}
|
|
|
|
write_sequnlock(&xtime_lock);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
void
|
|
common_init_rtc(void)
|
|
{
|
|
unsigned char x;
|
|
|
|
/* Reset periodic interrupt frequency. */
|
|
x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
|
|
/* Test includes known working values on various platforms
|
|
where 0x26 is wrong; we refuse to change those. */
|
|
if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
|
|
printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);
|
|
CMOS_WRITE(0x26, RTC_FREQ_SELECT);
|
|
}
|
|
|
|
/* Turn on periodic interrupts. */
|
|
x = CMOS_READ(RTC_CONTROL);
|
|
if (!(x & RTC_PIE)) {
|
|
printk("Turning on RTC interrupts.\n");
|
|
x |= RTC_PIE;
|
|
x &= ~(RTC_AIE | RTC_UIE);
|
|
CMOS_WRITE(x, RTC_CONTROL);
|
|
}
|
|
(void) CMOS_READ(RTC_INTR_FLAGS);
|
|
|
|
outb(0x36, 0x43); /* pit counter 0: system timer */
|
|
outb(0x00, 0x40);
|
|
outb(0x00, 0x40);
|
|
|
|
outb(0xb6, 0x43); /* pit counter 2: speaker */
|
|
outb(0x31, 0x42);
|
|
outb(0x13, 0x42);
|
|
|
|
init_rtc_irq();
|
|
}
|
|
|
|
|
|
/* Validate a computed cycle counter result against the known bounds for
|
|
the given processor core. There's too much brokenness in the way of
|
|
timing hardware for any one method to work everywhere. :-(
|
|
|
|
Return 0 if the result cannot be trusted, otherwise return the argument. */
|
|
|
|
static unsigned long __init
|
|
validate_cc_value(unsigned long cc)
|
|
{
|
|
static struct bounds {
|
|
unsigned int min, max;
|
|
} cpu_hz[] __initdata = {
|
|
[EV3_CPU] = { 50000000, 200000000 }, /* guess */
|
|
[EV4_CPU] = { 100000000, 300000000 },
|
|
[LCA4_CPU] = { 100000000, 300000000 }, /* guess */
|
|
[EV45_CPU] = { 200000000, 300000000 },
|
|
[EV5_CPU] = { 250000000, 433000000 },
|
|
[EV56_CPU] = { 333000000, 667000000 },
|
|
[PCA56_CPU] = { 400000000, 600000000 }, /* guess */
|
|
[PCA57_CPU] = { 500000000, 600000000 }, /* guess */
|
|
[EV6_CPU] = { 466000000, 600000000 },
|
|
[EV67_CPU] = { 600000000, 750000000 },
|
|
[EV68AL_CPU] = { 750000000, 940000000 },
|
|
[EV68CB_CPU] = { 1000000000, 1333333333 },
|
|
/* None of the following are shipping as of 2001-11-01. */
|
|
[EV68CX_CPU] = { 1000000000, 1700000000 }, /* guess */
|
|
[EV69_CPU] = { 1000000000, 1700000000 }, /* guess */
|
|
[EV7_CPU] = { 800000000, 1400000000 }, /* guess */
|
|
[EV79_CPU] = { 1000000000, 2000000000 }, /* guess */
|
|
};
|
|
|
|
/* Allow for some drift in the crystal. 10MHz is more than enough. */
|
|
const unsigned int deviation = 10000000;
|
|
|
|
struct percpu_struct *cpu;
|
|
unsigned int index;
|
|
|
|
cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
|
|
index = cpu->type & 0xffffffff;
|
|
|
|
/* If index out of bounds, no way to validate. */
|
|
if (index >= ARRAY_SIZE(cpu_hz))
|
|
return cc;
|
|
|
|
/* If index contains no data, no way to validate. */
|
|
if (cpu_hz[index].max == 0)
|
|
return cc;
|
|
|
|
if (cc < cpu_hz[index].min - deviation
|
|
|| cc > cpu_hz[index].max + deviation)
|
|
return 0;
|
|
|
|
return cc;
|
|
}
|
|
|
|
|
|
/*
|
|
* Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
|
|
* arch/i386/time.c.
