You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/drivers/usb/phy/phy-msm-snps-hs.c

1009 lines
26 KiB

/*
* Copyright (c) 2017-2020, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/power_supply.h>
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/usb/phy.h>
#include <linux/reset.h>
#include <linux/debugfs.h>
#define USB2_PHY_USB_PHY_UTMI_CTRL0 (0x3c)
#define OPMODE_MASK (0x3 << 3)
#define OPMODE_NONDRIVING (0x1 << 3)
#define SLEEPM BIT(0)
#define OPMODE_NORMAL (0x00)
#define TERMSEL BIT(5)
#define USB2_PHY_USB_PHY_UTMI_CTRL1 (0x40)
#define XCVRSEL BIT(0)
#define USB2_PHY_USB_PHY_UTMI_CTRL5 (0x50)
#define POR BIT(1)
#define USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON0 (0x54)
#define RETENABLEN BIT(3)
#define FSEL_MASK (0x7 << 4)
#define FSEL_DEFAULT (0x3 << 4)
#define USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON1 (0x58)
#define VBUSVLDEXTSEL0 BIT(4)
#define PLLBTUNE BIT(5)
#define USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON2 (0x5c)
#define VREGBYPASS BIT(0)
#define USB2_PHY_USB_PHY_HS_PHY_CTRL1 (0x60)
#define VBUSVLDEXT0 BIT(0)
#define USB2_PHY_USB_PHY_HS_PHY_CTRL2 (0x64)
#define USB2_AUTO_RESUME BIT(0)
#define USB2_SUSPEND_N BIT(2)
#define USB2_SUSPEND_N_SEL BIT(3)
#define USB2_PHY_USB_PHY_CFG0 (0x94)
#define UTMI_PHY_DATAPATH_CTRL_OVERRIDE_EN BIT(0)
#define UTMI_PHY_CMN_CTRL_OVERRIDE_EN BIT(1)
#define USB2_PHY_USB_PHY_REFCLK_CTRL (0xa0)
#define REFCLK_SEL_MASK (0x3 << 0)
#define REFCLK_SEL_DEFAULT (0x2 << 0)
#define USB2PHY_USB_PHY_RTUNE_SEL (0xb4)
#define RTUNE_SEL BIT(0)
#define TXPREEMPAMPTUNE0(x) (x << 6)
#define TXPREEMPAMPTUNE0_MASK (BIT(7) | BIT(6))
#define USB2PHY_USB_PHY_PARAMETER_OVERRIDE_X0 0x6c
#define USB2PHY_USB_PHY_PARAMETER_OVERRIDE_X1 0x70
#define USB2PHY_USB_PHY_PARAMETER_OVERRIDE_X2 0x74
#define USB2PHY_USB_PHY_PARAMETER_OVERRIDE_X3 0x78
#define TXVREFTUNE0_MASK 0xF
#define PARAM_OVRD_MASK 0xFF
#define USB_HSPHY_3P3_VOL_MIN 3050000 /* uV */
#define USB_HSPHY_3P3_VOL_MAX 3300000 /* uV */
#define USB_HSPHY_3P3_HPM_LOAD 16000 /* uA */
#define USB_HSPHY_3P3_VOL_FSHOST 3150000 /* uV */
#define USB_HSPHY_1P8_VOL_MIN 1704000 /* uV */
#define USB_HSPHY_1P8_VOL_MAX 1800000 /* uV */
#define USB_HSPHY_1P8_HPM_LOAD 19000 /* uA */
#define USB_HSPHY_VDD_HPM_LOAD 30000 /* uA */
struct msm_hsphy {
struct usb_phy phy;
void __iomem *base;
struct clk *ref_clk_src;
struct clk *cfg_ahb_clk;
struct reset_control *phy_reset;
struct regulator *vdd;
struct regulator *vdda33;
struct regulator *vdda18;
int vdd_levels[3]; /* none, low, high */
bool clocks_enabled;
bool power_enabled;
bool suspended;
bool cable_connected;
bool dpdm_enable;
bool no_rext_present;
int *param_override_seq;
int param_override_seq_cnt;
void __iomem *phy_rcal_reg;
u32 rcal_mask;
struct mutex phy_lock;
