You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2404 lines
62 KiB
2404 lines
62 KiB
/*
|
|
* ipmi_si.c
|
|
*
|
|
* The interface to the IPMI driver for the system interfaces (KCS, SMIC,
|
|
* BT).
|
|
*
|
|
* Author: MontaVista Software, Inc.
|
|
* Corey Minyard <minyard@mvista.com>
|
|
* source@mvista.com
|
|
*
|
|
* Copyright 2002 MontaVista Software Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
* option) any later version.
|
|
*
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
|
|
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
/*
|
|
* This file holds the "policy" for the interface to the SMI state
|
|
* machine. It does the configuration, handles timers and interrupts,
|
|
* and drives the real SMI state machine.
|
|
*/
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <asm/system.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/list.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/ioport.h>
|
|
#include <asm/irq.h>
|
|
#ifdef CONFIG_HIGH_RES_TIMERS
|
|
#include <linux/hrtime.h>
|
|
# if defined(schedule_next_int)
|
|
/* Old high-res timer code, do translations. */
|
|
# define get_arch_cycles(a) quick_update_jiffies_sub(a)
|
|
# define arch_cycles_per_jiffy cycles_per_jiffies
|
|
# endif
|
|
static inline void add_usec_to_timer(struct timer_list *t, long v)
|
|
{
|
|
t->sub_expires += nsec_to_arch_cycle(v * 1000);
|
|
while (t->sub_expires >= arch_cycles_per_jiffy)
|
|
{
|
|
t->expires++;
|
|
t->sub_expires -= arch_cycles_per_jiffy;
|
|
}
|
|
}
|
|
#endif
|
|
#include <linux/interrupt.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/ipmi_smi.h>
|
|
#include <asm/io.h>
|
|
#include "ipmi_si_sm.h"
|
|
#include <linux/init.h>
|
|
|
|
#define IPMI_SI_VERSION "v33"
|
|
|
|
/* Measure times between events in the driver. */
|
|
#undef DEBUG_TIMING
|
|
|
|
/* Call every 10 ms. */
|
|
#define SI_TIMEOUT_TIME_USEC 10000
|
|
#define SI_USEC_PER_JIFFY (1000000/HZ)
|
|
#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
|
|
#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
|
|
short timeout */
|
|
|
|
enum si_intf_state {
|
|
SI_NORMAL,
|
|
SI_GETTING_FLAGS,
|
|
SI_GETTING_EVENTS,
|
|
SI_CLEARING_FLAGS,
|
|
SI_CLEARING_FLAGS_THEN_SET_IRQ,
|
|
SI_GETTING_MESSAGES,
|
|
SI_ENABLE_INTERRUPTS1,
|
|
SI_ENABLE_INTERRUPTS2
|
|
/* FIXME - add watchdog stuff. */
|
|
};
|
|
|
|
/* Some BT-specific defines we need here. */
|
|
#define IPMI_BT_INTMASK_REG 2
|
|
#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
|
|
#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
|
|
|
|
enum si_type {
|
|
SI_KCS, SI_SMIC, SI_BT
|
|
};
|
|
|
|
struct smi_info
|
|
{
|
|
ipmi_smi_t intf;
|
|
struct si_sm_data *si_sm;
|
|
struct si_sm_handlers *handlers;
|
|
enum si_type si_type;
|
|
spinlock_t si_lock;
|
|
spinlock_t msg_lock;
|
|
struct list_head xmit_msgs;
|
|
struct list_head hp_xmit_msgs;
|
|
struct ipmi_smi_msg *curr_msg;
|
|
enum si_intf_state si_state;
|
|
|
|
/* Used to handle the various types of I/O that can occur with
|
|
IPMI */
|
|
struct si_sm_io io;
|
|
int (*io_setup)(struct smi_info *info);
|
|
void (*io_cleanup)(struct smi_info *info);
|
|
int (*irq_setup)(struct smi_info *info);
|
|
void (*irq_cleanup)(struct smi_info *info);
|
|
unsigned int io_size;
|
|
|
|
/* Flags from the last GET_MSG_FLAGS command, used when an ATTN
|
|
is set to hold the flags until we are done handling everything
|
|
from the flags. */
|
|
#define RECEIVE_MSG_AVAIL 0x01
|
|
#define EVENT_MSG_BUFFER_FULL 0x02
|
|
#define WDT_PRE_TIMEOUT_INT 0x08
|
|
unsigned char msg_flags;
|
|
|
|
/* If set to true, this will request events the next time the
|
|
state machine is idle. */
|
|
atomic_t req_events;
|
|
|
|
/* If true, run the state machine to completion on every send
|
|
call. Generally used after a panic to make sure stuff goes
|
|
out. */
|
|
int run_to_completion;
|
|
|
|
/* The I/O port of an SI interface. */
|
|
int port;
|
|
|
|
/* The space between start addresses of the two ports. For
|
|
instance, if the first port is 0xca2 and the spacing is 4, then
|
|
the second port is 0xca6. */
|
|
unsigned int spacing;
|
|
|
|
/* zero if no irq; */
|
|
int irq;
|
|
|
|
/* The timer for this si. */
|
|
struct timer_list si_timer;
|
|
|
|
/* The time (in jiffies) the last timeout occurred at. */
|
|
unsigned long last_timeout_jiffies;
|
|
|
|
/* Used to gracefully stop the timer without race conditions. */
|
|
volatile int stop_operation;
|
|
volatile int timer_stopped;
|
|
|
|
/* The driver will disable interrupts when it gets into a
|
|
situation where it cannot handle messages due to lack of
|
|
memory. Once that situation clears up, it will re-enable
|
|
interrupts. */
|
|
int interrupt_disabled;
|
|
|
|
unsigned char ipmi_si_dev_rev;
|
|
unsigned char ipmi_si_fw_rev_major;
|
|
unsigned char ipmi_si_fw_rev_minor;
|
|
unsigned char ipmi_version_major;
|
|
unsigned char ipmi_version_minor;
|
|
|
|
/* Slave address, could be reported from DMI. */
|
|
unsigned char slave_addr;
|
|
|
|
/* Counters and things for the proc filesystem. */
|
|
spinlock_t count_lock;
|
|
unsigned long short_timeouts;
|
|
unsigned long long_timeouts;
|
|
unsigned long timeout_restarts;
|
|
unsigned long idles;
|
|
unsigned long interrupts;
|
|
unsigned long attentions;
|
|
unsigned long flag_fetches;
|
|
unsigned long hosed_count;
|
|
unsigned long complete_transactions;
|
|
unsigned long events;
|
|
unsigned long watchdog_pretimeouts;
|
|
unsigned long incoming_messages;
|
|
};
|
|
|
|
static void si_restart_short_timer(struct smi_info *smi_info);
|
|
|
|
static void deliver_recv_msg(struct smi_info *smi_info,
|
|
struct ipmi_smi_msg *msg)
|
|
{
|
|
/* Deliver the message to the upper layer with the lock
|
|
released. */
|
|
spin_unlock(&(smi_info->si_lock));
|
|
ipmi_smi_msg_received(smi_info->intf, msg);
|
|
spin_lock(&(smi_info->si_lock));
|
|
}
|
|
|
|
static void return_hosed_msg(struct smi_info *smi_info)
|
|
{
|
|
struct ipmi_smi_msg *msg = smi_info->curr_msg;
|
|
|
|
/* Make it a reponse */
|
|
msg->rsp[0] = msg->data[0] | 4;
|
|
msg->rsp[1] = msg->data[1];
|
|
msg->rsp[2] = 0xFF; /* Unknown error. */
|
|
msg->rsp_size = 3;
|
|
|
|
smi_info->curr_msg = NULL;
|
|
deliver_recv_msg(smi_info, msg);
|
|
}
|
|
|
|
static enum si_sm_result start_next_msg(struct smi_info *smi_info)
|
|
{
|
|
int rv;
|
|
struct list_head *entry = NULL;
|
|
#ifdef DEBUG_TIMING
|
|
struct timeval t;
|
|
#endif
|
|
|
|
/* No need to save flags, we aleady have interrupts off and we
|
|
already hold the SMI lock. */
|
|
spin_lock(&(smi_info->msg_lock));
|
|
|
|
/* Pick the high priority queue first. */
|
|
if (! list_empty(&(smi_info->hp_xmit_msgs))) {
|
|
entry = smi_info->hp_xmit_msgs.next;
|
|
} else if (! list_empty(&(smi_info->xmit_msgs))) {
|
|
entry = smi_info->xmit_msgs.next;
|
|
}
|
|
|
|
if (!entry) {
|
|
smi_info->curr_msg = NULL;
|
|
rv = SI_SM_IDLE;
|
|
} else {
|
|
int err;
|
|
|
|
list_del(entry);
|
|
smi_info->curr_msg = list_entry(entry,
|
|
struct ipmi_smi_msg,
|
|
link);
|
|
#ifdef DEBUG_TIMING
|
|
do_gettimeofday(&t);
|
|
printk("**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
|
|
#endif
|
|
err = smi_info->handlers->start_transaction(
|
|
smi_info->si_sm,
|
|
smi_info->curr_msg->data,
|
|
smi_info->curr_msg->data_size);
|
|
if (err) {
|
|
return_hosed_msg(smi_info);
|
|
}
|
|
|
|
rv = SI_SM_CALL_WITHOUT_DELAY;
|
|
}
|
|
spin_unlock(&(smi_info->msg_lock));
|
|
|
|
return rv;
|
|
}
|
|
|
|
static void start_enable_irq(struct smi_info *smi_info)
|
|
{
|
|
unsigned char msg[2];
|
|
|
|
/* If we are enabling interrupts, we have to tell the
|
|
BMC to use them. */
|
|
msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
|
|
msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
|
|
|
|
smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
|
|
smi_info->si_state = SI_ENABLE_INTERRUPTS1;
|
|
}
|
|
|
|
static void start_clear_flags(struct smi_info *smi_info)
|
|
{
|
|
unsigned char msg[3];
|
|
|
|
/* Make sure the watchdog pre-timeout flag is not set at startup. */
|
|
msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
|
|
msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
|
|
msg[2] = WDT_PRE_TIMEOUT_INT;
|
|
|
|
smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
|
|
smi_info->si_state = SI_CLEARING_FLAGS;
|
|
}
|
|
|
|
/* When we have a situtaion where we run out of memory and cannot