|
|
*/
|
|
|
|
#define CALIBRATE_LATCH 0xffff
|
|
#define TIMEOUT_COUNT 0x100000
|
|
|
|
static unsigned long __init
|
|
calibrate_cc_with_pit(void)
|
|
{
|
|
int cc, count = 0;
|
|
|
|
/* Set the Gate high, disable speaker */
|
|
outb((inb(0x61) & ~0x02) | 0x01, 0x61);
|
|
|
|
/*
|
|
* Now let's take care of CTC channel 2
|
|
*
|
|
* Set the Gate high, program CTC channel 2 for mode 0,
|
|
* (interrupt on terminal count mode), binary count,
|
|
* load 5 * LATCH count, (LSB and MSB) to begin countdown.
|
|
*/
|
|
outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */
|
|
outb(CALIBRATE_LATCH & 0xff, 0x42); /* LSB of count */
|
|
outb(CALIBRATE_LATCH >> 8, 0x42); /* MSB of count */
|
|
|
|
cc = rpcc();
|
|
do {
|
|
count++;
|
|
} while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
|
|
cc = rpcc() - cc;
|
|
|
|
/* Error: ECTCNEVERSET or ECPUTOOFAST. */
|
|
if (count <= 1 || count == TIMEOUT_COUNT)
|
|
return 0;
|
|
|
|
return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
|
|
}
|
|
|
|
/* The Linux interpretation of the CMOS clock register contents:
|
|
When the Update-In-Progress (UIP) flag goes from 1 to 0, the
|
|
RTC registers show the second which has precisely just started.
|
|
Let's hope other operating systems interpret the RTC the same way. */
|
|
|
|
static unsigned long __init
|
|
rpcc_after_update_in_progress(void)
|
|
{
|
|
do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
|
|
do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
|
|
|
|
return rpcc();
|
|
}
|
|
|
|
void __init
|
|
time_init(void)
|
|
{
|
|
unsigned int year, mon, day, hour, min, sec, cc1, cc2, epoch;
|
|
unsigned long cycle_freq, tolerance;
|
|
long diff;
|
|
|
|
/* Calibrate CPU clock -- attempt #1. */
|
|
if (!est_cycle_freq)
|
|
est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
|
|
|
|
cc1 = rpcc();
|
|
|
|
/* Calibrate CPU clock -- attempt #2. */
|
|
if (!est_cycle_freq) {
|
|
cc1 = rpcc_after_update_in_progress();
|
|
cc2 = rpcc_after_update_in_progress();
|
|
est_cycle_freq = validate_cc_value(cc2 - cc1);
|
|
cc1 = cc2;
|
|
}
|
|
|
|
cycle_freq = hwrpb->cycle_freq;
|
|
if (est_cycle_freq) {
|
|
/* If the given value is within 250 PPM of what we calculated,
|
|
accept it. Otherwise, use what we found. */
|
|
tolerance = cycle_freq / 4000;
|
|
diff = cycle_freq - est_cycle_freq;
|
|
if (diff < 0)
|
|
diff = -diff;
|
|
if ((unsigned long)diff > tolerance) {
|
|
cycle_freq = est_cycle_freq;
|
|
printk("HWRPB cycle frequency bogus. "
|
|
"Estimated %lu Hz\n", cycle_freq);
|
|
} else {
|
|
est_cycle_freq = 0;
|
|
}
|
|
} else if (! validate_cc_value (cycle_freq)) {
|
|
printk("HWRPB cycle frequency bogus, "
|
|
"and unable to estimate a proper value!\n");
|
|
}
|
|
|
|
/* From John Bowman <bowman@math.ualberta.ca>: allow the values
|
|
to settle, as the Update-In-Progress bit going low isn't good
|