struct regulator_desc dpdm_rdesc;
struct regulator_dev *dpdm_rdev;
/* emulation targets specific */
void __iomem *emu_phy_base;
int *emu_init_seq;
int emu_init_seq_len;
int *emu_dcm_reset_seq;
int emu_dcm_reset_seq_len;
/* debugfs entries */
struct dentry *root;
u8 txvref_tune0;
u8 pre_emphasis;
u8 param_ovrd0;
u8 param_ovrd1;
u8 param_ovrd2;
u8 param_ovrd3;
};
static void msm_hsphy_enable_clocks(struct msm_hsphy *phy, bool on)
{
dev_dbg(phy->phy.dev, "%s(): clocks_enabled:%d on:%d\n",
__func__, phy->clocks_enabled, on);
if (!phy->clocks_enabled && on) {
clk_prepare_enable(phy->ref_clk_src);
if (phy->cfg_ahb_clk)
clk_prepare_enable(phy->cfg_ahb_clk);
phy->clocks_enabled = true;
}
if (phy->clocks_enabled && !on) {
if (phy->cfg_ahb_clk)
clk_disable_unprepare(phy->cfg_ahb_clk);
clk_disable_unprepare(phy->ref_clk_src);
phy->clocks_enabled = false;
}
}
static int msm_hsphy_enable_power(struct msm_hsphy *phy, bool on)
{
int ret = 0;
dev_dbg(phy->phy.dev, "%s turn %s regulators. power_enabled:%d\n",
__func__, on ? "on" : "off", phy->power_enabled);
if (phy->power_enabled == on) {
dev_dbg(phy->phy.dev, "PHYs' regulators are already ON.\n");
return 0;
}
if (!on)
goto disable_vdda33;
ret = regulator_set_load(phy->vdd, USB_HSPHY_VDD_HPM_LOAD);
if (ret < 0) {
dev_err(phy->phy.dev, "Unable to set HPM of vdd:%d\n", ret);
goto err_vdd;
}
ret = regulator_set_voltage(phy->vdd, phy->vdd_levels[1],
phy->vdd_levels[2]);
if (ret) {
dev_err(phy->phy.dev, "unable to set voltage for hsusb vdd\n");
goto put_vdd_lpm;
}
ret = regulator_enable(phy->vdd);
if (ret) {
dev_err(phy->phy.dev, "Unable to enable VDD\n");
goto unconfig_vdd;
}
ret = regulator_set_load(phy->vdda18, USB_HSPHY_1P8_HPM_LOAD);
if (ret < 0) {
dev_err(phy->phy.dev, "Unable to set HPM of vdda18:%d\n", ret);
goto disable_vdd;
}
ret = regulator_set_voltage(phy->vdda18, USB_HSPHY_1P8_VOL_MIN,
USB_HSPHY_1P8_VOL_MAX);
if (ret) {
dev_err(phy->phy.dev,
"Unable to set voltage for vdda18:%d\n", ret);
goto put_vdda18_lpm;
}
ret = regulator_enable(phy->vdda18);
if (ret) {
dev_err(phy->phy.dev, "Unable to enable vdda18:%d\n", ret);
goto unset_vdda18;
}
ret = regulator_set_load(phy->vdda33, USB_HSPHY_3P3_HPM_LOAD);
if (ret < 0) {
dev_err(phy->phy.dev, "Unable to set HPM of vdda33:%d\n", ret);
goto disable_vdda18;
}
ret = regulator_set_voltage(phy->vdda33, USB_HSPHY_3P3_VOL_MIN,
USB_HSPHY_3P3_VOL_MAX);
if (ret) {
dev_err(phy->phy.dev,
"Unable to set voltage for vdda33:%d\n", ret);
goto put_vdda33_lpm;
}
ret = regulator_enable(phy->vdda33);
if (ret) {
dev_err(phy->phy.dev, "Unable to enable vdda33:%d\n", ret);
goto unset_vdd33;
}
phy->power_enabled = true;
pr_debug("%s(): HSUSB PHY's regulators are turned ON.\n", __func__);
return ret;
disable_vdda33:
ret = regulator_disable(phy->vdda33);
if (ret)