|
|
allocate messages, we just leave them in the BMC and run the system
|
|
polled until we can allocate some memory. Once we have some
|
|
memory, we will re-enable the interrupt. */
|
|
static inline void disable_si_irq(struct smi_info *smi_info)
|
|
{
|
|
if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
|
|
disable_irq_nosync(smi_info->irq);
|
|
smi_info->interrupt_disabled = 1;
|
|
}
|
|
}
|
|
|
|
static inline void enable_si_irq(struct smi_info *smi_info)
|
|
{
|
|
if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
|
|
enable_irq(smi_info->irq);
|
|
smi_info->interrupt_disabled = 0;
|
|
}
|
|
}
|
|
|
|
static void handle_flags(struct smi_info *smi_info)
|
|
{
|
|
if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
|
|
/* Watchdog pre-timeout */
|
|
spin_lock(&smi_info->count_lock);
|
|
smi_info->watchdog_pretimeouts++;
|
|
spin_unlock(&smi_info->count_lock);
|
|
|
|
start_clear_flags(smi_info);
|
|
smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
|
|
spin_unlock(&(smi_info->si_lock));
|
|
ipmi_smi_watchdog_pretimeout(smi_info->intf);
|
|
spin_lock(&(smi_info->si_lock));
|
|
} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
|
|
/* Messages available. */
|
|
smi_info->curr_msg = ipmi_alloc_smi_msg();
|
|
if (!smi_info->curr_msg) {
|
|
disable_si_irq(smi_info);
|
|
smi_info->si_state = SI_NORMAL;
|
|
return;
|
|
}
|
|
enable_si_irq(smi_info);
|
|
|
|
smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
|
|
smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
|
|
smi_info->curr_msg->data_size = 2;
|
|
|
|
smi_info->handlers->start_transaction(
|
|
smi_info->si_sm,
|
|
smi_info->curr_msg->data,
|
|
smi_info->curr_msg->data_size);
|
|
smi_info->si_state = SI_GETTING_MESSAGES;
|
|
} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
|
|
/* Events available. */
|
|
smi_info->curr_msg = ipmi_alloc_smi_msg();
|
|
if (!smi_info->curr_msg) {
|
|
disable_si_irq(smi_info);
|
|
smi_info->si_state = SI_NORMAL;
|
|
return;
|
|
}
|
|
enable_si_irq(smi_info);
|
|
|
|
smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
|
|
smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
|
|
smi_info->curr_msg->data_size = 2;
|
|
|
|
smi_info->handlers->start_transaction(
|
|
smi_info->si_sm,
|
|
smi_info->curr_msg->data,
|
|
smi_info->curr_msg->data_size);
|
|
smi_info->si_state = SI_GETTING_EVENTS;
|
|
} else {
|
|
smi_info->si_state = SI_NORMAL;
|
|
}
|
|
}
|
|
|
|
static void handle_transaction_done(struct smi_info *smi_info)
|
|
{
|
|
struct ipmi_smi_msg *msg;
|
|
#ifdef DEBUG_TIMING
|
|
struct timeval t;
|
|
|
|
do_gettimeofday(&t);
|
|
printk("**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
|
|
#endif
|
|
switch (smi_info->si_state) {
|
|
case SI_NORMAL:
|
|
if (!smi_info->curr_msg)
|
|
break;
|
|
|
|
smi_info->curr_msg->rsp_size
|
|
= smi_info->handlers->get_result(
|
|
smi_info->si_sm,
|
|
smi_info->curr_msg->rsp,
|
|
IPMI_MAX_MSG_LENGTH);
|
|
|
|
/* Do this here becase deliver_recv_msg() releases the
|
|
lock, and a new message can be put in during the
|
|
time the lock is released. */
|
|
msg = smi_info->curr_msg;
|
|
smi_info->curr_msg = NULL;
|
|
deliver_recv_msg(smi_info, msg);
|
|
break;
|
|
|
|
case SI_GETTING_FLAGS:
|
|
{
|
|
unsigned char msg[4];
|
|
unsigned int len;
|
|
|
|
/* We got the flags from the SMI, now handle them. */
|
|
len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
|
|
if (msg[2] != 0) {
|
|
/* Error fetching flags, just give up for
|
|
now. */
|
|
smi_info->si_state = SI_NORMAL;
|
|
} else if (len < 4) {
|
|
/* Hmm, no flags. That's technically illegal, but
|
|
don't use uninitialized data. */
|
|
smi_info->si_state = SI_NORMAL;
|
|
} else {
|
|
smi_info->msg_flags = msg[3];
|
|
handle_flags(smi_info);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case SI_CLEARING_FLAGS:
|
|
case SI_CLEARING_FLAGS_THEN_SET_IRQ:
|
|
{
|
|
unsigned char msg[3];
|
|
|
|
/* We cleared the flags. */
|
|
smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
|
|
if (msg[2] != 0) {
|
|
/* Error clearing flags */
|
|
printk(KERN_WARNING
|
|
"ipmi_si: Error clearing flags: %2.2x\n",
|
|
msg[2]);
|
|
}
|
|
if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
|
|
start_enable_irq(smi_info);
|
|
else
|
|
smi_info->si_state = SI_NORMAL;
|
|
break;
|
|
}
|
|
|
|
case SI_GETTING_EVENTS:
|
|
{
|
|
smi_info->curr_msg->rsp_size
|
|
= smi_info->handlers->get_result(
|
|
smi_info->si_sm,
|
|
smi_info->curr_msg->rsp,
|
|
IPMI_MAX_MSG_LENGTH);
|
|
|
|
/* Do this here becase deliver_recv_msg() releases the
|
|
lock, and a new message can be put in during the
|
|
time the lock is released. */
|
|
msg = smi_info->curr_msg;
|
|
smi_info->curr_msg = NULL;
|
|
if (msg->rsp[2] != 0) {
|
|
/* Error getting event, probably done. */
|
|
msg->done(msg);
|
|
|
|
/* Take off the event flag. */
|
|
smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
|
|
handle_flags(smi_info);
|
|
} else {
|
|
spin_lock(&smi_info->count_lock);
|
|
smi_info->events++;
|
|
spin_unlock(&smi_info->count_lock);
|
|
|
|
/* Do this before we deliver the message
|
|
because delivering the message releases the
|
|
lock and something else can mess with the
|
|
state. */
|
|
handle_flags(smi_info);
|
|
|
|
deliver_recv_msg(smi_info, msg);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case SI_GETTING_MESSAGES:
|
|
{
|
|
smi_info->curr_msg->rsp_size
|
|
= smi_info->handlers->get_result(
|
|
smi_info->si_sm,
|
|
smi_info->curr_msg->rsp,
|
|
IPMI_MAX_MSG_LENGTH);
|
|
|
|
/* Do this here becase deliver_recv_msg() releases the
|
|
lock, and a new message can be put in during the
|
|
time the lock is released. */
|
|
msg = smi_info->curr_msg;
|
|
smi_info->curr_msg = NULL;
|
|
if (msg->rsp[2] != 0) {
|
|
/* Error getting event, probably done. */
|
|
msg->done(msg);
|
|
|
|
/* Take off the msg flag. */
|
|
smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
|
|
handle_flags(smi_info);
|
|
} else {
|
|
spin_lock(&smi_info->count_lock);
|
|
smi_info->incoming_messages++;
|
|
spin_unlock(&smi_info->count_lock);
|
|
|
|
/* Do this before we deliver the message
|
|
because delivering the message releases the
|
|
lock and something else can mess with the
|
|
state. */
|
|
handle_flags(smi_info);
|
|
|
|
deliver_recv_msg(smi_info, msg);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case SI_ENABLE_INTERRUPTS1:
|
|
{
|
|
unsigned char msg[4];
|
|
|
|
/* We got the flags from the SMI, now handle them. */
|
|
smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
|
|
if (msg[2] != 0) {
|
|
printk(KERN_WARNING
|
|
"ipmi_si: Could not enable interrupts"
|
|
", failed get, using polled mode.\n");
|
|
smi_info->si_state = SI_NORMAL;
|
|
} else {
|
|
msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
|
|
msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
|
|
msg[2] = msg[3] | 1; /* enable msg queue int */
|
|
smi_info->handlers->start_transaction(
|
|
smi_info->si_sm, msg, 3);
|
|
smi_info->si_state = SI_ENABLE_INTERRUPTS2;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case SI_ENABLE_INTERRUPTS2:
|
|
{
|
|
unsigned char msg[4];
|
|
|
|
/* We got the flags from the SMI, now handle them. */
|
|
smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
|
|
if (msg[2] != 0) {
|
|
printk(KERN_WARNING
|
|
"ipmi_si: Could not enable interrupts"
|
|
", failed set, using polled mode.\n");
|
|
}
|
|
smi_info->si_state = SI_NORMAL;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Called on timeouts and events. Timeouts should pass the elapsed
|
|
time, interrupts should pass in zero. */
|
|
static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
|
|
int time)
|
|
{
|
|
enum si_sm_result si_sm_result;
|
|
|
|
restart:
|
|
/* There used to be a loop here that waited a little while
|
|
(around 25us) before giving up. That turned out to be
|
|
pointless, the minimum delays I was seeing were in the 300us
|
|
range, which is far too long to wait in an interrupt. So
|
|
we just run until the state machine tells us something
|
|
happened or it needs a delay. */
|
|
si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
|
|
time = 0;
|
|
while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
|
|
{
|
|
si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
|
|
}
|
|
|
|
if (si_sm_result == SI_SM_TRANSACTION_COMPLETE)
|
|
{
|
|
spin_lock(&smi_info->count_lock);
|
|
