You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/drivers/video/fbdev/msm/mdp3_ppp_hwio.c

1365 lines
37 KiB

/* Copyright (c) 2007, 2012-2013, 2016-2018, The Linux Foundation. All rights reserved.
* Copyright (C) 2007 Google Incorporated
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/file.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/uaccess.h>
#include "linux/proc_fs.h"
#include "mdss_fb.h"
#include "mdp3_ppp.h"
#include "mdp3_hwio.h"
#include "mdss_debug.h"
/* SHIM Q Factor */
#define PHI_Q_FACTOR 29
#define PQF_PLUS_5 (PHI_Q_FACTOR + 5) /* due to 32 phases */
#define PQF_PLUS_4 (PHI_Q_FACTOR + 4)
#define PQF_PLUS_2 (PHI_Q_FACTOR + 2) /* to get 4.0 */
#define PQF_MINUS_2 (PHI_Q_FACTOR - 2) /* to get 0.25 */
#define PQF_PLUS_5_PLUS_2 (PQF_PLUS_5 + 2)
#define PQF_PLUS_5_MINUS_2 (PQF_PLUS_5 - 2)
enum {
LAYER_FG = 0,
LAYER_BG,
LAYER_FB,
LAYER_MAX,
};
static long long mdp_do_div(uint64_t num, uint64_t den)
{
do_div(num, den);
return num;
}
static int mdp_calc_scale_params(uint32_t org, uint32_t dim_in,
uint32_t dim_out, bool is_W, int32_t *phase_init_ptr,
uint32_t *phase_step_ptr)
{
bool rpa_on = false;
int init_phase = 0;
uint64_t numer = 0;
uint64_t denom = 0;
int64_t point5 = 1;
int64_t one = 1;
int64_t k1, k2, k3, k4; /* linear equation coefficients */
uint64_t int_mask;
uint64_t fract_mask;
uint64_t Os;
int64_t Osprime;
int64_t Od;
int64_t Odprime;
int64_t Oreq;
int64_t init_phase_temp;
int64_t delta;
uint32_t mult;
/*
* The phase accumulator should really be rational for all cases in a
* general purpose polyphase scaler for a tiled architecture with
* non-zero * origin capability because there is no way to represent
* certain scale factors in fixed point regardless of precision.
* The error incurred in attempting to use fixed point is most
* eggregious for SF where 1/SF is an integral multiple of 1/3.
*
* Set the RPA flag for this dimension.
*
* In order for 1/SF (dim_in/dim_out) to be an integral multiple of
* 1/3, dim_out must be an integral multiple of 3.
*/
if (!(dim_out % 3)) {
mult = dim_out / 3;
rpa_on = (!(dim_in % mult));
}
numer = dim_out;
denom = dim_in;
/*
* convert to U30.34 before division
*
* The K vectors carry 4 extra bits of precision
* and are rounded.
*
* We initially go 5 bits over then round by adding
* 1 and right shifting by 1
* so final result is U31.33
*/
numer <<= PQF_PLUS_5;
/* now calculate the scale factor (aka k3) */
k3 = ((mdp_do_div(numer, denom) + 1) >> 1);
/* check scale factor for legal range [0.25 - 4.0] */
if (((k3 >> 4) < (1LL << PQF_MINUS_2)) ||
((k3 >> 4) > (1LL << PQF_PLUS_2))) {
return -EINVAL;
}
/* calculate inverse scale factor (aka k1) for phase init */
numer = dim_in;
denom = dim_out;
numer <<= PQF_PLUS_5;
k1 = ((mdp_do_div(numer, denom) + 1) >> 1);
/*
* calculate initial phase and ROI overfetch
*/
/* convert point5 & one to S39.24 (will always be positive) */
point5 <<= (PQF_PLUS_4 - 1);
one <<= PQF_PLUS_4;
k2 = ((k1 - one) >> 1);
init_phase = (int)(k2 >> 4);
k4 = ((k3 - one) >> 1);
if (k3 != one) {
/* calculate the masks */
fract_mask = one - 1;
int_mask = ~fract_mask;
if (!rpa_on) {
/*
* FIXED POINT IMPLEMENTATION
*/
if (org) {
/*
* The complicated case; ROI origin != 0
* init_phase needs to be adjusted
* OF is also position dependent
*/
/* map (org - .5) into destination space */
Os = ((uint64_t) org << 1) - 1;
Od = ((k3 * Os) >> 1) + k4;
/* take the ceiling */
Odprime = (Od & int_mask);
if (Odprime != Od)
Odprime += one;
/* now map that back to source space */
Osprime = (k1 * (Odprime >> PQF_PLUS_4)) + k2;
/* then floor & decrement to calc the required
* starting coordinate
*/
Oreq = (Osprime & int_mask) - one;
/* calculate initial phase */
init_phase_temp = Osprime - Oreq;
delta = ((int64_t) (org) << PQF_PLUS_4) - Oreq;
init_phase_temp -= delta;
/* limit to valid range before left shift */
delta = (init_phase_temp & (1LL << 63)) ?
4 : -4;
delta <<= PQF_PLUS_4;
while (abs((int)(init_phase_temp >>
PQF_PLUS_4)) > 4)
init_phase_temp += delta;
/*
* right shift to account for extra bits of
* precision
*/
init_phase = (int)(init_phase_temp >> 4);
}
} else {
/*
* RPA IMPLEMENTATION
*
* init_phase needs to be calculated in all RPA_on
* cases because it's a numerator, not a fixed
* point value.