dev_err(phy->phy.dev, "Unable to disable vdda33:%d\n", ret);
unset_vdd33:
ret = regulator_set_voltage(phy->vdda33, 0, USB_HSPHY_3P3_VOL_MAX);
if (ret)
dev_err(phy->phy.dev,
"Unable to set (0) voltage for vdda33:%d\n", ret);
put_vdda33_lpm:
ret = regulator_set_load(phy->vdda33, 0);
if (ret < 0)
dev_err(phy->phy.dev, "Unable to set (0) HPM of vdda33\n");
disable_vdda18:
ret = regulator_disable(phy->vdda18);
if (ret)
dev_err(phy->phy.dev, "Unable to disable vdda18:%d\n", ret);
unset_vdda18:
ret = regulator_set_voltage(phy->vdda18, 0, USB_HSPHY_1P8_VOL_MAX);
if (ret)
dev_err(phy->phy.dev,
"Unable to set (0) voltage for vdda18:%d\n", ret);
put_vdda18_lpm:
ret = regulator_set_load(phy->vdda18, 0);
if (ret < 0)
dev_err(phy->phy.dev, "Unable to set LPM of vdda18\n");
disable_vdd:
ret = regulator_disable(phy->vdd);
if (ret)
dev_err(phy->phy.dev, "Unable to disable vdd:%d\n", ret);
unconfig_vdd:
ret = regulator_set_voltage(phy->vdd, phy->vdd_levels[0],
phy->vdd_levels[2]);
if (ret)
dev_err(phy->phy.dev, "unable to set voltage for hsusb vdd\n");
put_vdd_lpm:
ret = regulator_set_load(phy->vdd, 0);
if (ret < 0)
dev_err(phy->phy.dev, "Unable to set LPM of vdd\n");
err_vdd:
phy->power_enabled = false;
dev_dbg(phy->phy.dev, "HSUSB PHY's regulators are turned OFF.\n");
return ret;
}
static void msm_usb_write_readback(void __iomem *base, u32 offset,
const u32 mask, u32 val)
{
u32 write_val, tmp = readl_relaxed(base + offset);
tmp &= ~mask; /* retain other bits */
write_val = tmp | val;
writel_relaxed(write_val, base + offset);
/* Read back to see if val was written */
tmp = readl_relaxed(base + offset);
tmp &= mask; /* clear other bits */
if (tmp != val)
pr_err("%s: write: %x to QSCRATCH: %x FAILED\n",
__func__, val, offset);
}
static void msm_hsphy_reset(struct msm_hsphy *phy)
{
int ret;
ret = reset_control_assert(phy->phy_reset);
if (ret)
dev_err(phy->phy.dev, "%s: phy_reset assert failed\n",
__func__);
usleep_range(100, 150);
ret = reset_control_deassert(phy->phy_reset);
if (ret)
dev_err(phy->phy.dev, "%s: phy_reset deassert failed\n",
__func__);
}
static void hsusb_phy_write_seq(void __iomem *base, u32 *seq, int cnt,
unsigned long delay)
{
int i;
pr_debug("Seq count:%d\n", cnt);
for (i = 0; i < cnt; i = i+2) {
pr_debug("write 0x%02x to 0x%02x\n", seq[i], seq[i+1]);
writel_relaxed(seq[i], base + seq[i+1]);
if (delay)
usleep_range(delay, (delay + 2000));
}
}
static int msm_hsphy_emu_init(struct usb_phy *uphy)
{
struct msm_hsphy *phy = container_of(uphy, struct msm_hsphy, phy);
int ret;
dev_dbg(uphy->dev, "%s\n", __func__);
ret = msm_hsphy_enable_power(phy, true);
if (ret)
return ret;
msm_hsphy_enable_clocks(phy, true);
msm_hsphy_reset(phy);
if (phy->emu_init_seq) {
hsusb_phy_write_seq(phy->base,
phy->emu_init_seq,
phy->emu_init_seq_len, 10000);
/* Wait for 5ms as per QUSB2 RUMI sequence */