smi_info->complete_transactions++;
|
|
spin_unlock(&smi_info->count_lock);
|
|
|
|
handle_transaction_done(smi_info);
|
|
si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
|
|
}
|
|
else if (si_sm_result == SI_SM_HOSED)
|
|
{
|
|
spin_lock(&smi_info->count_lock);
|
|
smi_info->hosed_count++;
|
|
spin_unlock(&smi_info->count_lock);
|
|
|
|
/* Do the before return_hosed_msg, because that
|
|
releases the lock. */
|
|
smi_info->si_state = SI_NORMAL;
|
|
if (smi_info->curr_msg != NULL) {
|
|
/* If we were handling a user message, format
|
|
a response to send to the upper layer to
|
|
tell it about the error. */
|
|
return_hosed_msg(smi_info);
|
|
}
|
|
si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
|
|
}
|
|
|
|
/* We prefer handling attn over new messages. */
|
|
if (si_sm_result == SI_SM_ATTN)
|
|
{
|
|
unsigned char msg[2];
|
|
|
|
spin_lock(&smi_info->count_lock);
|
|
smi_info->attentions++;
|
|
spin_unlock(&smi_info->count_lock);
|
|
|
|
/* Got a attn, send down a get message flags to see
|
|
what's causing it. It would be better to handle
|
|
this in the upper layer, but due to the way
|
|
interrupts work with the SMI, that's not really
|
|
possible. */
|
|
msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
|
|
msg[1] = IPMI_GET_MSG_FLAGS_CMD;
|
|
|
|
smi_info->handlers->start_transaction(
|
|
smi_info->si_sm, msg, 2);
|
|
smi_info->si_state = SI_GETTING_FLAGS;
|
|
goto restart;
|
|
}
|
|
|
|
/* If we are currently idle, try to start the next message. */
|
|
if (si_sm_result == SI_SM_IDLE) {
|
|
spin_lock(&smi_info->count_lock);
|
|
smi_info->idles++;
|
|
spin_unlock(&smi_info->count_lock);
|
|
|
|
si_sm_result = start_next_msg(smi_info);
|
|
if (si_sm_result != SI_SM_IDLE)
|
|
goto restart;
|
|
}
|
|
|
|
if ((si_sm_result == SI_SM_IDLE)
|
|
&& (atomic_read(&smi_info->req_events)))
|
|
{
|
|
/* We are idle and the upper layer requested that I fetch
|
|
events, so do so. */
|
|
unsigned char msg[2];
|
|
|
|
spin_lock(&smi_info->count_lock);
|
|
smi_info->flag_fetches++;
|
|
spin_unlock(&smi_info->count_lock);
|
|
|
|
atomic_set(&smi_info->req_events, 0);
|
|
msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
|
|
msg[1] = IPMI_GET_MSG_FLAGS_CMD;
|
|
|
|
smi_info->handlers->start_transaction(
|
|
smi_info->si_sm, msg, 2);
|
|
smi_info->si_state = SI_GETTING_FLAGS;
|
|
goto restart;
|
|
}
|
|
|
|
return si_sm_result;
|
|
}
|
|
|
|
static void sender(void *send_info,
|
|
struct ipmi_smi_msg *msg,
|
|
int priority)
|
|
{
|
|
struct smi_info *smi_info = send_info;
|
|
enum si_sm_result result;
|
|
unsigned long flags;
|
|
#ifdef DEBUG_TIMING
|
|
struct timeval t;
|
|
#endif
|
|
|
|
spin_lock_irqsave(&(smi_info->msg_lock), flags);
|
|
#ifdef DEBUG_TIMING
|
|
do_gettimeofday(&t);
|
|
printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
|
|
#endif
|
|
|
|
if (smi_info->run_to_completion) {
|
|
/* If we are running to completion, then throw it in
|
|
the list and run transactions until everything is
|
|
clear. Priority doesn't matter here. */
|
|
list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
|
|
|
|
/* We have to release the msg lock and claim the smi
|
|
lock in this case, because of race conditions. */
|
|
spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
|
|
|
|
spin_lock_irqsave(&(smi_info->si_lock), flags);
|
|
result = smi_event_handler(smi_info, 0);
|
|
while (result != SI_SM_IDLE) {
|
|
udelay(SI_SHORT_TIMEOUT_USEC);
|
|
result = smi_event_handler(smi_info,
|
|
SI_SHORT_TIMEOUT_USEC);
|
|
}
|
|
spin_unlock_irqrestore(&(smi_info->si_lock), flags);
|
|
return;
|
|
} else {
|
|
if (priority > 0) {
|
|
list_add_tail(&(msg->link), &(smi_info->hp_xmit_msgs));
|
|
} else {
|
|
list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
|
|
|
|
spin_lock_irqsave(&(smi_info->si_lock), flags);
|
|
if ((smi_info->si_state == SI_NORMAL)
|
|
&& (smi_info->curr_msg == NULL))
|
|
{
|
|
start_next_msg(smi_info);
|
|
si_restart_short_timer(smi_info);
|
|
}
|
|
spin_unlock_irqrestore(&(smi_info->si_lock), flags);
|
|
}
|
|
|
|
static void set_run_to_completion(void *send_info, int i_run_to_completion)
|
|
{
|
|
struct smi_info *smi_info = send_info;
|
|
enum si_sm_result result;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&(smi_info->si_lock), flags);
|
|
|
|
smi_info->run_to_completion = i_run_to_completion;
|
|
if (i_run_to_completion) {
|
|
result = smi_event_handler(smi_info, 0);
|
|
while (result != SI_SM_IDLE) {
|
|
udelay(SI_SHORT_TIMEOUT_USEC);
|
|
result = smi_event_handler(smi_info,
|
|
SI_SHORT_TIMEOUT_USEC);
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(&(smi_info->si_lock), flags);
|
|
}
|
|
|
|
static void poll(void *send_info)
|
|
{
|
|
struct smi_info *smi_info = send_info;
|
|
|
|
smi_event_handler(smi_info, 0);
|
|
}
|
|
|
|
static void request_events(void *send_info)
|
|
{
|
|
struct smi_info *smi_info = send_info;
|
|
|
|
atomic_set(&smi_info->req_events, 1);
|
|
}
|
|
|
|
static int initialized = 0;
|
|
|
|
/* Must be called with interrupts off and with the si_lock held. */
|
|
static void si_restart_short_timer(struct smi_info *smi_info)
|
|
{
|
|
#if defined(CONFIG_HIGH_RES_TIMERS)
|
|
unsigned long flags;
|
|
unsigned long jiffies_now;
|
|
|
|
if (del_timer(&(smi_info->si_timer))) {
|
|
/* If we don't delete the timer, then it will go off
|
|
immediately, anyway. So we only process if we
|
|
actually delete the timer. */
|
|
|
|
/* We already have irqsave on, so no need for it
|
|
here. */
|
|
read_lock(&xtime_lock);
|
|
jiffies_now = jiffies;
|
|
smi_info->si_timer.expires = jiffies_now;
|
|
smi_info->si_timer.sub_expires = get_arch_cycles(jiffies_now);
|
|
|
|
add_usec_to_timer(&smi_info->si_timer, SI_SHORT_TIMEOUT_USEC);
|
|
|
|
add_timer(&(smi_info->si_timer));
|
|
spin_lock_irqsave(&smi_info->count_lock, flags);
|
|
smi_info->timeout_restarts++;
|
|
spin_unlock_irqrestore(&smi_info->count_lock, flags);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void smi_timeout(unsigned long data)
|
|
{
|
|
struct smi_info *smi_info = (struct smi_info *) data;
|
|
enum si_sm_result smi_result;
|
|
unsigned long flags;
|
|
unsigned long jiffies_now;
|
|
unsigned long time_diff;
|
|
#ifdef DEBUG_TIMING
|
|
struct timeval t;
|
|
#endif
|
|
|
|
if (smi_info->stop_operation) {
|
|
smi_info->timer_stopped = 1;
|
|
return;
|
|
}
|
|
|
|
spin_lock_irqsave(&(smi_info->si_lock), flags);
|
|
#ifdef DEBUG_TIMING
|
|
do_gettimeofday(&t);
|
|
printk("**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
|
|
#endif
|
|
jiffies_now = jiffies;
|
|
time_diff = ((jiffies_now - smi_info->last_timeout_jiffies)
|
|
* SI_USEC_PER_JIFFY);
|
|
smi_result = smi_event_handler(smi_info, time_diff);
|
|
|
|
spin_unlock_irqrestore(&(smi_info->si_lock), flags);
|
|
|
|
smi_info->last_timeout_jiffies = jiffies_now;
|
|
|
|
if ((smi_info->irq) && (! smi_info->interrupt_disabled)) {
|
|
/* Running with interrupts, only do long timeouts. */
|
|
smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
|
|
spin_lock_irqsave(&smi_info->count_lock, flags);
|
|
smi_info->long_timeouts++;
|
|
spin_unlock_irqrestore(&smi_info->count_lock, flags);
|
|
goto do_add_timer;
|
|
}
|
|
|
|
/* If the state machine asks for a short delay, then shorten
|
|
the timer timeout. */
|
|
if (smi_result == SI_SM_CALL_WITH_DELAY) {
|
|
spin_lock_irqsave(&smi_info->count_lock, flags);
|
|
smi_info->short_timeouts++;
|
|
spin_unlock_irqrestore(&smi_info->count_lock, flags);
|
|
#if defined(CONFIG_HIGH_RES_TIMERS)
|
|
read_lock(&xtime_lock);
|
|
smi_info->si_timer.expires = jiffies;
|
|
smi_info->si_timer.sub_expires
|
|
= get_arch_cycles(smi_info->si_timer.expires);
|
|
read_unlock(&xtime_lock);
|
|
add_usec_to_timer(&smi_info->si_timer, SI_SHORT_TIMEOUT_USEC);
|
|
#else
|
|
smi_info->si_timer.expires = jiffies + 1;
|
|
#endif
|
|
} else {
|
|
spin_lock_irqsave(&smi_info->count_lock, flags);
|
|
smi_info->long_timeouts++;
|
|
spin_unlock_irqrestore(&smi_info->count_lock, flags);
|
|
smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
|
|
#if defined(CONFIG_HIGH_RES_TIMERS)
|
|
smi_info->si_timer.sub_expires = 0;
|
|
#endif
|
|
}
|
|
|
|
do_add_timer:
|
|
add_timer(&(smi_info->si_timer));
|
|
}
|
|
|
|
static irqreturn_t si_irq_handler(int irq, void *data, struct pt_regs *regs)
|
|
{
|
|
struct smi_info *smi_info = data;
|
|
unsigned long flags;
|
|
#ifdef DEBUG_TIMING