*/
/* map (org - .5) into destination space */
Os = ((uint64_t) org << PQF_PLUS_4) - point5;
Od = mdp_do_div((dim_out * (Os + point5)),
dim_in);
Od -= point5;
/* take the ceiling */
Odprime = (Od & int_mask);
if (Odprime != Od)
Odprime += one;
/* now map that back to source space */
Osprime =
mdp_do_div((dim_in * (Odprime + point5)),
dim_out);
Osprime -= point5;
/*
* then floor & decrement to calculate the required
* starting coordinate
*/
Oreq = (Osprime & int_mask) - one;
/* calculate initial phase */
init_phase_temp = Osprime - Oreq;
delta = ((int64_t) (org) << PQF_PLUS_4) - Oreq;
init_phase_temp -= delta;
/* limit to valid range before the left shift */
delta = (init_phase_temp & (1LL << 63)) ? 4 : -4;
delta <<= PQF_PLUS_4;
while (abs((int)(init_phase_temp >> PQF_PLUS_4)) > 4)
init_phase_temp += delta;
/*
* right shift to account for extra bits of precision
*/
init_phase = (int)(init_phase_temp >> 4);
}
}
/* return the scale parameters */
*phase_init_ptr = init_phase;
*phase_step_ptr = (uint32_t) (k1 >> 4);
return 0;
}
static int scale_idx(int factor)
{
int idx;
if (factor > 80)
idx = PPP_DOWNSCALE_PT8TOPT1;
else if (factor > 60)
idx = PPP_DOWNSCALE_PT6TOPT8;
else if (factor > 40)
idx = PPP_DOWNSCALE_PT4TOPT6;
else
idx = PPP_DOWNSCALE_PT2TOPT4;
return idx;
}
inline int32_t comp_conv_rgb2yuv(int32_t comp, int32_t y_high,
int32_t y_low, int32_t c_high, int32_t c_low)
{
if (comp < 0)
comp = 0;
if (comp > 255)
comp = 255;
/* clamp */
if (comp < y_low)
comp = y_low;
if (comp > y_high)
comp = y_high;
return comp;
}
static uint32_t conv_rgb2yuv(uint32_t input_pixel,
uint16_t *matrix_vector,
uint16_t *bv,
uint16_t *clamp_vector)
{
uint8_t input_C2, input_C0, input_C1;
uint32_t output;
int32_t comp_C2, comp_C1, comp_C0, temp;
int32_t temp1, temp2, temp3;
int32_t matrix[9];
int32_t bias_vector[3];
int32_t Y_low_limit, Y_high_limit, C_low_limit, C_high_limit;
int32_t i;
input_C2 = (input_pixel >> 16) & 0xFF;
input_C1 = (input_pixel >> 8) & 0xFF;
input_C0 = (input_pixel >> 0) & 0xFF;
comp_C0 = input_C0;
comp_C1 = input_C1;
comp_C2 = input_C2;
for (i = 0; i < MDP_CSC_SIZE; i++)
matrix[i] =
((int32_t) (((int32_t) matrix_vector[i]) << 20)) >> 20;
bias_vector[0] = (int32_t) (bv[0] & 0xFF);
bias_vector[1] = (int32_t) (bv[1] & 0xFF);
bias_vector[2] = (int32_t) (bv[2] & 0xFF);
Y_low_limit = (int32_t) clamp_vector[0];
Y_high_limit = (int32_t) clamp_vector[1];
C_low_limit = (int32_t) clamp_vector[2];
C_high_limit = (int32_t) clamp_vector[3];
/*
* Color Conversion
* reorder input colors
*/
temp = comp_C2;
comp_C2 = comp_C1;
comp_C1 = comp_C0;
comp_C0 = temp;
/* matrix multiplication */
temp1 = comp_C0 * matrix[0] + comp_C1 * matrix[1] +
comp_C2 * matrix[2];
temp2 = comp_C0 * matrix[3] + comp_C1 * matrix[4] +
comp_C2 * matrix[5];
temp3 = comp_C0 * matrix[6] + comp_C1 * matrix[7] +
comp_C2 * matrix[8];
comp_C0 = temp1 + 0x100;
comp_C1 = temp2 + 0x100;
comp_C2 = temp3 + 0x100;
/* take integer part */
comp_C0 >>= 9;
comp_C1 >>= 9;
comp_C2 >>= 9;
/* post bias (+) */
comp_C0 += bias_vector[0];
comp_C1 += bias_vector[1];
comp_C2 += bias_vector[2];
/* limit pixel to 8-bit */
comp_C0 = comp_conv_rgb2yuv(comp_C0, Y_high_limit,
Y_low_limit, C_high_limit, C_low_limit);
comp_C1 = comp_conv_rgb2yuv(comp_C1, Y_high_limit,
Y_low_limit, C_high_limit, C_low_limit);
comp_C2 = comp_conv_rgb2yuv(comp_C2, Y_high_limit,
Y_low_limit, C_high_limit, C_low_limit);
output = (comp_C2 << 16) | (comp_C1 << 8) | comp_C0;
return output;
}
inline void y_h_even_num(struct ppp_img_desc *img)
{
img->roi.y = (img->roi.y / 2) * 2;
img->roi.height = (img->roi.height / 2) * 2;
}
inline void x_w_even_num(struct ppp_img_desc *img)
{
img->roi.x = (img->roi.x / 2) * 2;
img->roi.width = (img->roi.width / 2) * 2;
}
bool check_if_rgb(int color)
{
bool rgb = false;
switch (color) {
case MDP_RGB_565:
case MDP_BGR_565:
case MDP_RGB_888:
case MDP_BGR_888:
case MDP_BGRA_8888:
case MDP_RGBA_8888:
case MDP_ARGB_8888:
case MDP_XRGB_8888:
case MDP_RGBX_8888:
case MDP_BGRX_8888:
rgb = true;
default:
break;
}
return rgb;
}
uint8_t *mdp_adjust_rot_addr(struct ppp_blit_op *iBuf,
uint8_t *addr, uint32_t bpp, uint32_t uv, uint32_t layer)
{
uint32_t ystride = 0;
uint32_t h_slice = 1;
uint32_t roi_width = 0;
uint32_t roi_height = 0;
uint32_t color_fmt = 0;
if (layer == LAYER_BG) {
ystride = iBuf->bg.prop.width * bpp;
roi_width = iBuf->bg.roi.width;
roi_height = iBuf->bg.roi.height;