usleep_range(5000, 7000);
if (phy->emu_dcm_reset_seq)
hsusb_phy_write_seq(phy->emu_phy_base,
phy->emu_dcm_reset_seq,
phy->emu_dcm_reset_seq_len, 10000);
}
return 0;
}
static int msm_hsphy_init(struct usb_phy *uphy)
{
struct msm_hsphy *phy = container_of(uphy, struct msm_hsphy, phy);
int ret;
u32 rcal_code = 0;
dev_dbg(uphy->dev, "%s\n", __func__);
ret = msm_hsphy_enable_power(phy, true);
if (ret)
return ret;
msm_hsphy_enable_clocks(phy, true);
msm_hsphy_reset(phy);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_CFG0,
UTMI_PHY_CMN_CTRL_OVERRIDE_EN,
UTMI_PHY_CMN_CTRL_OVERRIDE_EN);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_UTMI_CTRL5,
POR, POR);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON0,
FSEL_MASK, 0);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON1,
PLLBTUNE, PLLBTUNE);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_REFCLK_CTRL,
REFCLK_SEL_MASK, REFCLK_SEL_DEFAULT);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON1,
VBUSVLDEXTSEL0, VBUSVLDEXTSEL0);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL1,
VBUSVLDEXT0, VBUSVLDEXT0);
/* set parameter ovrride if needed */
if (phy->param_override_seq)
hsusb_phy_write_seq(phy->base, phy->param_override_seq,
phy->param_override_seq_cnt, 0);
if (phy->pre_emphasis) {
u8 val = TXPREEMPAMPTUNE0(phy->pre_emphasis) &
TXPREEMPAMPTUNE0_MASK;
if (val)
msm_usb_write_readback(phy->base,
USB2PHY_USB_PHY_PARAMETER_OVERRIDE_X1,
TXPREEMPAMPTUNE0_MASK, val);
}
if (phy->txvref_tune0) {
u8 val = phy->txvref_tune0 & TXVREFTUNE0_MASK;
msm_usb_write_readback(phy->base,
USB2PHY_USB_PHY_PARAMETER_OVERRIDE_X1,
TXVREFTUNE0_MASK, val);
}
if (phy->param_ovrd0) {
msm_usb_write_readback(phy->base,
USB2PHY_USB_PHY_PARAMETER_OVERRIDE_X0,
PARAM_OVRD_MASK, phy->param_ovrd0);
}
if (phy->param_ovrd1) {
msm_usb_write_readback(phy->base,
USB2PHY_USB_PHY_PARAMETER_OVERRIDE_X1,
PARAM_OVRD_MASK, phy->param_ovrd1);
}
if (phy->param_ovrd2) {
msm_usb_write_readback(phy->base,
USB2PHY_USB_PHY_PARAMETER_OVERRIDE_X2,
PARAM_OVRD_MASK, phy->param_ovrd2);
}
if (phy->param_ovrd3) {
msm_usb_write_readback(phy->base,
USB2PHY_USB_PHY_PARAMETER_OVERRIDE_X3,
PARAM_OVRD_MASK, phy->param_ovrd3);
}
dev_dbg(uphy->dev, "x0:%08x x1:%08x x2:%08x x3:%08x\n",
readl_relaxed(phy->base + USB2PHY_USB_PHY_PARAMETER_OVERRIDE_X0),
readl_relaxed(phy->base + USB2PHY_USB_PHY_PARAMETER_OVERRIDE_X1),
readl_relaxed(phy->base + USB2PHY_USB_PHY_PARAMETER_OVERRIDE_X2),
readl_relaxed(phy->base + USB2PHY_USB_PHY_PARAMETER_OVERRIDE_X3));
if (phy->phy_rcal_reg) {
rcal_code = readl_relaxed(phy->phy_rcal_reg) & phy->rcal_mask;
dev_dbg(uphy->dev, "rcal_mask:%08x reg:%pK code:%08x\n",
phy->rcal_mask, phy->phy_rcal_reg, rcal_code);
}
/*
* Use external resistor value only if:
* a. It is present and
* b. efuse is not programmed.