|
|
struct timeval t;
|
|
#endif
|
|
|
|
spin_lock_irqsave(&(smi_info->si_lock), flags);
|
|
|
|
spin_lock(&smi_info->count_lock);
|
|
smi_info->interrupts++;
|
|
spin_unlock(&smi_info->count_lock);
|
|
|
|
if (smi_info->stop_operation)
|
|
goto out;
|
|
|
|
#ifdef DEBUG_TIMING
|
|
do_gettimeofday(&t);
|
|
printk("**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
|
|
#endif
|
|
smi_event_handler(smi_info, 0);
|
|
out:
|
|
spin_unlock_irqrestore(&(smi_info->si_lock), flags);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t si_bt_irq_handler(int irq, void *data, struct pt_regs *regs)
|
|
{
|
|
struct smi_info *smi_info = data;
|
|
/* We need to clear the IRQ flag for the BT interface. */
|
|
smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
|
|
IPMI_BT_INTMASK_CLEAR_IRQ_BIT
|
|
| IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
|
|
return si_irq_handler(irq, data, regs);
|
|
}
|
|
|
|
|
|
static struct ipmi_smi_handlers handlers =
|
|
{
|
|
.owner = THIS_MODULE,
|
|
.sender = sender,
|
|
.request_events = request_events,
|
|
.set_run_to_completion = set_run_to_completion,
|
|
.poll = poll,
|
|
};
|
|
|
|
/* There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
|
|
a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS */
|
|
|
|
#define SI_MAX_PARMS 4
|
|
#define SI_MAX_DRIVERS ((SI_MAX_PARMS * 2) + 2)
|
|
static struct smi_info *smi_infos[SI_MAX_DRIVERS] =
|
|
{ NULL, NULL, NULL, NULL };
|
|
|
|
#define DEVICE_NAME "ipmi_si"
|
|
|
|
#define DEFAULT_KCS_IO_PORT 0xca2
|
|
#define DEFAULT_SMIC_IO_PORT 0xca9
|
|
#define DEFAULT_BT_IO_PORT 0xe4
|
|
#define DEFAULT_REGSPACING 1
|
|
|
|
static int si_trydefaults = 1;
|
|
static char *si_type[SI_MAX_PARMS];
|
|
#define MAX_SI_TYPE_STR 30
|
|
static char si_type_str[MAX_SI_TYPE_STR];
|
|
static unsigned long addrs[SI_MAX_PARMS];
|
|
static int num_addrs;
|
|
static unsigned int ports[SI_MAX_PARMS];
|
|
static int num_ports;
|
|
static int irqs[SI_MAX_PARMS];
|
|
static int num_irqs;
|
|
static int regspacings[SI_MAX_PARMS];
|
|
static int num_regspacings = 0;
|
|
static int regsizes[SI_MAX_PARMS];
|
|
static int num_regsizes = 0;
|
|
static int regshifts[SI_MAX_PARMS];
|
|
static int num_regshifts = 0;
|
|
static int slave_addrs[SI_MAX_PARMS];
|
|
static int num_slave_addrs = 0;
|
|
|
|
|
|
module_param_named(trydefaults, si_trydefaults, bool, 0);
|
|
MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
|
|
" default scan of the KCS and SMIC interface at the standard"
|
|
" address");
|
|
module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
|
|
MODULE_PARM_DESC(type, "Defines the type of each interface, each"
|
|
" interface separated by commas. The types are 'kcs',"
|
|
" 'smic', and 'bt'. For example si_type=kcs,bt will set"
|
|
" the first interface to kcs and the second to bt");
|
|
module_param_array(addrs, long, &num_addrs, 0);
|
|
MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
|
|
" addresses separated by commas. Only use if an interface"
|
|
" is in memory. Otherwise, set it to zero or leave"
|
|
" it blank.");
|
|
module_param_array(ports, int, &num_ports, 0);
|
|
MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
|
|
" addresses separated by commas. Only use if an interface"
|
|
" is a port. Otherwise, set it to zero or leave"
|
|
" it blank.");
|
|
module_param_array(irqs, int, &num_irqs, 0);
|
|
MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
|
|
" addresses separated by commas. Only use if an interface"
|
|
" has an interrupt. Otherwise, set it to zero or leave"
|
|
" it blank.");
|
|
module_param_array(regspacings, int, &num_regspacings, 0);
|
|
MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
|
|
" and each successive register used by the interface. For"
|
|
" instance, if the start address is 0xca2 and the spacing"
|
|
" is 2, then the second address is at 0xca4. Defaults"
|
|
" to 1.");
|
|
module_param_array(regsizes, int, &num_regsizes, 0);
|
|
MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
|
|
" This should generally be 1, 2, 4, or 8 for an 8-bit,"
|
|
" 16-bit, 32-bit, or 64-bit register. Use this if you"
|
|
" the 8-bit IPMI register has to be read from a larger"
|
|
" register.");
|
|
module_param_array(regshifts, int, &num_regshifts, 0);
|
|
MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
|
|
" IPMI register, in bits. For instance, if the data"
|
|
" is read from a 32-bit word and the IPMI data is in"
|
|
" bit 8-15, then the shift would be 8");
|
|
module_param_array(slave_addrs, int, &num_slave_addrs, 0);
|
|
MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
|
|
" the controller. Normally this is 0x20, but can be"
|
|
" overridden by this parm. This is an array indexed"
|
|
" by interface number.");
|
|
|
|
|
|
#define IPMI_MEM_ADDR_SPACE 1
|
|
#define IPMI_IO_ADDR_SPACE 2
|
|
|
|
#if defined(CONFIG_ACPI_INTERPRETER) || defined(CONFIG_X86) || defined(CONFIG_PCI)
|
|
static int is_new_interface(int intf, u8 addr_space, unsigned long base_addr)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < SI_MAX_PARMS; ++i) {
|
|
/* Don't check our address. */
|
|
if (i == intf)
|
|
continue;
|
|
if (si_type[i] != NULL) {
|
|
if ((addr_space == IPMI_MEM_ADDR_SPACE &&
|
|
base_addr == addrs[i]) ||
|
|
(addr_space == IPMI_IO_ADDR_SPACE &&
|
|
base_addr == ports[i]))
|
|
return 0;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
static int std_irq_setup(struct smi_info *info)
|
|
{
|
|
int rv;
|
|
|
|
if (!info->irq)
|
|
return 0;
|
|
|
|
if (info->si_type == SI_BT) {
|
|
rv = request_irq(info->irq,
|
|
si_bt_irq_handler,
|
|
SA_INTERRUPT,
|
|
DEVICE_NAME,
|
|
info);
|
|
if (!rv)
|
|
/* Enable the interrupt in the BT interface. */
|
|
info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
|
|
IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
|
|
} else
|
|
rv = request_irq(info->irq,
|
|
si_irq_handler,
|
|
SA_INTERRUPT,
|
|
DEVICE_NAME,
|
|
info);
|
|
if (rv) {
|
|
printk(KERN_WARNING
|
|
"ipmi_si: %s unable to claim interrupt %d,"
|
|
" running polled\n",
|
|
DEVICE_NAME, info->irq);
|
|
info->irq = 0;
|
|
} else {
|
|
printk(" Using irq %d\n", info->irq);
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
static void std_irq_cleanup(struct smi_info *info)
|
|
{
|
|
if (!info->irq)
|
|
return;
|
|
|
|
if (info->si_type == SI_BT)
|
|
/* Disable the interrupt in the BT interface. */
|
|
info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
|
|
free_irq(info->irq, info);
|
|
}
|
|
|
|
static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
|
|
{
|
|
unsigned int *addr = io->info;
|
|
|
|
return inb((*addr)+(offset*io->regspacing));
|
|
}
|
|
|
|
static void port_outb(struct si_sm_io *io, unsigned int offset,
|
|
unsigned char b)
|
|
{
|
|
unsigned int *addr = io->info;
|
|
|
|
outb(b, (*addr)+(offset * io->regspacing));
|
|
}
|
|
|
|
static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
|
|
{
|
|
unsigned int *addr = io->info;
|
|
|
|
return (inw((*addr)+(offset * io->regspacing)) >> io->regshift) & 0xff;
|
|
}
|
|
|
|
static void port_outw(struct si_sm_io *io, unsigned int offset,
|
|
unsigned char b)
|
|
{
|
|
unsigned int *addr = io->info;
|
|
|
|
outw(b << io->regshift, (*addr)+(offset * io->regspacing));
|
|
}
|
|
|
|
static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
|
|
{
|
|
unsigned int *addr = io->info;
|
|
|
|
return (inl((*addr)+(offset * io->regspacing)) >> io->regshift) & 0xff;
|
|
}
|
|
|
|
static void port_outl(struct si_sm_io *io, unsigned int offset,
|
|
unsigned char b)
|
|
{
|
|
unsigned int *addr = io->info;
|
|
|
|
outl(b << io->regshift, (*addr)+(offset * io->regspacing));
|
|
}
|
|
|
|
static void port_cleanup(struct smi_info *info)
|
|
{
|
|
unsigned int *addr = info->io.info;
|
|
int mapsize;
|
|
|
|
if (addr && (*addr)) {
|
|
mapsize = ((info->io_size * info->io.regspacing)
|
|
- (info->io.regspacing - info->io.regsize));
|
|
|
|
release_region (*addr, mapsize);
|
|
}
|
|
kfree(info);
|
|
}
|
|
|
|
static int port_setup(struct smi_info *info)
|
|
{
|
|
unsigned int *addr = info->io.info;
|
|
int mapsize;
|
|
|
|
if (!addr || (!*addr))
|
|
return -ENODEV;
|
|
|
|
info->io_cleanup = port_cleanup;
|
|
|
|
/* Figure out the actual inb/inw/inl/etc routine to use based
|
|
upon the register size. */
|
|
switch (info->io.regsize) {
|
|
case 1:
|
|
info->io.inputb = port_inb;
|
|