color_fmt = iBuf->bg.color_fmt;
} else {
ystride = iBuf->dst.prop.width * bpp;
roi_width = iBuf->dst.roi.width;
roi_height = iBuf->dst.roi.height;
color_fmt = iBuf->dst.color_fmt;
}
if (uv && ((color_fmt == MDP_Y_CBCR_H2V2) ||
(color_fmt == MDP_Y_CRCB_H2V2)))
h_slice = 2;
if (((iBuf->mdp_op & MDPOP_ROT90) == MDPOP_ROT90) ^
((iBuf->mdp_op & MDPOP_LR) == MDPOP_LR)) {
addr += (roi_width - MIN(16, roi_width)) * bpp;
}
if ((iBuf->mdp_op & MDPOP_UD) == MDPOP_UD) {
addr += ((roi_height - MIN(16, roi_height))/h_slice) *
ystride;
}
return addr;
}
void mdp_adjust_start_addr(struct ppp_blit_op *blit_op,
struct ppp_img_desc *img, int v_slice,
int h_slice, uint32_t layer)
{
uint32_t bpp = ppp_bpp(img->color_fmt);
int x = img->roi.x;
int y = img->roi.y;
uint32_t width = img->prop.width;
if (img->color_fmt == MDP_Y_CBCR_H2V2_ADRENO && layer == 0)
img->p0 += (x + y * ALIGN(width, 32)) * bpp;
else if (img->color_fmt == MDP_Y_CBCR_H2V2_VENUS && layer == 0)
img->p0 += (x + y * ALIGN(width, 128)) * bpp;
else
img->p0 += (x + y * width) * bpp;
if (layer != LAYER_FG)
img->p0 = mdp_adjust_rot_addr(blit_op, img->p0, bpp, 0, layer);
if (img->p1) {
/*
* MDP_Y_CBCR_H2V2/MDP_Y_CRCB_H2V2 cosite for now
* we need to shift x direction same as y dir for offsite
*/
if ((img->color_fmt == MDP_Y_CBCR_H2V2_ADRENO ||
img->color_fmt == MDP_Y_CBCR_H2V2_VENUS)
&& layer == 0)
img->p1 += ((x / h_slice) * h_slice + ((y == 0) ? 0 :
(((y + 1) / v_slice - 1) * (ALIGN(width/2, 32) * 2))))
* bpp;
else
img->p1 += ((x / h_slice) * h_slice +
((y == 0) ? 0 : ((y + 1) / v_slice - 1) * width)) * bpp;
if (layer != LAYER_FG)
img->p1 = mdp_adjust_rot_addr(blit_op,
img->p1, bpp, 0, layer);
}
}
int load_ppp_lut(int tableType, uint32_t *lut)
{
int i;
uint32_t base_addr;
base_addr = tableType ? MDP3_PPP_POST_LUT : MDP3_PPP_PRE_LUT;
for (i = 0; i < PPP_LUT_MAX; i++)
PPP_WRITEL(lut[i], base_addr + MDP3_PPP_LUTn(i));
return 0;
}
/* Configure Primary CSC Matrix */
int load_primary_matrix(struct ppp_csc_table *csc)
{
int i;
for (i = 0; i < MDP_CSC_SIZE; i++)
PPP_WRITEL(csc->fwd_matrix[i], MDP3_PPP_CSC_PFMVn(i));
for (i = 0; i < MDP_CSC_SIZE; i++)
PPP_WRITEL(csc->rev_matrix[i], MDP3_PPP_CSC_PRMVn(i));
for (i = 0; i < MDP_BV_SIZE; i++)
PPP_WRITEL(csc->bv[i], MDP3_PPP_CSC_PBVn(i));
for (i = 0; i < MDP_LV_SIZE; i++)
PPP_WRITEL(csc->lv[i], MDP3_PPP_CSC_PLVn(i));
return 0;
}
/* Load Secondary CSC Matrix */
int load_secondary_matrix(struct ppp_csc_table *csc)
{
int i;
for (i = 0; i < MDP_CSC_SIZE; i++)
PPP_WRITEL(csc->fwd_matrix[i], MDP3_PPP_CSC_SFMVn(i));
for (i = 0; i < MDP_CSC_SIZE; i++)
PPP_WRITEL(csc->rev_matrix[i], MDP3_PPP_CSC_SRMVn(i));
for (i = 0; i < MDP_BV_SIZE; i++)
PPP_WRITEL(csc->bv[i], MDP3_PPP_CSC_SBVn(i));
for (i = 0; i < MDP_LV_SIZE; i++)
PPP_WRITEL(csc->lv[i], MDP3_PPP_CSC_SLVn(i));
return 0;
}
int load_csc_matrix(int matrix_type, struct ppp_csc_table *csc)
{
if (matrix_type == CSC_PRIMARY_MATRIX)
return load_primary_matrix(csc);
return load_secondary_matrix(csc);
}
int config_ppp_src(struct ppp_img_desc *src, uint32_t yuv2rgb)
{
uint32_t val;
val = ((src->roi.height & MDP3_PPP_XY_MASK) << MDP3_PPP_XY_OFFSET) |
(src->roi.width & MDP3_PPP_XY_MASK);
PPP_WRITEL(val, MDP3_PPP_SRC_SIZE);
PPP_WRITEL(src->p0, MDP3_PPP_SRCP0_ADDR);
PPP_WRITEL(src->p1, MDP3_PPP_SRCP1_ADDR);
PPP_WRITEL(src->p3, MDP3_PPP_SRCP3_ADDR);
val = (src->stride0 & MDP3_PPP_STRIDE_MASK) |
((src->stride1 & MDP3_PPP_STRIDE_MASK) <<
MDP3_PPP_STRIDE1_OFFSET);
PPP_WRITEL(val, MDP3_PPP_SRC_YSTRIDE1_ADDR);
val = ((src->stride2 & MDP3_PPP_STRIDE_MASK) <<
MDP3_PPP_STRIDE1_OFFSET);
PPP_WRITEL(val, MDP3_PPP_SRC_YSTRIDE2_ADDR);
val = ppp_src_config(src->color_fmt);
val |= (src->roi.x % 2) ? PPP_SRC_BPP_ROI_ODD_X : 0;
val |= (src->roi.y % 2) ? PPP_SRC_BPP_ROI_ODD_Y : 0;
PPP_WRITEL(val, MDP3_PPP_SRC_FORMAT);
PPP_WRITEL(ppp_pack_pattern(src->color_fmt, yuv2rgb),
MDP3_PPP_SRC_UNPACK_PATTERN1);
return 0;
}
int config_ppp_out(struct ppp_img_desc *dst, uint32_t yuv2rgb)
{
uint32_t val;
bool pseudoplanr_output = false;
switch (dst->color_fmt) {
case MDP_Y_CBCR_H2V2:
case MDP_Y_CRCB_H2V2:
case MDP_Y_CBCR_H2V1:
case MDP_Y_CRCB_H2V1:
pseudoplanr_output = true;
break;
default:
break;
}
val = ppp_out_config(dst->color_fmt);
if (pseudoplanr_output)
val |= PPP_DST_PLANE_PSEUDOPLN;
PPP_WRITEL(val, MDP3_PPP_OUT_FORMAT);
PPP_WRITEL(ppp_pack_pattern(dst->color_fmt, yuv2rgb),
MDP3_PPP_OUT_PACK_PATTERN1);