*/
if (!phy->no_rext_present && !rcal_code)
msm_usb_write_readback(phy->base, USB2PHY_USB_PHY_RTUNE_SEL,
RTUNE_SEL, RTUNE_SEL);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON2,
VREGBYPASS, VREGBYPASS);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL2,
USB2_SUSPEND_N_SEL | USB2_SUSPEND_N,
USB2_SUSPEND_N_SEL | USB2_SUSPEND_N);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_UTMI_CTRL0,
SLEEPM, SLEEPM);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_UTMI_CTRL5,
POR, 0);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL2,
USB2_SUSPEND_N_SEL, 0);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_CFG0,
UTMI_PHY_CMN_CTRL_OVERRIDE_EN, 0);
return 0;
}
static int msm_hsphy_set_suspend(struct usb_phy *uphy, int suspend)
{
struct msm_hsphy *phy = container_of(uphy, struct msm_hsphy, phy);
if (phy->suspended && suspend) {
dev_dbg(uphy->dev, "%s: USB PHY is already suspended\n",
__func__);
return 0;
}
if (suspend) { /* Bus suspend */
if (phy->cable_connected) {
/* Enable auto-resume functionality only during host
* mode bus suspend with some peripheral connected.
*/
if ((phy->phy.flags & PHY_HOST_MODE) &&
((phy->phy.flags & PHY_HSFS_MODE) ||
(phy->phy.flags & PHY_LS_MODE))) {
/* Enable auto-resume functionality by pulsing
* signal
*/
msm_usb_write_readback(phy->base,
USB2_PHY_USB_PHY_HS_PHY_CTRL2,
USB2_AUTO_RESUME, USB2_AUTO_RESUME);
usleep_range(500, 1000);
msm_usb_write_readback(phy->base,
USB2_PHY_USB_PHY_HS_PHY_CTRL2,
USB2_AUTO_RESUME, 0);
}
msm_hsphy_enable_clocks(phy, false);
} else {/* Cable disconnect */
mutex_lock(&phy->phy_lock);
if (!phy->dpdm_enable) {
msm_hsphy_enable_clocks(phy, false);
msm_hsphy_enable_power(phy, false);
} else {
dev_dbg(uphy->dev, "dpdm reg still active. Keep clocks/ldo ON\n");
}
mutex_unlock(&phy->phy_lock);
}
phy->suspended = true;
} else { /* Bus resume and cable connect */
msm_hsphy_enable_clocks(phy, true);
phy->suspended = false;
}
return 0;
}
static int msm_hsphy_notify_connect(struct usb_phy *uphy,
enum usb_device_speed speed)
{
struct msm_hsphy *phy = container_of(uphy, struct msm_hsphy, phy);
phy->cable_connected = true;
return 0;
}
static int msm_hsphy_notify_disconnect(struct usb_phy *uphy,
enum usb_device_speed speed)
{
struct msm_hsphy *phy = container_of(uphy, struct msm_hsphy, phy);