info->io.outputb = port_outb;
|
|
break;
|
|
case 2:
|
|
info->io.inputb = port_inw;
|
|
info->io.outputb = port_outw;
|
|
break;
|
|
case 4:
|
|
info->io.inputb = port_inl;
|
|
info->io.outputb = port_outl;
|
|
break;
|
|
default:
|
|
printk("ipmi_si: Invalid register size: %d\n",
|
|
info->io.regsize);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Calculate the total amount of memory to claim. This is an
|
|
* unusual looking calculation, but it avoids claiming any
|
|
* more memory than it has to. It will claim everything
|
|
* between the first address to the end of the last full
|
|
* register. */
|
|
mapsize = ((info->io_size * info->io.regspacing)
|
|
- (info->io.regspacing - info->io.regsize));
|
|
|
|
if (request_region(*addr, mapsize, DEVICE_NAME) == NULL)
|
|
return -EIO;
|
|
return 0;
|
|
}
|
|
|
|
static int try_init_port(int intf_num, struct smi_info **new_info)
|
|
{
|
|
struct smi_info *info;
|
|
|
|
if (!ports[intf_num])
|
|
return -ENODEV;
|
|
|
|
if (!is_new_interface(intf_num, IPMI_IO_ADDR_SPACE,
|
|
ports[intf_num]))
|
|
return -ENODEV;
|
|
|
|
info = kmalloc(sizeof(*info), GFP_KERNEL);
|
|
if (!info) {
|
|
printk(KERN_ERR "ipmi_si: Could not allocate SI data (1)\n");
|
|
return -ENOMEM;
|
|
}
|
|
memset(info, 0, sizeof(*info));
|
|
|
|
info->io_setup = port_setup;
|
|
info->io.info = &(ports[intf_num]);
|
|
info->io.addr = NULL;
|
|
info->io.regspacing = regspacings[intf_num];
|
|
if (!info->io.regspacing)
|
|
info->io.regspacing = DEFAULT_REGSPACING;
|
|
info->io.regsize = regsizes[intf_num];
|
|
if (!info->io.regsize)
|
|
info->io.regsize = DEFAULT_REGSPACING;
|
|
info->io.regshift = regshifts[intf_num];
|
|
info->irq = 0;
|
|
info->irq_setup = NULL;
|
|
*new_info = info;
|
|
|
|
if (si_type[intf_num] == NULL)
|
|
si_type[intf_num] = "kcs";
|
|
|
|
printk("ipmi_si: Trying \"%s\" at I/O port 0x%x\n",
|
|
si_type[intf_num], ports[intf_num]);
|
|
return 0;
|
|
}
|
|
|
|
static unsigned char mem_inb(struct si_sm_io *io, unsigned int offset)
|
|
{
|
|
return readb((io->addr)+(offset * io->regspacing));
|
|
}
|
|
|
|
static void mem_outb(struct si_sm_io *io, unsigned int offset,
|
|
unsigned char b)
|
|
{
|
|
writeb(b, (io->addr)+(offset * io->regspacing));
|
|
}
|
|
|
|
static unsigned char mem_inw(struct si_sm_io *io, unsigned int offset)
|
|
{
|
|
return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
|
|
&& 0xff;
|
|
}
|
|
|
|
static void mem_outw(struct si_sm_io *io, unsigned int offset,
|
|
unsigned char b)
|
|
{
|
|
writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
|
|
}
|
|
|
|
static unsigned char mem_inl(struct si_sm_io *io, unsigned int offset)
|
|
{
|
|
return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
|
|
&& 0xff;
|
|
}
|
|
|
|
static void mem_outl(struct si_sm_io *io, unsigned int offset,
|
|
unsigned char b)
|
|
{
|
|
writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
|
|
}
|
|
|
|
#ifdef readq
|
|
static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
|
|
{
|
|
return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
|
|
&& 0xff;
|
|
}
|
|
|
|
static void mem_outq(struct si_sm_io *io, unsigned int offset,
|
|
unsigned char b)
|
|
{
|
|
writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
|
|
}
|
|
#endif
|
|
|
|
static void mem_cleanup(struct smi_info *info)
|
|
{
|
|
unsigned long *addr = info->io.info;
|
|
int mapsize;
|
|
|
|
if (info->io.addr) {
|
|
iounmap(info->io.addr);
|
|
|
|
mapsize = ((info->io_size * info->io.regspacing)
|
|
- (info->io.regspacing - info->io.regsize));
|
|
|
|
release_mem_region(*addr, mapsize);
|
|
}
|
|
kfree(info);
|
|
}
|
|
|
|
static int mem_setup(struct smi_info *info)
|
|
{
|
|
unsigned long *addr = info->io.info;
|
|
int mapsize;
|
|
|
|
if (!addr || (!*addr))
|
|
return -ENODEV;
|
|
|
|
info->io_cleanup = mem_cleanup;
|
|
|
|
/* Figure out the actual readb/readw/readl/etc routine to use based
|
|
upon the register size. */
|
|
switch (info->io.regsize) {
|
|
case 1:
|
|
info->io.inputb = mem_inb;
|
|
info->io.outputb = mem_outb;
|
|
break;
|
|
case 2:
|
|
info->io.inputb = mem_inw;
|
|
info->io.outputb = mem_outw;
|
|
break;
|
|
case 4:
|
|
info->io.inputb = mem_inl;
|
|
info->io.outputb = mem_outl;
|
|
break;
|
|
#ifdef readq
|
|
case 8:
|
|
info->io.inputb = mem_inq;
|
|
info->io.outputb = mem_outq;
|
|
break;
|
|
#endif
|
|
default:
|
|
printk("ipmi_si: Invalid register size: %d\n",
|
|
info->io.regsize);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Calculate the total amount of memory to claim. This is an
|
|
* unusual looking calculation, but it avoids claiming any
|
|
* more memory than it has to. It will claim everything
|
|
* between the first address to the end of the last full
|
|
* register. */
|
|
mapsize = ((info->io_size * info->io.regspacing)
|
|
- (info->io.regspacing - info->io.regsize));
|
|
|
|
if (request_mem_region(*addr, mapsize, DEVICE_NAME) == NULL)
|
|
return -EIO;
|
|
|
|
info->io.addr = ioremap(*addr, mapsize);
|
|
if (info->io.addr == NULL) {
|
|
release_mem_region(*addr, mapsize);
|
|
return -EIO;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int try_init_mem(int intf_num, struct smi_info **new_info)
|
|
{
|
|
struct smi_info *info;
|
|
|
|
if (!addrs[intf_num])
|
|
return -ENODEV;
|
|
|
|
if (!is_new_interface(intf_num, IPMI_MEM_ADDR_SPACE,
|
|
addrs[intf_num]))
|
|
return -ENODEV;
|
|
|
|
info = kmalloc(sizeof(*info), GFP_KERNEL);
|
|
if (!info) {
|
|
printk(KERN_ERR "ipmi_si: Could not allocate SI data (2)\n");
|
|
return -ENOMEM;
|
|
}
|
|
memset(info, 0, sizeof(*info));
|
|
|
|
info->io_setup = mem_setup;
|
|
info->io.info = &addrs[intf_num];
|
|
info->io.addr = NULL;
|
|
info->io.regspacing = regspacings[intf_num];
|
|
if (!info->io.regspacing)
|
|
info->io.regspacing = DEFAULT_REGSPACING;
|
|
info->io.regsize = regsizes[intf_num];
|
|
if (!info->io.regsize)
|
|
info->io.regsize = DEFAULT_REGSPACING;
|
|
info->io.regshift = regshifts[intf_num];
|
|
info->irq = 0;
|
|
info->irq_setup = NULL;
|
|
*new_info = info;
|
|
|
|
if (si_type[intf_num] == NULL)
|
|
si_type[intf_num] = "kcs";
|
|
|
|
printk("ipmi_si: Trying \"%s\" at memory address 0x%lx\n",
|
|
si_type[intf_num], addrs[intf_num]);
|
|
return 0;
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_ACPI_INTERPRETER
|
|
|
|
#include <linux/acpi.h>
|
|
|
|
/* Once we get an ACPI failure, we don't try any more, because we go
|
|
through the tables sequentially. Once we don't find a table, there
|
|
are no more. */
|
|
static int acpi_failure = 0;
|
|
|
|
/* For GPE-type interrupts. */
|
|
static u32 ipmi_acpi_gpe(void *context)
|
|
{
|
|
struct smi_info *smi_info = context;
|
|
unsigned long flags;
|
|
#ifdef DEBUG_TIMING
|
|
struct timeval t;
|
|
#endif
|
|
|
|
spin_lock_irqsave(&(smi_info->si_lock), flags);
|
|
|
|
spin_lock(&smi_info->count_lock);
|
|
smi_info->interrupts++;
|
|
spin_unlock(&smi_info->count_lock);
|
|
|
|
if (smi_info->stop_operation)
|
|
goto out;
|
|
|
|
#ifdef DEBUG_TIMING
|
|
do_gettimeofday(&t);
|
|
printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
|
|
#endif
|
|
smi_event_handler(smi_info, 0);
|
|
out:
|
|
spin_unlock_irqrestore(&(smi_info->si_lock), flags);
|
|
|
|
return ACPI_INTERRUPT_HANDLED;
|
|
}
|
|
|
|
static int acpi_gpe_irq_setup(struct smi_info *info)
|
|
{
|
|
acpi_status status;
|
|
|
|
if (!info->irq)
|
|
return 0;
|
|
|
|
/* FIXME - is level triggered right? */
|
|
status = acpi_install_gpe_handler(NULL,
|
|
info->irq,
|
|
ACPI_GPE_LEVEL_TRIGGERED,
|
|
&ipmi_acpi_gpe,
|
|
info);
|
|
if (status != AE_OK) {
|
|
printk(KERN_WARNING
|
|
"ipmi_si: %s unable to claim ACPI GPE %d,"
|
|
" running polled\n",
|
|
DEVICE_NAME, info->irq);
|
|
info->irq = 0;
|
|
return -EINVAL;
|
|
} else {
|
|
printk(" Using ACPI GPE %d\n", info->irq);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void acpi_gpe_irq_cleanup(struct smi_info *info)
|
|
{
|
|
if (!info->irq)
|
|
return;
|
|
|
|
acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
|
|
}
|
|
|
|
/*
|
|
* Defined at
|
|
* http://h21007.www2.hp.com/dspp/files/unprotected/devresource/Docs/TechPapers/IA64/hpspmi.pdf
|
|
*/
|
|
struct SPMITable {
|
|
s8 Signature[4];
|
|
u32 Length;
|
|
u8 Revision;
|
|
u8 Checksum;
|
|
s8 OEMID[6];
|
|
s8 OEMTableID[8];
|
|
s8 OEMRevision[4];
|
|
s8 CreatorID[4];
|
|
s8 CreatorRevision[4];
|
|
u8 InterfaceType;
|
|
u8 IPMIlegacy;
|
|