val = ((dst->roi.height & MDP3_PPP_XY_MASK) << MDP3_PPP_XY_OFFSET) |
(dst->roi.width & MDP3_PPP_XY_MASK);
PPP_WRITEL(val, MDP3_PPP_OUT_SIZE);
PPP_WRITEL(dst->p0, MDP3_PPP_OUTP0_ADDR);
PPP_WRITEL(dst->p1, MDP3_PPP_OUTP1_ADDR);
PPP_WRITEL(dst->p3, MDP3_PPP_OUTP3_ADDR);
val = (dst->stride0 & MDP3_PPP_STRIDE_MASK) |
((dst->stride1 & MDP3_PPP_STRIDE_MASK) <<
MDP3_PPP_STRIDE1_OFFSET);
PPP_WRITEL(val, MDP3_PPP_OUT_YSTRIDE1_ADDR);
val = ((dst->stride2 & MDP3_PPP_STRIDE_MASK) <<
MDP3_PPP_STRIDE1_OFFSET);
PPP_WRITEL(val, MDP3_PPP_OUT_YSTRIDE2_ADDR);
return 0;
}
int config_ppp_background(struct ppp_img_desc *bg, uint32_t yuv2rgb)
{
uint32_t val;
PPP_WRITEL(bg->p0, MDP3_PPP_BGP0_ADDR);
PPP_WRITEL(bg->p1, MDP3_PPP_BGP1_ADDR);
PPP_WRITEL(bg->p3, MDP3_PPP_BGP3_ADDR);
val = (bg->stride0 & MDP3_PPP_STRIDE_MASK) |
((bg->stride1 & MDP3_PPP_STRIDE_MASK) <<
MDP3_PPP_STRIDE1_OFFSET);
PPP_WRITEL(val, MDP3_PPP_BG_YSTRIDE1_ADDR);
val = ((bg->stride2 & MDP3_PPP_STRIDE_MASK) <<
MDP3_PPP_STRIDE1_OFFSET);
PPP_WRITEL(val, MDP3_PPP_BG_YSTRIDE2_ADDR);
PPP_WRITEL(ppp_src_config(bg->color_fmt),
MDP3_PPP_BG_FORMAT);
PPP_WRITEL(ppp_pack_pattern(bg->color_fmt, yuv2rgb),
MDP3_PPP_BG_UNPACK_PATTERN1);
return 0;
}
void ppp_edge_rep_luma_pixel(struct ppp_blit_op *blit_op,
struct ppp_edge_rep *er)
{
if (blit_op->mdp_op & MDPOP_ASCALE) {
er->is_scale_enabled = 1;
if (blit_op->mdp_op & MDPOP_ROT90) {
er->dst_roi_width = blit_op->dst.roi.height;
er->dst_roi_height = blit_op->dst.roi.width;
} else {
er->dst_roi_width = blit_op->dst.roi.width;
er->dst_roi_height = blit_op->dst.roi.height;
}
/*
* Find out the luma pixels needed for scaling in the
* x direction (LEFT and RIGHT). Locations of pixels are
* relative to the ROI. Upper-left corner of ROI corresponds
* to coordinates (0,0). Also set the number of luma pixel
* to repeat.
*/
if (blit_op->src.roi.width > 3 * er->dst_roi_width) {
/* scale factor < 1/3 */
er->luma_interp_point_right =
(blit_op->src.roi.width - 1);
} else if (blit_op->src.roi.width == 3 * er->dst_roi_width) {
/* scale factor == 1/3 */
er->luma_interp_point_right =
(blit_op->src.roi.width - 1) + 1;
er->luma_repeat_right = 1;
} else if ((blit_op->src.roi.width > er->dst_roi_width) &&
(blit_op->src.roi.width < 3 * er->dst_roi_width)) {
/* 1/3 < scale factor < 1 */
er->luma_interp_point_left = -1;
er->luma_interp_point_right =
(blit_op->src.roi.width - 1) + 1;
er->luma_repeat_left = 1;
er->luma_repeat_right = 1;
} else if (blit_op->src.roi.width == er->dst_roi_width) {
/* scale factor == 1 */
er->luma_interp_point_left = -1;
er->luma_interp_point_right =
(blit_op->src.roi.width - 1) + 2;
er->luma_repeat_left = 1;
er->luma_repeat_right = 2;
} else {
/* scale factor > 1 */
er->luma_interp_point_left = -2;
er->luma_interp_point_right =
(blit_op->src.roi.width - 1) + 2;
er->luma_repeat_left = 2;
er->luma_repeat_right = 2;
}
/*
* Find out the number of pixels needed for scaling in the
* y direction (TOP and BOTTOM). Locations of pixels are
* relative to the ROI. Upper-left corner of ROI corresponds
* to coordinates (0,0). Also set the number of luma pixel
* to repeat.
*/
if (blit_op->src.roi.height > 3 * er->dst_roi_height) {
er->luma_interp_point_bottom =
(blit_op->src.roi.height - 1);
} else if (blit_op->src.roi.height == 3 * er->dst_roi_height) {
er->luma_interp_point_bottom =
(blit_op->src.roi.height - 1) + 1;
er->luma_repeat_bottom = 1;
} else if ((blit_op->src.roi.height > er->dst_roi_height) &&
(blit_op->src.roi.height < 3 * er->dst_roi_height)) {
er->luma_interp_point_top = -1;
er->luma_interp_point_bottom =
(blit_op->src.roi.height - 1) + 1;
er->luma_repeat_top = 1;
er->luma_repeat_bottom = 1;
} else if (blit_op->src.roi.height == er->dst_roi_height) {
er->luma_interp_point_top = -1;
er->luma_interp_point_bottom =
(blit_op->src.roi.height - 1) + 2;
er->luma_repeat_top = 1;
er->luma_repeat_bottom = 2;
} else {
er->luma_interp_point_top = -2;
er->luma_interp_point_bottom =
(blit_op->src.roi.height - 1) + 2;
er->luma_repeat_top = 2;
er->luma_repeat_bottom = 2;
}
} else {
/*
* Since no scaling needed, Tile Fetch does not require any
* more luma pixel than what the ROI contains.
*/
er->luma_interp_point_right =
(int32_t) (blit_op->src.roi.width - 1);
er->luma_interp_point_bottom =
(int32_t) (blit_op->src.roi.height - 1);
}
/* After adding the ROI offsets, we have locations of
* luma_interp_points relative to the image.