phy->cable_connected = false;
return 0;
}
static int msm_hsphy_drive_dp_pulse(struct usb_phy *uphy,
unsigned int interval_ms)
{
struct msm_hsphy *phy = container_of(uphy, struct msm_hsphy, phy);
int ret;
ret = msm_hsphy_enable_power(phy, true);
if (ret < 0) {
dev_dbg(uphy->dev,
"dpdm regulator enable failed:%d\n", ret);
return ret;
}
msm_hsphy_enable_clocks(phy, true);
/* set UTMI_PHY_CMN_CNTRL_OVERRIDE_EN &
* UTMI_PHY_DATAPATH_CTRL_OVERRIDE_EN
*/
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_CFG0,
UTMI_PHY_CMN_CTRL_OVERRIDE_EN,
UTMI_PHY_CMN_CTRL_OVERRIDE_EN);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_CFG0,
UTMI_PHY_DATAPATH_CTRL_OVERRIDE_EN,
UTMI_PHY_DATAPATH_CTRL_OVERRIDE_EN);
/* set OPMODE to normal i.e. 0x0 & termsel to fs */
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_UTMI_CTRL0,
OPMODE_MASK, OPMODE_NORMAL);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_UTMI_CTRL0,
TERMSEL, TERMSEL);
/* set XCVRSEL to fs */
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_UTMI_CTRL1,
XCVRSEL, XCVRSEL);
msleep(interval_ms);
/* clear TERMSEL to fs */
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_UTMI_CTRL0,
TERMSEL, 0x00);
/* clear XCVRSEL */
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_UTMI_CTRL1,
XCVRSEL, 0x00);
/* clear UTMI_PHY_CMN_CNTRL_OVERRIDE_EN &
* UTMI_PHY_DATAPATH_CTRL_OVERRIDE_EN
*/
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_CFG0,
UTMI_PHY_CMN_CTRL_OVERRIDE_EN, 0x00);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_CFG0,
UTMI_PHY_DATAPATH_CTRL_OVERRIDE_EN, 0x00);
msleep(20);
msm_hsphy_enable_clocks(phy, false);
ret = msm_hsphy_enable_power(phy, false);
if (ret < 0) {
dev_dbg(uphy->dev,
"dpdm regulator disable failed:%d\n", ret);
}
return 0;
}
static int msm_hsphy_dpdm_regulator_enable(struct regulator_dev *rdev)
{
int ret = 0;
struct msm_hsphy *phy = rdev_get_drvdata(rdev);
dev_dbg(phy->phy.dev, "%s dpdm_enable:%d\n",
__func__, phy->dpdm_enable);
mutex_lock(&phy->phy_lock);
if (!phy->dpdm_enable) {
ret = msm_hsphy_enable_power(phy, true);
if (ret) {
mutex_unlock(&phy->phy_lock);
return ret;
}
msm_hsphy_enable_clocks(phy, true);
msm_hsphy_reset(phy);
/*
* For PMIC charger detection, place PHY in UTMI non-driving
* mode which leaves Dp and Dm lines in high-Z state.