s16 SpecificationRevision;
|
|
|
|
/*
|
|
* Bit 0 - SCI interrupt supported
|
|
* Bit 1 - I/O APIC/SAPIC
|
|
*/
|
|
u8 InterruptType;
|
|
|
|
/* If bit 0 of InterruptType is set, then this is the SCI
|
|
interrupt in the GPEx_STS register. */
|
|
u8 GPE;
|
|
|
|
s16 Reserved;
|
|
|
|
/* If bit 1 of InterruptType is set, then this is the I/O
|
|
APIC/SAPIC interrupt. */
|
|
u32 GlobalSystemInterrupt;
|
|
|
|
/* The actual register address. */
|
|
struct acpi_generic_address addr;
|
|
|
|
u8 UID[4];
|
|
|
|
s8 spmi_id[1]; /* A '\0' terminated array starts here. */
|
|
};
|
|
|
|
static int try_init_acpi(int intf_num, struct smi_info **new_info)
|
|
{
|
|
struct smi_info *info;
|
|
acpi_status status;
|
|
struct SPMITable *spmi;
|
|
char *io_type;
|
|
u8 addr_space;
|
|
|
|
if (acpi_failure)
|
|
return -ENODEV;
|
|
|
|
status = acpi_get_firmware_table("SPMI", intf_num+1,
|
|
ACPI_LOGICAL_ADDRESSING,
|
|
(struct acpi_table_header **) &spmi);
|
|
if (status != AE_OK) {
|
|
acpi_failure = 1;
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (spmi->IPMIlegacy != 1) {
|
|
printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
|
|
addr_space = IPMI_MEM_ADDR_SPACE;
|
|
else
|
|
addr_space = IPMI_IO_ADDR_SPACE;
|
|
if (!is_new_interface(-1, addr_space, spmi->addr.address))
|
|
return -ENODEV;
|
|
|
|
if (!spmi->addr.register_bit_width) {
|
|
acpi_failure = 1;
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Figure out the interface type. */
|
|
switch (spmi->InterfaceType)
|
|
{
|
|
case 1: /* KCS */
|
|
si_type[intf_num] = "kcs";
|
|
break;
|
|
|
|
case 2: /* SMIC */
|
|
si_type[intf_num] = "smic";
|
|
break;
|
|
|
|
case 3: /* BT */
|
|
si_type[intf_num] = "bt";
|
|
break;
|
|
|
|
default:
|
|
printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
|
|
spmi->InterfaceType);
|
|
return -EIO;
|
|
}
|
|
|
|
info = kmalloc(sizeof(*info), GFP_KERNEL);
|
|
if (!info) {
|
|
printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
|
|
return -ENOMEM;
|
|
}
|
|
memset(info, 0, sizeof(*info));
|
|
|
|
if (spmi->InterruptType & 1) {
|
|
/* We've got a GPE interrupt. */
|
|
info->irq = spmi->GPE;
|
|
info->irq_setup = acpi_gpe_irq_setup;
|
|
info->irq_cleanup = acpi_gpe_irq_cleanup;
|
|
} else if (spmi->InterruptType & 2) {
|
|
/* We've got an APIC/SAPIC interrupt. */
|
|
info->irq = spmi->GlobalSystemInterrupt;
|
|
info->irq_setup = std_irq_setup;
|
|
info->irq_cleanup = std_irq_cleanup;
|
|
} else {
|
|
/* Use the default interrupt setting. */
|
|
info->irq = 0;
|
|
info->irq_setup = NULL;
|
|
}
|
|
|
|
if (spmi->addr.register_bit_width) {
|
|
/* A (hopefully) properly formed register bit width. */
|
|
regspacings[intf_num] = spmi->addr.register_bit_width / 8;
|
|
info->io.regspacing = spmi->addr.register_bit_width / 8;
|
|
} else {
|
|
/* Some broken systems get this wrong and set the value
|
|
* to zero. Assume it is the default spacing. If that
|
|
* is wrong, too bad, the vendor should fix the tables. */
|
|
regspacings[intf_num] = DEFAULT_REGSPACING;
|
|
info->io.regspacing = DEFAULT_REGSPACING;
|
|
}
|
|
regsizes[intf_num] = regspacings[intf_num];
|
|
info->io.regsize = regsizes[intf_num];
|
|
regshifts[intf_num] = spmi->addr.register_bit_offset;
|
|
info->io.regshift = regshifts[intf_num];
|
|
|
|
if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
|
|
io_type = "memory";
|
|
info->io_setup = mem_setup;
|
|
addrs[intf_num] = spmi->addr.address;
|
|
info->io.info = &(addrs[intf_num]);
|
|
} else if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
|
|
io_type = "I/O";
|
|
info->io_setup = port_setup;
|
|
ports[intf_num] = spmi->addr.address;
|
|
info->io.info = &(ports[intf_num]);
|
|
} else {
|
|
kfree(info);
|
|
printk("ipmi_si: Unknown ACPI I/O Address type\n");
|
|
return -EIO;
|
|
}
|
|
|
|
*new_info = info;
|
|
|
|
printk("ipmi_si: ACPI/SPMI specifies \"%s\" %s SI @ 0x%lx\n",
|
|
si_type[intf_num], io_type, (unsigned long) spmi->addr.address);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86
|
|
typedef struct dmi_ipmi_data
|
|
{
|
|
u8 type;
|
|
u8 addr_space;
|
|
unsigned long base_addr;
|
|
u8 irq;
|
|
u8 offset;
|
|
u8 slave_addr;
|
|
} dmi_ipmi_data_t;
|
|
|
|
static dmi_ipmi_data_t dmi_data[SI_MAX_DRIVERS];
|
|
static int dmi_data_entries;
|
|
|
|
typedef struct dmi_header
|
|
{
|
|
u8 type;
|
|
u8 length;
|
|
u16 handle;
|
|
} dmi_header_t;
|
|
|
|
static int decode_dmi(dmi_header_t __iomem *dm, int intf_num)
|
|
{
|
|
u8 __iomem *data = (u8 __iomem *)dm;
|
|
unsigned long base_addr;
|
|
u8 reg_spacing;
|
|
u8 len = readb(&dm->length);
|
|
dmi_ipmi_data_t *ipmi_data = dmi_data+intf_num;
|
|
|
|
ipmi_data->type = readb(&data[4]);
|
|
|
|
memcpy(&base_addr, data+8, sizeof(unsigned long));
|
|
if (len >= 0x11) {
|
|
if (base_addr & 1) {
|
|
/* I/O */
|
|
base_addr &= 0xFFFE;
|
|
ipmi_data->addr_space = IPMI_IO_ADDR_SPACE;
|
|
}
|
|
else {
|
|
/* Memory */
|
|
ipmi_data->addr_space = IPMI_MEM_ADDR_SPACE;
|
|
}
|
|
/* If bit 4 of byte 0x10 is set, then the lsb for the address
|
|
is odd. */
|
|
ipmi_data->base_addr = base_addr | ((readb(&data[0x10]) & 0x10) >> 4);
|
|
|
|
ipmi_data->irq = readb(&data[0x11]);
|
|
|
|
/* The top two bits of byte 0x10 hold the register spacing. */
|
|
reg_spacing = (readb(&data[0x10]) & 0xC0) >> 6;
|
|
switch(reg_spacing){
|
|
case 0x00: /* Byte boundaries */
|
|
ipmi_data->offset = 1;
|
|
break;
|
|
case 0x01: /* 32-bit boundaries */
|
|
ipmi_data->offset = 4;
|
|
break;
|
|
case 0x02: /* 16-byte boundaries */
|
|
ipmi_data->offset = 16;
|
|
break;
|
|
default:
|
|
/* Some other interface, just ignore it. */
|
|
return -EIO;
|
|
}
|
|
} else {
|
|
/* Old DMI spec. */
|
|
/* Note that technically, the lower bit of the base
|
|
* address should be 1 if the address is I/O and 0 if
|
|
* the address is in memory. So many systems get that
|
|
* wrong (and all that I have seen are I/O) so we just
|
|
* ignore that bit and assume I/O. Systems that use
|
|
* memory should use the newer spec, anyway. */
|
|
ipmi_data->base_addr = base_addr & 0xfffe;
|
|
ipmi_data->addr_space = IPMI_IO_ADDR_SPACE;
|
|
ipmi_data->offset = 1;
|
|
}
|
|
|
|
ipmi_data->slave_addr = readb(&data[6]);
|
|
|
|
if (is_new_interface(-1, ipmi_data->addr_space,ipmi_data->base_addr)) {
|
|
dmi_data_entries++;
|
|
return 0;
|
|
}
|
|
|
|
memset(ipmi_data, 0, sizeof(dmi_ipmi_data_t));
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int dmi_table(u32 base, int len, int num)
|
|
{
|
|
u8 __iomem *buf;
|
|
struct dmi_header __iomem *dm;
|
|
u8 __iomem *data;
|
|
int i=1;
|
|
int status=-1;
|
|
int intf_num = 0;
|
|
|
|
buf = ioremap(base, len);
|
|
if(buf==NULL)
|
|
return -1;
|
|
|
|
data = buf;
|
|
|
|
while(i<num && (data - buf) < len)
|
|
{
|
|
dm=(dmi_header_t __iomem *)data;
|
|
|
|
if((data-buf+readb(&dm->length)) >= len)
|
|
break;
|
|
|
|
if (readb(&dm->type) == 38) {
|
|
if (decode_dmi(dm, intf_num) == 0) {
|
|
intf_num++;
|
|
if (intf_num >= SI_MAX_DRIVERS)
|
|
break;
|
|
}
|
|
}
|
|
|
|
data+=readb(&dm->length);
|
|
while((data-buf) < len && (readb(data)||readb(data+1)))
|
|
data++;
|
|
data+=2;
|
|
i++;
|
|
}
|
|
iounmap(buf);
|
|
|
|
return status;
|
|
}
|
|
|
|
inline static int dmi_checksum(u8 *buf)
|
|
{
|
|
u8 sum=0;
|
|
int a;
|
|
|
|
for(a=0; a<15; a++)
|
|
sum+=buf[a];
|
|
return (sum==0);
|
|
}
|
|
|
|
static int dmi_decode(void)
|
|
{
|
|
u8 buf[15];
|
|
u32 fp=0xF0000;
|
|
|
|
#ifdef CONFIG_SIMNOW
|
|
return -1;
|
|
#endif
|
|
|
|
while(fp < 0xFFFFF)
|
|
{
|
|
isa_memcpy_fromio(buf, fp, 15);
|
|
if(memcmp(buf, "_DMI_", 5)==0 && dmi_checksum(buf))
|
|
{
|
|
u16 num=buf[13]<<8|buf[12];
|
|
u16 len=buf[7]<<8|buf[6];
|
|
u32 base=buf[11]<<24|buf[10]<<16|buf[9]<<8|buf[8];
|
|
|
|
if(dmi_table(base, len, num) == 0)
|
|
return 0;
|
|
}
|
|
fp+=16;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int try_init_smbios(int intf_num, struct smi_info **new_info)
|
|
{
|
|
struct smi_info *info;
|
|
dmi_ipmi_data_t *ipmi_data = dmi_data+intf_num;
|
|
char *io_type;
|
|
|
|
if (intf_num >= dmi_data_entries)
|
|
return -ENODEV;
|
|
|
|
switch(ipmi_data->type) {
|
|
case 0x01: /* KCS */
|
|
si_type[intf_num] = "kcs";
|
|
break;
|
|
case 0x02: /* SMIC */
|
|
si_type[intf_num] = "smic";
|
|
break;
|
|
case 0x03: /* BT */
|
|
si_type[intf_num] = "bt";
|
|
break;
|
|
default:
|
|
return -EIO;
|
|
}
|
|
|
|
info = kmalloc(sizeof(*info), GFP_KERNEL);
|
|
if (!info) {
|