*/
er->luma_interp_point_left += (int32_t) (blit_op->src.roi.x);
er->luma_interp_point_right += (int32_t) (blit_op->src.roi.x);
er->luma_interp_point_top += (int32_t) (blit_op->src.roi.y);
er->luma_interp_point_bottom += (int32_t) (blit_op->src.roi.y);
}
void ppp_edge_rep_chroma_pixel(struct ppp_blit_op *blit_op,
struct ppp_edge_rep *er)
{
bool chroma_edge_enable = true;
uint32_t is_yuv_offsite_vertical = 0;
/* find out which chroma pixels are needed for chroma upsampling. */
switch (blit_op->src.color_fmt) {
case MDP_Y_CBCR_H2V1:
case MDP_Y_CRCB_H2V1:
case MDP_YCRYCB_H2V1:
er->chroma_interp_point_left = er->luma_interp_point_left >> 1;
er->chroma_interp_point_right =
(er->luma_interp_point_right + 1) >> 1;
er->chroma_interp_point_top = er->luma_interp_point_top;
er->chroma_interp_point_bottom = er->luma_interp_point_bottom;
break;
case MDP_Y_CBCR_H2V2:
case MDP_Y_CBCR_H2V2_ADRENO:
case MDP_Y_CBCR_H2V2_VENUS:
case MDP_Y_CRCB_H2V2:
er->chroma_interp_point_left = er->luma_interp_point_left >> 1;
er->chroma_interp_point_right =
(er->luma_interp_point_right + 1) >> 1;
er->chroma_interp_point_top =
(er->luma_interp_point_top - 1) >> 1;
er->chroma_interp_point_bottom =
(er->luma_interp_point_bottom + 1) >> 1;
is_yuv_offsite_vertical = 1;
break;
default:
chroma_edge_enable = false;
er->chroma_interp_point_left = er->luma_interp_point_left;
er->chroma_interp_point_right = er->luma_interp_point_right;
er->chroma_interp_point_top = er->luma_interp_point_top;
er->chroma_interp_point_bottom = er->luma_interp_point_bottom;
break;
}
if (chroma_edge_enable) {
/* Defines which chroma pixels belongs to the roi */
switch (blit_op->src.color_fmt) {
case MDP_Y_CBCR_H2V1:
case MDP_Y_CRCB_H2V1:
case MDP_YCRYCB_H2V1:
er->chroma_bound_left = blit_op->src.roi.x / 2;
/* there are half as many chroma pixel as luma pixels */
er->chroma_bound_right =
(blit_op->src.roi.width +
blit_op->src.roi.x - 1) / 2;
er->chroma_bound_top = blit_op->src.roi.y;
er->chroma_bound_bottom =
(blit_op->src.roi.height + blit_op->src.roi.y - 1);
break;
case MDP_Y_CBCR_H2V2:
case MDP_Y_CBCR_H2V2_ADRENO:
case MDP_Y_CBCR_H2V2_VENUS:
case MDP_Y_CRCB_H2V2:
/*
* cosite in horizontal dir, and offsite in vertical dir
* width of chroma ROI is 1/2 of size of luma ROI
* height of chroma ROI is 1/2 of size of luma ROI
*/
er->chroma_bound_left = blit_op->src.roi.x / 2;
er->chroma_bound_right =
(blit_op->src.roi.width +
blit_op->src.roi.x - 1) / 2;
er->chroma_bound_top = blit_op->src.roi.y / 2;
er->chroma_bound_bottom =
(blit_op->src.roi.height +
blit_op->src.roi.y - 1) / 2;
break;
default:
/*
* If no valid chroma sub-sampling format specified,
* assume 4:4:4 ( i.e. fully sampled).
*/
er->chroma_bound_left = blit_op->src.roi.x;
er->chroma_bound_right = blit_op->src.roi.width +
blit_op->src.roi.x - 1;
er->chroma_bound_top = blit_op->src.roi.y;
er->chroma_bound_bottom =
(blit_op->src.roi.height + blit_op->src.roi.y - 1);
break;
}
/*
* Knowing which chroma pixels are needed, and which chroma
* pixels belong to the ROI (i.e. available for fetching ),
* calculate how many chroma pixels Tile Fetch needs to
* duplicate. If any required chroma pixels falls outside
* of the ROI, Tile Fetch must obtain them by replicating
* pixels.
*/
if (er->chroma_bound_left > er->chroma_interp_point_left)
er->chroma_repeat_left =
er->chroma_bound_left -
er->chroma_interp_point_left;
else
er->chroma_repeat_left = 0;
if (er->chroma_interp_point_right > er->chroma_bound_right)
er->chroma_repeat_right =
er->chroma_interp_point_right -
er->chroma_bound_right;
else
er->chroma_repeat_right = 0;
if (er->chroma_bound_top > er->chroma_interp_point_top)
er->chroma_repeat_top =
er->chroma_bound_top -
er->chroma_interp_point_top;
else
er->chroma_repeat_top = 0;
if (er->chroma_interp_point_bottom > er->chroma_bound_bottom)
er->chroma_repeat_bottom =
er->chroma_interp_point_bottom -
er->chroma_bound_bottom;
else
er->chroma_repeat_bottom = 0;
if (er->is_scale_enabled && (blit_op->src.roi.height == 1)
&& is_yuv_offsite_vertical) {
er->chroma_repeat_bottom = 3;
er->chroma_repeat_top = 0;
}
}
}
int config_ppp_edge_rep(struct ppp_blit_op *blit_op)
{
uint32_t reg = 0;
struct ppp_edge_rep er;
memset(&er, 0, sizeof(er));
ppp_edge_rep_luma_pixel(blit_op, &er);
/*
* After adding the ROI offsets, we have locations of
* chroma_interp_points relative to the image.