*/
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL2,
USB2_SUSPEND_N_SEL | USB2_SUSPEND_N,
USB2_SUSPEND_N_SEL | USB2_SUSPEND_N);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_UTMI_CTRL0,
OPMODE_MASK, OPMODE_NONDRIVING);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_CFG0,
UTMI_PHY_DATAPATH_CTRL_OVERRIDE_EN,
UTMI_PHY_DATAPATH_CTRL_OVERRIDE_EN);
msm_hsphy_enable_clocks(phy, false);
phy->dpdm_enable = true;
}
mutex_unlock(&phy->phy_lock);
return ret;
}
static int msm_hsphy_dpdm_regulator_disable(struct regulator_dev *rdev)
{
int ret = 0;
struct msm_hsphy *phy = rdev_get_drvdata(rdev);
dev_dbg(phy->phy.dev, "%s dpdm_enable:%d\n",
__func__, phy->dpdm_enable);
mutex_lock(&phy->phy_lock);
if (phy->dpdm_enable) {
if (!phy->cable_connected) {
ret = msm_hsphy_enable_power(phy, false);
if (ret < 0) {
mutex_unlock(&phy->phy_lock);
return ret;
}
}
phy->dpdm_enable = false;
}
mutex_unlock(&phy->phy_lock);
return ret;
}
static int msm_hsphy_dpdm_regulator_is_enabled(struct regulator_dev *rdev)
{
struct msm_hsphy *phy = rdev_get_drvdata(rdev);
dev_dbg(phy->phy.dev, "%s dpdm_enable:%d\n",
__func__, phy->dpdm_enable);
return phy->dpdm_enable;
}
static struct regulator_ops msm_hsphy_dpdm_regulator_ops = {
.enable = msm_hsphy_dpdm_regulator_enable,
.disable = msm_hsphy_dpdm_regulator_disable,
.is_enabled = msm_hsphy_dpdm_regulator_is_enabled,
};
static int msm_hsphy_regulator_init(struct msm_hsphy *phy)
{
struct device *dev = phy->phy.dev;
struct regulator_config cfg = {};
struct regulator_init_data *init_data;
init_data = devm_kzalloc(dev, sizeof(*init_data), GFP_KERNEL);
if (!init_data)
return -ENOMEM;
init_data->constraints.valid_ops_mask |= REGULATOR_CHANGE_STATUS;
phy->dpdm_rdesc.owner = THIS_MODULE;
phy->dpdm_rdesc.type = REGULATOR_VOLTAGE;
phy->dpdm_rdesc.ops = &msm_hsphy_dpdm_regulator_ops;
phy->dpdm_rdesc.name = kbasename(dev->of_node->full_name);
cfg.dev = dev;
cfg.init_data = init_data;
cfg.driver_data = phy;
cfg.of_node = dev->of_node;
phy->dpdm_rdev = devm_regulator_register(dev, &phy->dpdm_rdesc, &cfg);
if (IS_ERR(phy->dpdm_rdev))
return PTR_ERR(phy->dpdm_rdev);
return 0;
}
static void msm_hsphy_create_debugfs(struct msm_hsphy *phy)
{
phy->root = debugfs_create_dir(dev_name(phy->phy.dev), NULL);
debugfs_create_x8("pre_emphasis", 0644, phy->root, &phy->pre_emphasis);
debugfs_create_x8("txvref_tune0", 0644, phy->root, &phy->txvref_tune0);
debugfs_create_x8("param_ovrd0", 0644, phy->root, &phy->param_ovrd0);
debugfs_create_x8("param_ovrd1", 0644, phy->root, &phy->param_ovrd1);
debugfs_create_x8("param_ovrd2", 0644, phy->root, &phy->param_ovrd2);
debugfs_create_x8("param_ovrd3", 0644, phy->root, &phy->param_ovrd3);
}
static int msm_hsphy_probe(struct platform_device *pdev)
{
struct msm_hsphy *phy;
struct device *dev = &pdev->dev;
struct resource *res;
int ret = 0, size = 0;
phy = devm_kzalloc(dev, sizeof(*phy), GFP_KERNEL);
if (!phy) {
ret = -ENOMEM;
goto err_ret;
}
phy->phy.dev = dev;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"hsusb_phy_base");