|
printk(KERN_ERR "ipmi_si: Could not allocate SI data (4)\n");
|
|
return -ENOMEM;
|
|
}
|
|
memset(info, 0, sizeof(*info));
|
|
|
|
if (ipmi_data->addr_space == 1) {
|
|
io_type = "memory";
|
|
info->io_setup = mem_setup;
|
|
addrs[intf_num] = ipmi_data->base_addr;
|
|
info->io.info = &(addrs[intf_num]);
|
|
} else if (ipmi_data->addr_space == 2) {
|
|
io_type = "I/O";
|
|
info->io_setup = port_setup;
|
|
ports[intf_num] = ipmi_data->base_addr;
|
|
info->io.info = &(ports[intf_num]);
|
|
} else {
|
|
kfree(info);
|
|
printk("ipmi_si: Unknown SMBIOS I/O Address type.\n");
|
|
return -EIO;
|
|
}
|
|
|
|
regspacings[intf_num] = ipmi_data->offset;
|
|
info->io.regspacing = regspacings[intf_num];
|
|
if (!info->io.regspacing)
|
|
info->io.regspacing = DEFAULT_REGSPACING;
|
|
info->io.regsize = DEFAULT_REGSPACING;
|
|
info->io.regshift = regshifts[intf_num];
|
|
|
|
info->slave_addr = ipmi_data->slave_addr;
|
|
|
|
irqs[intf_num] = ipmi_data->irq;
|
|
|
|
*new_info = info;
|
|
|
|
printk("ipmi_si: Found SMBIOS-specified state machine at %s"
|
|
" address 0x%lx, slave address 0x%x\n",
|
|
io_type, (unsigned long)ipmi_data->base_addr,
|
|
ipmi_data->slave_addr);
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_X86 */
|
|
|
|
#ifdef CONFIG_PCI
|
|
|
|
#define PCI_ERMC_CLASSCODE 0x0C0700
|
|
#define PCI_HP_VENDOR_ID 0x103C
|
|
#define PCI_MMC_DEVICE_ID 0x121A
|
|
#define PCI_MMC_ADDR_CW 0x10
|
|
|
|
/* Avoid more than one attempt to probe pci smic. */
|
|
static int pci_smic_checked = 0;
|
|
|
|
static int find_pci_smic(int intf_num, struct smi_info **new_info)
|
|
{
|
|
struct smi_info *info;
|
|
int error;
|
|
struct pci_dev *pci_dev = NULL;
|
|
u16 base_addr;
|
|
int fe_rmc = 0;
|
|
|
|
if (pci_smic_checked)
|
|
return -ENODEV;
|
|
|
|
pci_smic_checked = 1;
|
|
|
|
if ((pci_dev = pci_get_device(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID,
|
|
NULL)))
|
|
;
|
|
else if ((pci_dev = pci_get_class(PCI_ERMC_CLASSCODE, NULL)) &&
|
|
pci_dev->subsystem_vendor == PCI_HP_VENDOR_ID)
|
|
fe_rmc = 1;
|
|
else
|
|
return -ENODEV;
|
|
|
|
error = pci_read_config_word(pci_dev, PCI_MMC_ADDR_CW, &base_addr);
|
|
if (error)
|
|
{
|
|
pci_dev_put(pci_dev);
|
|
printk(KERN_ERR
|
|
"ipmi_si: pci_read_config_word() failed (%d).\n",
|
|
error);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Bit 0: 1 specifies programmed I/O, 0 specifies memory mapped I/O */
|
|
if (!(base_addr & 0x0001))
|
|
{
|
|
pci_dev_put(pci_dev);
|
|
printk(KERN_ERR
|
|
"ipmi_si: memory mapped I/O not supported for PCI"
|
|
" smic.\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
base_addr &= 0xFFFE;
|
|
if (!fe_rmc)
|
|
/* Data register starts at base address + 1 in eRMC */
|
|
++base_addr;
|
|
|
|
if (!is_new_interface(-1, IPMI_IO_ADDR_SPACE, base_addr)) {
|
|
pci_dev_put(pci_dev);
|
|
return -ENODEV;
|
|
}
|
|
|
|
info = kmalloc(sizeof(*info), GFP_KERNEL);
|
|
if (!info) {
|
|
pci_dev_put(pci_dev);
|
|
printk(KERN_ERR "ipmi_si: Could not allocate SI data (5)\n");
|
|
return -ENOMEM;
|
|
}
|
|
memset(info, 0, sizeof(*info));
|
|
|
|
info->io_setup = port_setup;
|
|
ports[intf_num] = base_addr;
|
|
info->io.info = &(ports[intf_num]);
|
|
info->io.regspacing = regspacings[intf_num];
|
|
if (!info->io.regspacing)
|
|
info->io.regspacing = DEFAULT_REGSPACING;
|
|
info->io.regsize = DEFAULT_REGSPACING;
|
|
info->io.regshift = regshifts[intf_num];
|
|
|
|
*new_info = info;
|
|
|
|
irqs[intf_num] = pci_dev->irq;
|
|
si_type[intf_num] = "smic";
|
|
|
|
printk("ipmi_si: Found PCI SMIC at I/O address 0x%lx\n",
|
|
(long unsigned int) base_addr);
|
|
|
|
pci_dev_put(pci_dev);
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_PCI */
|
|
|
|
static int try_init_plug_and_play(int intf_num, struct smi_info **new_info)
|
|
{
|
|
#ifdef CONFIG_PCI
|
|
if (find_pci_smic(intf_num, new_info)==0)
|
|
return 0;
|
|
#endif
|
|
/* Include other methods here. */
|
|
|
|
return -ENODEV;
|
|
}
|
|
|
|
|
|
static int try_get_dev_id(struct smi_info *smi_info)
|
|
{
|
|
unsigned char msg[2];
|
|
unsigned char *resp;
|
|
unsigned long resp_len;
|
|
enum si_sm_result smi_result;
|
|
int rv = 0;
|
|
|
|
resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
|
|
if (!resp)
|
|
return -ENOMEM;
|
|
|
|
/* Do a Get Device ID command, since it comes back with some
|
|
useful info. */
|
|
msg[0] = IPMI_NETFN_APP_REQUEST << 2;
|
|
msg[1] = IPMI_GET_DEVICE_ID_CMD;
|
|
smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
|
|
|
|
smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
|
|
for (;;)
|
|
{
|
|
if (smi_result == SI_SM_CALL_WITH_DELAY) {
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
schedule_timeout(1);
|
|
smi_result = smi_info->handlers->event(
|
|
smi_info->si_sm, 100);
|
|
}
|
|
else if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
|
|
{
|
|
smi_result = smi_info->handlers->event(
|
|
smi_info->si_sm, 0);
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
if (smi_result == SI_SM_HOSED) {
|
|
/* We couldn't get the state machine to run, so whatever's at
|
|
the port is probably not an IPMI SMI interface. */
|
|
rv = -ENODEV;
|
|
goto out;
|
|
}
|
|
|
|
/* Otherwise, we got some data. */
|
|
resp_len = smi_info->handlers->get_result(smi_info->si_sm,
|
|
resp, IPMI_MAX_MSG_LENGTH);
|
|
if (resp_len < 6) {
|
|
/* That's odd, it should be longer. */
|
|
rv = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if ((resp[1] != IPMI_GET_DEVICE_ID_CMD) || (resp[2] != 0)) {
|
|
/* That's odd, it shouldn't be able to fail. */
|
|
rv = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* Record info from the get device id, in case we need it. */
|
|
smi_info->ipmi_si_dev_rev = resp[4] & 0xf;
|
|
smi_info->ipmi_si_fw_rev_major = resp[5] & 0x7f;
|
|
smi_info->ipmi_si_fw_rev_minor = resp[6];
|
|
smi_info->ipmi_version_major = resp[7] & 0xf;
|
|
smi_info->ipmi_version_minor = resp[7] >> 4;
|
|
|
|
out:
|
|
kfree(resp);
|
|
return rv;
|
|
}
|
|
|
|
static int type_file_read_proc(char *page, char **start, off_t off,
|
|
int count, int *eof, void *data)
|
|
{
|
|
char *out = (char *) page;
|
|
struct smi_info *smi = data;
|
|
|
|
switch (smi->si_type) {
|
|
case SI_KCS:
|
|
return sprintf(out, "kcs\n");
|
|
case SI_SMIC:
|
|
return sprintf(out, "smic\n");
|
|
case SI_BT:
|
|
return sprintf(out, "bt\n");
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int stat_file_read_proc(char *page, char **start, off_t off,
|
|
int count, int *eof, void *data)
|
|
{
|
|
char *out = (char *) page;
|
|
struct smi_info *smi = data;
|
|
|
|
out += sprintf(out, "interrupts_enabled: %d\n",
|
|
smi->irq && !smi->interrupt_disabled);
|
|
out += sprintf(out, "short_timeouts: %ld\n",
|
|
smi->short_timeouts);
|
|
out += sprintf(out, "long_timeouts: %ld\n",
|
|
smi->long_timeouts);
|
|
out += sprintf(out, "timeout_restarts: %ld\n",
|
|
smi->timeout_restarts);
|
|
out += sprintf(out, "idles: %ld\n",
|
|
smi->idles);
|
|
out += sprintf(out, "interrupts: %ld\n",
|
|
smi->interrupts);
|
|
out += sprintf(out, "attentions: %ld\n",
|
|
smi->attentions);
|
|
out += sprintf(out, "flag_fetches: %ld\n",
|
|
smi->flag_fetches);
|
|
out += sprintf(out, "hosed_count: %ld\n",
|
|
smi->hosed_count);
|
|
out += sprintf(out, "complete_transactions: %ld\n",
|
|
smi->complete_transactions);
|
|
out += sprintf(out, "events: %ld\n",
|
|
smi->events);
|
|
out += sprintf(out, "watchdog_pretimeouts: %ld\n",
|
|
smi->watchdog_pretimeouts);
|
|
out += sprintf(out, "incoming_messages: %ld\n",
|
|
smi->incoming_messages);
|
|
|
|
return (out - ((char *) page));
|
|
}
|
|
|
|
/* Returns 0 if initialized, or negative on an error. */
|
|
static int init_one_smi(int intf_num, struct smi_info **smi)
|
|
{
|
|
int rv;
|
|
struct smi_info *new_smi;
|
|
|
|
|
|
rv = try_init_mem(intf_num, &new_smi);
|
|
if (rv)
|
|
rv = try_init_port(intf_num, &new_smi);
|
|
#ifdef CONFIG_ACPI_INTERPRETER
|
|
if ((rv) && (si_trydefaults)) {
|
|
rv = try_init_acpi(intf_num, &new_smi);
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_X86
|
|
if ((rv) && (si_trydefaults)) {
|
|
rv = try_init_smbios(intf_num, &new_smi);
|
|
}
|
|
#endif
|
|
if ((rv) && (si_trydefaults)) {
|
|
rv = try_init_plug_and_play(intf_num, &new_smi);
|
|
}
|
|
|
|
|
|
if (rv)
|
|
return rv;
|
|
|
|
/* So we know not to free it unless we have allocated one. */
|
|
new_smi->intf = NULL;
|
|
new_smi->si_sm = NULL;
|
|