|
enough on some hardware. 2ms is our guess; we haven't found
|
|
bogomips yet, but this is close on a 500Mhz box. */
|
|
__delay(1000000);
|
|
|
|
sec = CMOS_READ(RTC_SECONDS);
|
|
min = CMOS_READ(RTC_MINUTES);
|
|
hour = CMOS_READ(RTC_HOURS);
|
|
day = CMOS_READ(RTC_DAY_OF_MONTH);
|
|
mon = CMOS_READ(RTC_MONTH);
|
|
year = CMOS_READ(RTC_YEAR);
|
|
|
|
if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
|
|
BCD_TO_BIN(sec);
|
|
BCD_TO_BIN(min);
|
|
BCD_TO_BIN(hour);
|
|
BCD_TO_BIN(day);
|
|
BCD_TO_BIN(mon);
|
|
BCD_TO_BIN(year);
|
|
}
|
|
|
|
/* PC-like is standard; used for year >= 70 */
|
|
epoch = 1900;
|
|
if (year < 20)
|
|
epoch = 2000;
|
|
else if (year >= 20 && year < 48)
|
|
/* NT epoch */
|
|
epoch = 1980;
|
|
else if (year >= 48 && year < 70)
|
|
/* Digital UNIX epoch */
|
|
epoch = 1952;
|
|
|
|
printk(KERN_INFO "Using epoch = %d\n", epoch);
|
|
|
|
if ((year += epoch) < 1970)
|
|
year += 100;
|
|
|
|
xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
|
|
xtime.tv_nsec = 0;
|
|
|
|
wall_to_monotonic.tv_sec -= xtime.tv_sec;
|
|
wall_to_monotonic.tv_nsec = 0;
|
|
|
|
if (HZ > (1<<16)) {
|
|
extern void __you_loose (void);
|
|
__you_loose();
|
|
}
|
|
|
|
state.last_time = cc1;
|
|
state.scaled_ticks_per_cycle
|
|
= ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
|
|
state.last_rtc_update = 0;
|
|
state.partial_tick = 0L;
|
|
|
|
/* Startup the timer source. */
|
|
alpha_mv.init_rtc();
|
|
}
|
|
|
|
/*
|
|
* Use the cycle counter to estimate an displacement from the last time
|
|
* tick. Unfortunately the Alpha designers made only the low 32-bits of
|
|
* the cycle counter active, so we overflow on 8.2 seconds on a 500MHz
|
|
* part. So we can't do the "find absolute time in terms of cycles" thing
|
|
* that the other ports do.
|
|
*/
|
|
void
|
|
do_gettimeofday(struct timeval *tv)
|
|
{
|
|
unsigned long flags;
|
|
unsigned long sec, usec, seq;
|
|
unsigned long delta_cycles, delta_usec, partial_tick;
|
|
|
|
do {
|
|
seq = read_seqbegin_irqsave(&xtime_lock, flags);
|
|
|
|
delta_cycles = rpcc() - state.last_time;
|
|
sec = xtime.tv_sec;
|
|
usec = (xtime.tv_nsec / 1000);
|
|
partial_tick = state.partial_tick;
|
|
|
|
} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* Until and unless we figure out how to get cpu cycle counters
|
|
in sync and keep them there, we can't use the rpcc tricks. */
|
|
delta_usec = 0;
|
|
#else
|
|
/*
|
|
* usec = cycles * ticks_per_cycle * 2**48 * 1e6 / (2**48 * ticks)
|
|
* = cycles * (s_t_p_c) * 1e6 / (2**48 * ticks)
|
|
* = cycles * (s_t_p_c) * 15625 / (2**42 * ticks)
|
|
*
|
|
* which, given a 600MHz cycle and a 1024Hz tick, has a
|
|
* dynamic range of about 1.7e17, which is less than the
|
|
* 1.8e19 in an unsigned long, so we are safe from overflow.
|
|
*
|
|
* Round, but with .5 up always, since .5 to even is harder
|
|
* with no clear gain.