*/
er.chroma_interp_point_left = er.luma_interp_point_left;
er.chroma_interp_point_right = er.luma_interp_point_right;
er.chroma_interp_point_top = er.luma_interp_point_top;
er.chroma_interp_point_bottom = er.luma_interp_point_bottom;
ppp_edge_rep_chroma_pixel(blit_op, &er);
/* ensure repeats are >=0 and no larger than 3 pixels */
if ((er.chroma_repeat_left < 0) || (er.chroma_repeat_right < 0) ||
(er.chroma_repeat_top < 0) || (er.chroma_repeat_bottom < 0))
return -EINVAL;
if ((er.chroma_repeat_left > 3) || (er.chroma_repeat_right > 3) ||
(er.chroma_repeat_top > 3) || (er.chroma_repeat_bottom > 3))
return -EINVAL;
if ((er.luma_repeat_left < 0) || (er.luma_repeat_right < 0) ||
(er.luma_repeat_top < 0) || (er.luma_repeat_bottom < 0))
return -EINVAL;
if ((er.luma_repeat_left > 3) || (er.luma_repeat_right > 3) ||
(er.luma_repeat_top > 3) || (er.luma_repeat_bottom > 3))
return -EINVAL;
reg |= (er.chroma_repeat_left & 3) << MDP_LEFT_CHROMA;
reg |= (er.chroma_repeat_right & 3) << MDP_RIGHT_CHROMA;
reg |= (er.chroma_repeat_top & 3) << MDP_TOP_CHROMA;
reg |= (er.chroma_repeat_bottom & 3) << MDP_BOTTOM_CHROMA;
reg |= (er.luma_repeat_left & 3) << MDP_LEFT_LUMA;
reg |= (er.luma_repeat_right & 3) << MDP_RIGHT_LUMA;
reg |= (er.luma_repeat_top & 3) << MDP_TOP_LUMA;
reg |= (er.luma_repeat_bottom & 3) << MDP_BOTTOM_LUMA;
PPP_WRITEL(reg, MDP3_PPP_SRC_EDGE_REP);
return 0;
}
int config_ppp_bg_edge_rep(struct ppp_blit_op *blit_op)
{
uint32_t reg = 0;
switch (blit_op->dst.color_fmt) {
case MDP_Y_CBCR_H2V2:
case MDP_Y_CRCB_H2V2:
if (blit_op->dst.roi.y == 0)
reg |= BIT(MDP_TOP_CHROMA);
if ((blit_op->dst.roi.y + blit_op->dst.roi.height) ==
blit_op->dst.prop.height) {
reg |= BIT(MDP_BOTTOM_CHROMA);
}
if (((blit_op->dst.roi.x + blit_op->dst.roi.width) ==
blit_op->dst.prop.width) &&
((blit_op->dst.roi.width % 2) == 0))
reg |= BIT(MDP_RIGHT_CHROMA);
break;
case MDP_Y_CBCR_H2V1:
case MDP_Y_CRCB_H2V1:
case MDP_YCRYCB_H2V1:
if (((blit_op->dst.roi.x + blit_op->dst.roi.width) ==
blit_op->dst.prop.width) &&
((blit_op->dst.roi.width % 2) == 0))
reg |= BIT(MDP_RIGHT_CHROMA);
break;
default:
break;
}
PPP_WRITEL(reg, MDP3_PPP_BG_EDGE_REP);
return 0;
}
int config_ppp_lut(uint32_t *pppop_reg_ptr, int lut_c0_en,
int lut_c1_en, int lut_c2_en)
{
if (lut_c0_en)
*pppop_reg_ptr |= MDP_LUT_C0_EN;
if (lut_c1_en)
*pppop_reg_ptr |= MDP_LUT_C1_EN;
if (lut_c2_en)
*pppop_reg_ptr |= MDP_LUT_C2_EN;
return 0;
}
int config_ppp_scale(struct ppp_blit_op *blit_op, uint32_t *pppop_reg_ptr)
{
struct ppp_img_desc *src = &blit_op->src;
struct ppp_img_desc *dst = &blit_op->dst;
uint32_t dstW, dstH;
uint32_t x_fac, y_fac;
uint32_t mdp_blur = 0;
uint32_t phase_init_x, phase_init_y, phase_step_x, phase_step_y;
int x_idx, y_idx;
if (blit_op->mdp_op & MDPOP_ASCALE) {
if (blit_op->mdp_op & MDPOP_ROT90) {
dstW = dst->roi.height;
dstH = dst->roi.width;
} else {
dstW = dst->roi.width;
dstH = dst->roi.height;
}
*pppop_reg_ptr |=
(PPP_OP_SCALE_Y_ON | PPP_OP_SCALE_X_ON);
mdp_blur = blit_op->mdp_op & MDPOP_BLUR;
if ((dstW != src->roi.width) ||
(dstH != src->roi.height) || mdp_blur) {
/*
* Use source origin as 0 for computing initial
* phase and step size. Incorrect initial phase and
* step size value results in green line issue.
*/
mdp_calc_scale_params(0,
blit_op->src.roi.width,
dstW, 1, &phase_init_x,
&phase_step_x);
mdp_calc_scale_params(0,
blit_op->src.roi.height,
dstH, 0, &phase_init_y,
&phase_step_y);
PPP_WRITEL(phase_init_x, MDP3_PPP_SCALE_PHASEX_INIT);
PPP_WRITEL(phase_init_y, MDP3_PPP_SCALE_PHASEY_INIT);
PPP_WRITEL(phase_step_x, MDP3_PPP_SCALE_PHASEX_STEP);
PPP_WRITEL(phase_step_y, MDP3_PPP_SCALE_PHASEY_STEP);
if (dstW > src->roi.width || dstH > src->roi.height)
ppp_load_up_lut();
if (mdp_blur)
ppp_load_gaussian_lut();
if (dstW <= src->roi.width) {
x_fac = (dstW * 100) / src->roi.width;
x_idx = scale_idx(x_fac);
ppp_load_x_scale_table(x_idx);
}
if (dstH <= src->roi.height) {
y_fac = (dstH * 100) / src->roi.height;
y_idx = scale_idx(y_fac);
ppp_load_y_scale_table(y_idx);
}
} else {
blit_op->mdp_op &= ~(MDPOP_ASCALE);
}
}
config_ppp_edge_rep(blit_op);
config_ppp_bg_edge_rep(blit_op);