new_smi->handlers = NULL;
|
|
|
|
if (!new_smi->irq_setup) {
|
|
new_smi->irq = irqs[intf_num];
|
|
new_smi->irq_setup = std_irq_setup;
|
|
new_smi->irq_cleanup = std_irq_cleanup;
|
|
}
|
|
|
|
/* Default to KCS if no type is specified. */
|
|
if (si_type[intf_num] == NULL) {
|
|
if (si_trydefaults)
|
|
si_type[intf_num] = "kcs";
|
|
else {
|
|
rv = -EINVAL;
|
|
goto out_err;
|
|
}
|
|
}
|
|
|
|
/* Set up the state machine to use. */
|
|
if (strcmp(si_type[intf_num], "kcs") == 0) {
|
|
new_smi->handlers = &kcs_smi_handlers;
|
|
new_smi->si_type = SI_KCS;
|
|
} else if (strcmp(si_type[intf_num], "smic") == 0) {
|
|
new_smi->handlers = &smic_smi_handlers;
|
|
new_smi->si_type = SI_SMIC;
|
|
} else if (strcmp(si_type[intf_num], "bt") == 0) {
|
|
new_smi->handlers = &bt_smi_handlers;
|
|
new_smi->si_type = SI_BT;
|
|
} else {
|
|
/* No support for anything else yet. */
|
|
rv = -EIO;
|
|
goto out_err;
|
|
}
|
|
|
|
/* Allocate the state machine's data and initialize it. */
|
|
new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
|
|
if (!new_smi->si_sm) {
|
|
printk(" Could not allocate state machine memory\n");
|
|
rv = -ENOMEM;
|
|
goto out_err;
|
|
}
|
|
new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
|
|
&new_smi->io);
|
|
|
|
/* Now that we know the I/O size, we can set up the I/O. */
|
|
rv = new_smi->io_setup(new_smi);
|
|
if (rv) {
|
|
printk(" Could not set up I/O space\n");
|
|
goto out_err;
|
|
}
|
|
|
|
spin_lock_init(&(new_smi->si_lock));
|
|
spin_lock_init(&(new_smi->msg_lock));
|
|
spin_lock_init(&(new_smi->count_lock));
|
|
|
|
/* Do low-level detection first. */
|
|
if (new_smi->handlers->detect(new_smi->si_sm)) {
|
|
rv = -ENODEV;
|
|
goto out_err;
|
|
}
|
|
|
|
/* Attempt a get device id command. If it fails, we probably
|
|
don't have a SMI here. */
|
|
rv = try_get_dev_id(new_smi);
|
|
if (rv)
|
|
goto out_err;
|
|
|
|
/* Try to claim any interrupts. */
|
|
new_smi->irq_setup(new_smi);
|
|
|
|
INIT_LIST_HEAD(&(new_smi->xmit_msgs));
|
|
INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
|
|
new_smi->curr_msg = NULL;
|
|
atomic_set(&new_smi->req_events, 0);
|
|
new_smi->run_to_completion = 0;
|
|
|
|
new_smi->interrupt_disabled = 0;
|
|
new_smi->timer_stopped = 0;
|
|
new_smi->stop_operation = 0;
|
|
|
|
/* Start clearing the flags before we enable interrupts or the
|
|
timer to avoid racing with the timer. */
|
|
start_clear_flags(new_smi);
|
|
/* IRQ is defined to be set when non-zero. */
|
|
if (new_smi->irq)
|
|
new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
|
|
|
|
/* The ipmi_register_smi() code does some operations to
|
|
determine the channel information, so we must be ready to
|
|
handle operations before it is called. This means we have
|
|
to stop the timer if we get an error after this point. */
|
|
init_timer(&(new_smi->si_timer));
|
|
new_smi->si_timer.data = (long) new_smi;
|
|
new_smi->si_timer.function = smi_timeout;
|
|
new_smi->last_timeout_jiffies = jiffies;
|
|
new_smi->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
|
|
add_timer(&(new_smi->si_timer));
|
|
|
|
rv = ipmi_register_smi(&handlers,
|
|
new_smi,
|
|
new_smi->ipmi_version_major,
|
|
new_smi->ipmi_version_minor,
|
|
new_smi->slave_addr,
|
|
&(new_smi->intf));
|
|
if (rv) {
|
|
printk(KERN_ERR
|
|
"ipmi_si: Unable to register device: error %d\n",
|
|
rv);
|
|
goto out_err_stop_timer;
|
|
}
|
|
|
|
rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
|
|
type_file_read_proc, NULL,
|
|
new_smi, THIS_MODULE);
|
|
if (rv) {
|
|
printk(KERN_ERR
|
|
"ipmi_si: Unable to create proc entry: %d\n",
|
|
rv);
|
|
goto out_err_stop_timer;
|
|
}
|
|
|
|
rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
|
|
stat_file_read_proc, NULL,
|
|
new_smi, THIS_MODULE);
|
|
if (rv) {
|
|
printk(KERN_ERR
|
|
"ipmi_si: Unable to create proc entry: %d\n",
|
|
rv);
|
|
goto out_err_stop_timer;
|
|
}
|
|
|
|
*smi = new_smi;
|
|
|
|
printk(" IPMI %s interface initialized\n", si_type[intf_num]);
|
|
|
|
return 0;
|
|
|
|
out_err_stop_timer:
|
|
new_smi->stop_operation = 1;
|
|
|
|
/* Wait for the timer to stop. This avoids problems with race
|
|
conditions removing the timer here. */
|
|
while (!new_smi->timer_stopped) {
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
schedule_timeout(1);
|
|
}
|
|
|
|
out_err:
|
|
if (new_smi->intf)
|
|
ipmi_unregister_smi(new_smi->intf);
|
|
|
|
new_smi->irq_cleanup(new_smi);
|
|
|
|
/* Wait until we know that we are out of any interrupt
|
|
handlers might have been running before we freed the
|
|
interrupt. */
|
|
synchronize_sched();
|
|
|
|
if (new_smi->si_sm) {
|
|
if (new_smi->handlers)
|
|
new_smi->handlers->cleanup(new_smi->si_sm);
|
|
kfree(new_smi->si_sm);
|
|
}
|
|
new_smi->io_cleanup(new_smi);
|
|
|
|
return rv;
|
|
}
|
|
|
|
static __init int init_ipmi_si(void)
|
|
{
|
|
int rv = 0;
|
|
int pos = 0;
|
|
int i;
|
|
char *str;
|
|
|
|
if (initialized)
|
|
return 0;
|
|
initialized = 1;
|
|
|
|
/* Parse out the si_type string into its components. */
|
|
str = si_type_str;
|
|
if (*str != '\0') {
|
|
for (i=0; (i<SI_MAX_PARMS) && (*str != '\0'); i++) {
|
|
si_type[i] = str;
|
|
str = strchr(str, ',');
|
|
if (str) {
|
|
*str = '\0';
|
|
str++;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
printk(KERN_INFO "IPMI System Interface driver version "
|
|
IPMI_SI_VERSION);
|
|
if (kcs_smi_handlers.version)
|
|
printk(", KCS version %s", kcs_smi_handlers.version);
|
|
if (smic_smi_handlers.version)
|
|
printk(", SMIC version %s", smic_smi_handlers.version);
|
|
if (bt_smi_handlers.version)
|
|
printk(", BT version %s", bt_smi_handlers.version);
|
|
printk("\n");
|
|
|
|
#ifdef CONFIG_X86
|
|
dmi_decode();
|
|
#endif
|
|
|
|
rv = init_one_smi(0, &(smi_infos[pos]));
|
|
if (rv && !ports[0] && si_trydefaults) {
|
|
/* If we are trying defaults and the initial port is
|
|
not set, then set it. */
|
|
si_type[0] = "kcs";
|
|
ports[0] = DEFAULT_KCS_IO_PORT;
|
|
rv = init_one_smi(0, &(smi_infos[pos]));
|
|
if (rv) {
|
|
/* No KCS - try SMIC */
|
|
si_type[0] = "smic";
|
|
ports[0] = DEFAULT_SMIC_IO_PORT;
|
|
rv = init_one_smi(0, &(smi_infos[pos]));
|
|
}
|
|
if (rv) {
|
|
/* No SMIC - try BT */
|
|
si_type[0] = "bt";
|
|
ports[0] = DEFAULT_BT_IO_PORT;
|
|
rv = init_one_smi(0, &(smi_infos[pos]));
|
|
}
|
|
}
|
|
if (rv == 0)
|
|
pos++;
|
|
|
|
for (i=1; i < SI_MAX_PARMS; i++) {
|
|
rv = init_one_smi(i, &(smi_infos[pos]));
|
|
if (rv == 0)
|
|
pos++;
|
|
}
|
|
|
|
if (smi_infos[0] == NULL) {
|
|
printk("ipmi_si: Unable to find any System Interface(s)\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
module_init(init_ipmi_si);
|
|
|
|
static void __exit cleanup_one_si(struct smi_info *to_clean)
|
|
{
|
|
int rv;
|
|
unsigned long flags;
|
|
|
|
if (! to_clean)
|
|
return;
|
|
|
|
/* Tell the timer and interrupt handlers that we are shutting
|
|
down. */
|
|
spin_lock_irqsave(&(to_clean->si_lock), flags);
|
|
spin_lock(&(to_clean->msg_lock));
|
|
|
|
to_clean->stop_operation = 1;
|
|
|
|
to_clean->irq_cleanup(to_clean);
|
|
|
|
spin_unlock(&(to_clean->msg_lock));
|
|
spin_unlock_irqrestore(&(to_clean->si_lock), flags);
|
|
|
|
/* Wait until we know that we are out of any interrupt
|
|
handlers might have been running before we freed the
|
|
interrupt. */
|
|
synchronize_sched();
|
|
|
|
/* Wait for the timer to stop. This avoids problems with race
|
|
conditions removing the timer here. */
|
|
while (!to_clean->timer_stopped) {
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
schedule_timeout(1);
|
|
}
|
|
|
|
/* Interrupts and timeouts are stopped, now make sure the
|
|
interface is in a clean state. */
|
|
while ((to_clean->curr_msg) || (to_clean->si_state != SI_NORMAL)) {
|
|
poll(to_clean);
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
schedule_timeout(1);
|
|
}
|
|
|
|
rv = ipmi_unregister_smi(to_clean->intf);
|
|
if (rv) {
|
|
printk(KERN_ERR
|
|
"ipmi_si: Unable to unregister device: errno=%d\n",
|
|
rv);
|
|
}
|
|
|
|
to_clean->handlers->cleanup(to_clean->si_sm);
|
|
|
|
kfree(to_clean->si_sm);
|
|
|
|
to_clean->io_cleanup(to_clean);
|
|
}
|
|
|
|
static __exit void cleanup_ipmi_si(void)
|
|
{
|
|
int i;
|
|
|
|
if (!initialized)
|
|
return;
|
|
|
|
for (i=0; i<SI_MAX_DRIVERS; i++) {
|
|
cleanup_one_si(smi_infos[i]);
|
|
}
|
|
}
|
|
module_exit(cleanup_ipmi_si);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
|