|
|
*/
|
|
|
|
delta_usec = (delta_cycles * state.scaled_ticks_per_cycle
|
|
+ partial_tick) * 15625;
|
|
delta_usec = ((delta_usec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;
|
|
#endif
|
|
|
|
usec += delta_usec;
|
|
if (usec >= 1000000) {
|
|
sec += 1;
|
|
usec -= 1000000;
|
|
}
|
|
|
|
tv->tv_sec = sec;
|
|
tv->tv_usec = usec;
|
|
}
|
|
|
|
EXPORT_SYMBOL(do_gettimeofday);
|
|
|
|
int
|
|
do_settimeofday(struct timespec *tv)
|
|
{
|
|
time_t wtm_sec, sec = tv->tv_sec;
|
|
long wtm_nsec, nsec = tv->tv_nsec;
|
|
unsigned long delta_nsec;
|
|
|
|
if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
|
|
return -EINVAL;
|
|
|
|
write_seqlock_irq(&xtime_lock);
|
|
|
|
/* The offset that is added into time in do_gettimeofday above
|
|
must be subtracted out here to keep a coherent view of the
|
|
time. Without this, a full-tick error is possible. */
|
|
|
|
#ifdef CONFIG_SMP
|
|
delta_nsec = 0;
|
|
#else
|
|
delta_nsec = rpcc() - state.last_time;
|
|
delta_nsec = (delta_nsec * state.scaled_ticks_per_cycle
|
|
+ state.partial_tick) * 15625;
|
|
delta_nsec = ((delta_nsec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;
|
|
delta_nsec *= 1000;
|
|
#endif
|
|
|
|
nsec -= delta_nsec;
|
|
|
|
wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
|
|
wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
|
|
|
|
set_normalized_timespec(&xtime, sec, nsec);
|
|
set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
|
|
|
|
ntp_clear();
|
|
|
|
write_sequnlock_irq(&xtime_lock);
|
|
clock_was_set();
|
|
return 0;
|
|
}
|
|
|
|
EXPORT_SYMBOL(do_settimeofday);
|
|
|
|
|
|
/*
|
|
* In order to set the CMOS clock precisely, set_rtc_mmss has to be
|
|
* called 500 ms after the second nowtime has started, because when
|
|
* nowtime is written into the registers of the CMOS clock, it will
|
|
* jump to the next second precisely 500 ms later. Check the Motorola
|
|
* MC146818A or Dallas DS12887 data sheet for details.
|
|
*
|
|
* BUG: This routine does not handle hour overflow properly; it just
|
|
* sets the minutes. Usually you won't notice until after reboot!
|
|
*/
|
|
|
|
|
|
static int
|
|
set_rtc_mmss(unsigned long nowtime)
|
|
{
|
|
int retval = 0;
|
|
int real_seconds, real_minutes, cmos_minutes;
|
|
unsigned char save_control, save_freq_select;
|
|
|
|
/* irq are locally disabled here */
|
|
spin_lock(&rtc_lock);
|
|
/* Tell the clock it's being set */
|
|
save_control = CMOS_READ(RTC_CONTROL);
|
|
CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
|
|
|
|
/* Stop and reset prescaler */
|
|
save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
|
|
CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
|
|
|
|
cmos_minutes = CMOS_READ(RTC_MINUTES);
|
|
if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
|
|
BCD_TO_BIN(cmos_minutes);
|
|
|
|
/*
|
|
* since we're only adjusting minutes and seconds,
|
|
* don't interfere with hour overflow. This avoids
|
|
* messing with unknown time zones but requires your
|
|
* RTC not to be off by more than 15 minutes
|
|
*/
|
|
real_seconds = nowtime % 60;
|
|
real_minutes = nowtime / 60;
|
|
if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
|
|
/* correct for half hour time zone */
|
|
real_minutes += 30;
|
|
}
|
|
real_minutes %= 60;
|
|
|
|
if (abs(real_minutes - cmos_minutes) < 30) {
|
|
if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
|
|
BIN_TO_BCD(real_seconds);
|
|
BIN_TO_BCD(real_minutes);
|
|
}
|
|
CMOS_WRITE(real_seconds,RTC_SECONDS);
|
|
CMOS_WRITE(real_minutes,RTC_MINUTES);
|
|
} else {
|
|
printk(KERN_WARNING
|
|
"set_rtc_mmss: can't update from %d to %d\n",
|
|
cmos_minutes, real_minutes);
|
|
retval = -1;
|
|
}
|
|
|
|
/* The following flags have to be released exactly in this order,
|
|
* otherwise the DS12887 (popular MC146818A clone with integrated
|
|
* battery and quartz) will not reset the oscillator and will not
|
|
* update precisely 500 ms later. You won't find this mentioned in
|
|
* the Dallas Semiconductor data sheets, but who believes data
|
|
* sheets anyway ... -- Markus Kuhn
|
|
*/
|
|
CMOS_WRITE(save_control, RTC_CONTROL);
|
|
CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
|
|
spin_unlock(&rtc_lock);
|
|
|
|
return retval;
|
|
}
|
|
|