return 0;
}
int config_ppp_csc(int src_color, int dst_color, uint32_t *pppop_reg_ptr)
{
bool inputRGB, outputRGB;
inputRGB = check_if_rgb(src_color);
outputRGB = check_if_rgb(dst_color);
if ((!inputRGB) && (outputRGB))
*pppop_reg_ptr |= PPP_OP_CONVERT_YCBCR2RGB |
PPP_OP_CONVERT_ON;
if ((inputRGB) && (!outputRGB))
*pppop_reg_ptr |= PPP_OP_CONVERT_ON;
return 0;
}
int config_ppp_blend(struct ppp_blit_op *blit_op,
uint32_t *pppop_reg_ptr,
bool is_yuv_smart_blit, int smart_blit_bg_alpha)
{
struct ppp_csc_table *csc;
uint32_t alpha, trans_color;
uint32_t val = 0;
int c_fmt = blit_op->src.color_fmt;
int bg_alpha;
csc = ppp_csc_rgb2yuv();
alpha = blit_op->blend.const_alpha;
trans_color = blit_op->blend.trans_color;
if (blit_op->mdp_op & MDPOP_FG_PM_ALPHA) {
if (ppp_per_p_alpha(c_fmt)) {
*pppop_reg_ptr |= PPP_OP_ROT_ON |
PPP_OP_BLEND_ON |
PPP_OP_BLEND_CONSTANT_ALPHA;
} else {
if ((blit_op->mdp_op & MDPOP_ALPHAB)
&& (blit_op->blend.const_alpha == 0xff)) {
blit_op->mdp_op &= ~(MDPOP_ALPHAB);
}
if ((blit_op->mdp_op & MDPOP_ALPHAB)
|| (blit_op->mdp_op & MDPOP_TRANSP)) {
*pppop_reg_ptr |= PPP_OP_ROT_ON |
PPP_OP_BLEND_ON |
PPP_OP_BLEND_CONSTANT_ALPHA |
PPP_OP_BLEND_ALPHA_BLEND_NORMAL;
}
}
bg_alpha = PPP_BLEND_BG_USE_ALPHA_SEL |
PPP_BLEND_BG_ALPHA_REVERSE;
if ((ppp_per_p_alpha(c_fmt)) && !(blit_op->mdp_op &
MDPOP_LAYER_IS_FG)) {
bg_alpha |= PPP_BLEND_BG_SRCPIXEL_ALPHA;
} else {
bg_alpha |= PPP_BLEND_BG_CONSTANT_ALPHA;
bg_alpha |= blit_op->blend.const_alpha << 24;
}
PPP_WRITEL(bg_alpha, MDP3_PPP_BLEND_BG_ALPHA_SEL);
if (blit_op->mdp_op & MDPOP_TRANSP)
*pppop_reg_ptr |= PPP_BLEND_CALPHA_TRNASP;
} else if (ppp_per_p_alpha(c_fmt)) {
if (blit_op->mdp_op & MDPOP_LAYER_IS_FG)
*pppop_reg_ptr |= PPP_OP_ROT_ON |
PPP_OP_BLEND_ON |
PPP_OP_BLEND_CONSTANT_ALPHA;
else
*pppop_reg_ptr |= PPP_OP_ROT_ON |
PPP_OP_BLEND_ON |
PPP_OP_BLEND_SRCPIXEL_ALPHA;
PPP_WRITEL(0, MDP3_PPP_BLEND_BG_ALPHA_SEL);
} else {
if ((blit_op->mdp_op & MDPOP_ALPHAB)
&& (blit_op->blend.const_alpha == 0xff)) {
blit_op->mdp_op &=
~(MDPOP_ALPHAB);
}
if ((blit_op->mdp_op & MDPOP_ALPHAB)
|| (blit_op->mdp_op & MDPOP_TRANSP)) {
*pppop_reg_ptr |= PPP_OP_ROT_ON |
PPP_OP_BLEND_ON |
PPP_OP_BLEND_CONSTANT_ALPHA |
PPP_OP_BLEND_ALPHA_BLEND_NORMAL;
}
if (blit_op->mdp_op & MDPOP_TRANSP)
*pppop_reg_ptr |=
PPP_BLEND_CALPHA_TRNASP;
if (is_yuv_smart_blit) {
*pppop_reg_ptr |= PPP_OP_ROT_ON |
PPP_OP_BLEND_ON |
PPP_OP_BLEND_BG_ALPHA |
PPP_OP_BLEND_EQ_REVERSE;
if (smart_blit_bg_alpha < 0xFF)
bg_alpha = PPP_BLEND_BG_USE_ALPHA_SEL |
PPP_BLEND_BG_DSTPIXEL_ALPHA;
else
bg_alpha = PPP_BLEND_BG_USE_ALPHA_SEL |
PPP_BLEND_BG_DSTPIXEL_ALPHA |
PPP_BLEND_BG_CONSTANT_ALPHA;
bg_alpha |= smart_blit_bg_alpha << 24;
PPP_WRITEL(bg_alpha, MDP3_PPP_BLEND_BG_ALPHA_SEL);
} else {
PPP_WRITEL(0, MDP3_PPP_BLEND_BG_ALPHA_SEL);
}
}
if (*pppop_reg_ptr & PPP_OP_BLEND_ON) {
if (is_yuv_smart_blit)
config_ppp_background(&blit_op->bg, 1);
else
config_ppp_background(&blit_op->bg, 0);
if (blit_op->dst.color_fmt == MDP_YCRYCB_H2V1) {
*pppop_reg_ptr |= PPP_OP_BG_CHROMA_H2V1;
if (blit_op->mdp_op & MDPOP_TRANSP) {
trans_color = conv_rgb2yuv(trans_color,
&csc->fwd_matrix[0],
&csc->bv[0],
&csc->lv[0]);
}
}
}
if (is_yuv_smart_blit) {
PPP_WRITEL(0, MDP3_PPP_BLEND_PARAM);
} else {
val = (alpha << MDP_BLEND_CONST_ALPHA);
val |= (trans_color & MDP_BLEND_TRASP_COL_MASK);
PP_WRITEL(val, MDP3_PPP_BLEND_PARAM);
}
return 0;
}
int config_ppp_rotation(uint32_t mdp_op, uint32_t *pppop_reg_ptr)
{
*pppop_reg_ptr |= PPP_OP_ROT_ON;
if (mdp_op & MDPOP_ROT90)
*pppop_reg_ptr |= PPP_OP_ROT_90;
if (mdp_op & MDPOP_LR)
*pppop_reg_ptr |= PPP_OP_FLIP_LR;
if (mdp_op & MDPOP_UD)
*pppop_reg_ptr |= PPP_OP_FLIP_UD;
return 0;
}
int config_ppp_op_mode(struct ppp_blit_op *blit_op)
{
uint32_t yuv2rgb;
uint32_t ppp_operation_reg = 0;
int sv_slice, sh_slice;
int dv_slice, dh_slice;
static struct ppp_img_desc bg_img_param;
static int bg_alpha;
static int bg_mdp_ops;
bool is_yuv_smart_blit = false;
/*
* Detect YUV smart blit,
* Check cached BG image plane 0 address is not NILL and
* source color format is YUV than it is YUV smart blit
* mark is_yuv_smart_blit true.
*/
if ((bg_img_param.p0) &&
(!(check_if_rgb(blit_op->src.color_fmt))))
is_yuv_smart_blit = true;
sv_slice = sh_slice = dv_slice = dh_slice = 1;
ppp_operation_reg |= ppp_dst_op_reg(blit_op->dst.color_fmt);
switch (blit_op->dst.color_fmt) {
case MDP_Y_CBCR_H2V2:
case MDP_Y_CRCB_H2V2:
y_h_even_num(&blit_op->dst);
y_h_even_num(&blit_op->src);
dv_slice = 2;
/* fall-through */
case MDP_Y_CBCR_H2V1:
case MDP_Y_CRCB_H2V1:
case MDP_YCRYCB_H2V1:
x_w_even_num(&blit_op->dst);
x_w_even_num(&blit_op->src);
dh_slice = 2;
break;
default:
break;
}
ppp_operation_reg |= ppp_src_op_reg(blit_op->src.color_fmt);
switch (blit_op->src.color_fmt) {
case MDP_Y_CBCR_H2V2:
case MDP_Y_CBCR_H2V2_ADRENO:
case MDP_Y_CBCR_H2V2_VENUS:
case MDP_Y_CRCB_H2V2:
sh_slice = sv_slice = 2;
break;
case MDP_YCRYCB_H2V1:
x_w_even_num(&blit_op->dst);
x_w_even_num(&blit_op->src);
/* fall-through */
case MDP_Y_CBCR_H2V1:
case MDP_Y_CRCB_H2V1:
sh_slice = 2;
break;
default:
break;
}
config_ppp_csc(blit_op->src.color_fmt,
blit_op->dst.color_fmt, &ppp_operation_reg);
yuv2rgb = ppp_operation_reg & PPP_OP_CONVERT_YCBCR2RGB;
if (blit_op->mdp_op & MDPOP_DITHER)
ppp_operation_reg |= PPP_OP_DITHER_EN;
if (blit_op->mdp_op & MDPOP_ROTATION)
config_ppp_rotation(blit_op->mdp_op, &ppp_operation_reg);
if (blit_op->src.color_fmt == MDP_Y_CBCR_H2V2_ADRENO) {
blit_op->src.stride0 = ALIGN(blit_op->src.prop.width, 32) *
ppp_bpp(blit_op->src.color_fmt);
blit_op->src.stride1 = 2 * ALIGN(blit_op->src.prop.width/2, 32);
} else if (blit_op->src.color_fmt == MDP_Y_CBCR_H2V2_VENUS) {
blit_op->src.stride0 = ALIGN(blit_op->src.prop.width, 128) *
ppp_bpp(blit_op->src.color_fmt);
blit_op->src.stride1 = blit_op->src.stride0;
} else {
blit_op->src.stride0 = blit_op->src.prop.width *
ppp_bpp(blit_op->src.color_fmt);
blit_op->src.stride1 = blit_op->src.stride0;
}
blit_op->dst.stride0 = blit_op->dst.prop.width *
ppp_bpp(blit_op->dst.color_fmt);
if (ppp_multi_plane(blit_op->dst.color_fmt)) {
blit_op->dst.p1 = blit_op->dst.p0;
blit_op->dst.p1 += blit_op->dst.prop.width *
blit_op->dst.prop.height *
ppp_bpp(blit_op->dst.color_fmt);
} else {
blit_op->dst.p1 = NULL;
}
if ((bg_img_param.p0) && (!(blit_op->mdp_op & MDPOP_SMART_BLIT))) {
/*
* Use cached smart blit BG layer info in
* smart Blit FG request
*/
blit_op->bg = bg_img_param;
if (check_if_rgb(blit_op->bg.color_fmt)) {
blit_op->bg.p1 = 0;
blit_op->bg.stride1 = 0;
}
memset(&bg_img_param, 0, sizeof(bg_img_param));
} else {
blit_op->bg = blit_op->dst;
}
/* Cache smart blit BG layer info */
if (blit_op->mdp_op & MDPOP_SMART_BLIT)
bg_img_param = blit_op->src;
/* Jumping from Y-Plane to Chroma Plane */
/* first pixel addr calculation */
mdp_adjust_start_addr(blit_op, &blit_op->src, sv_slice,
sh_slice, LAYER_FG);
mdp_adjust_start_addr(blit_op, &blit_op->bg, dv_slice,
dh_slice, LAYER_BG);
mdp_adjust_start_addr(blit_op, &blit_op->dst, dv_slice,
dh_slice, LAYER_FB);
config_ppp_scale(blit_op, &ppp_operation_reg);
config_ppp_blend(blit_op, &ppp_operation_reg, is_yuv_smart_blit,
bg_alpha);
config_ppp_src(&blit_op->src, yuv2rgb);
config_ppp_out(&blit_op->dst, yuv2rgb);
/* Cache Smart blit BG alpha adn MDP OP values */
if (blit_op->mdp_op & MDPOP_SMART_BLIT) {
bg_alpha = blit_op->blend.const_alpha;
bg_mdp_ops = blit_op->mdp_op;
} else {
bg_alpha = 0;
bg_mdp_ops = 0;
}
pr_debug("BLIT FG Param Fmt %d (x %d,y %d,w %d,h %d), ",
blit_op->src.color_fmt, blit_op->src.prop.x,
blit_op->src.prop.y, blit_op->src.prop.width,
blit_op->src.prop.height);
pr_debug("ROI(x %d,y %d,w %d, h %d) ",
blit_op->src.roi.x, blit_op->src.roi.y,
blit_op->src.roi.width, blit_op->src.roi.height);
pr_debug("Addr_P0 %pK, Stride S0 %d Addr_P1 %pK, Stride S1 %d\n",
blit_op->src.p0, blit_op->src.stride0,
blit_op->src.p1, blit_op->src.stride1);
if (blit_op->bg.p0 != blit_op->dst.p0) {
pr_debug("BLIT BG Param Fmt %d (x %d,y %d,w %d,h %d), ",
blit_op->bg.color_fmt, blit_op->bg.prop.x,
blit_op->bg.prop.y, blit_op->bg.prop.width,
blit_op->bg.prop.height);
pr_debug("ROI(x %d,y %d, w %d, h %d) ",
blit_op->bg.roi.x, blit_op->bg.roi.y,
blit_op->bg.roi.width, blit_op->bg.roi.height);
pr_debug("Addr %pK, Stride S0 %d Addr_P1 %pK, Stride S1 %d\n",
blit_op->bg.p0, blit_op->bg.stride0,
blit_op->bg.p1, blit_op->bg.stride1);
}
pr_debug("BLIT FB Param Fmt %d (x %d,y %d,w %d,h %d), ",
blit_op->dst.color_fmt, blit_op->dst.prop.x,
blit_op->dst.prop.y, blit_op->dst.prop.width,
blit_op->dst.prop.height);
pr_debug("ROI(x %d,y %d, w %d, h %d) ",
blit_op->dst.roi.x, blit_op->dst.roi.y,
blit_op->dst.roi.width, blit_op->dst.roi.height);
pr_debug("Addr %p, Stride S0 %d Addr_P1 %p, Stride S1 %d\n",
blit_op->dst.p0, blit_op->dst.stride0,
blit_op->dst.p1, blit_op->dst.stride1);
PPP_WRITEL(ppp_operation_reg, MDP3_PPP_OP_MODE);
mb(); /* make sure everything is written before enable */
MDSS_XLOG(ppp_operation_reg, blit_op->src.roi.x, blit_op->src.roi.y,
blit_op->src.roi.width, blit_op->src.roi.height);
MDSS_XLOG(blit_op->dst.roi.x, blit_op->dst.roi.y,
blit_op->dst.roi.width, blit_op->dst.roi.height);
return 0;
}
void ppp_enable(void)
{
PPP_WRITEL(0x1000, 0x30);
mb(); /* make sure everything is written before enable */
}
int mdp3_ppp_init(void)
{
load_ppp_lut(LUT_PRE_TABLE, ppp_default_pre_lut());
load_ppp_lut(LUT_POST_TABLE, ppp_default_post_lut());
load_csc_matrix(CSC_PRIMARY_MATRIX, ppp_csc_rgb2yuv());
load_csc_matrix(CSC_SECONDARY_MATRIX, ppp_csc_table2());
return 0;
}