if (!res) {
dev_err(dev, "missing memory base resource\n");
ret = -ENODEV;
goto err_ret;
}
phy->base = devm_ioremap_resource(dev, res);
if (IS_ERR(phy->base)) {
dev_err(dev, "ioremap failed\n");
ret = -ENODEV;
goto err_ret;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"phy_rcal_reg");
if (res) {
phy->phy_rcal_reg = devm_ioremap_nocache(dev,
res->start, resource_size(res));
if (IS_ERR(phy->phy_rcal_reg)) {
dev_err(dev, "couldn't ioremap phy_rcal_reg\n");
phy->phy_rcal_reg = NULL;
}
if (of_property_read_u32(dev->of_node,
"qcom,rcal-mask", &phy->rcal_mask)) {
dev_err(dev, "unable to read phy rcal mask\n");
phy->phy_rcal_reg = NULL;
}
dev_dbg(dev, "rcal_mask:%08x reg:%pK\n", phy->rcal_mask,
phy->phy_rcal_reg);
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"emu_phy_base");
if (res) {
phy->emu_phy_base = devm_ioremap_resource(dev, res);
if (IS_ERR(phy->emu_phy_base)) {
dev_dbg(dev, "couldn't ioremap emu_phy_base\n");
phy->emu_phy_base = NULL;
}
}
/* ref_clk_src is needed irrespective of SE_CLK or DIFF_CLK usage */
phy->ref_clk_src = devm_clk_get(dev, "ref_clk_src");
if (IS_ERR(phy->ref_clk_src)) {
dev_dbg(dev, "clk get failed for ref_clk_src\n");
ret = PTR_ERR(phy->ref_clk_src);
return ret;
}
if (of_property_match_string(pdev->dev.of_node,
"clock-names", "cfg_ahb_clk") >= 0) {
phy->cfg_ahb_clk = devm_clk_get(dev, "cfg_ahb_clk");
if (IS_ERR(phy->cfg_ahb_clk)) {
ret = PTR_ERR(phy->cfg_ahb_clk);
if (ret != -EPROBE_DEFER)
dev_err(dev,
"clk get failed for cfg_ahb_clk ret %d\n", ret);
return ret;
}
}
phy->phy_reset = devm_reset_control_get(dev, "phy_reset");
if (IS_ERR(phy->phy_reset))
return PTR_ERR(phy->phy_reset);
of_get_property(dev->of_node, "qcom,emu-init-seq", &size);
if (size) {
phy->emu_init_seq = devm_kzalloc(dev,
size, GFP_KERNEL);
if (phy->emu_init_seq) {
phy->emu_init_seq_len =
(size / sizeof(*phy->emu_init_seq));
if (phy->emu_init_seq_len % 2) {
dev_err(dev, "invalid emu_init_seq_len\n");
return -EINVAL;
}
of_property_read_u32_array(dev->of_node,
"qcom,emu-init-seq",
phy->emu_init_seq,
phy->emu_init_seq_len);
} else {
dev_dbg(dev,
"error allocating memory for emu_init_seq\n");
}
}
size = 0;
of_get_property(dev->of_node, "qcom,emu-dcm-reset-seq", &size);
if (size) {
phy->emu_dcm_reset_seq = devm_kzalloc(dev,
size, GFP_KERNEL);
if (phy->emu_dcm_reset_seq) {
phy->emu_dcm_reset_seq_len =
(size / sizeof(*phy->emu_dcm_reset_seq));
if (phy->emu_dcm_reset_seq_len % 2) {
dev_err(dev, "invalid emu_dcm_reset_seq_len\n");
return -EINVAL;
}
of_property_read_u32_array(dev->of_node,
"qcom,emu-dcm-reset-seq",
phy->emu_dcm_reset_seq,
phy->emu_dcm_reset_seq_len);
} else {
dev_dbg(dev,
"error allocating memory for emu_dcm_reset_seq\n");
}
}
phy->no_rext_present = of_property_read_bool(dev->of_node,
"qcom,no-rext-present");
phy->param_override_seq_cnt = of_property_count_elems_of_size(
dev->of_node,
"qcom,param-override-seq",
sizeof(*phy->param_override_seq));
if (phy->param_override_seq_cnt > 0) {
phy->param_override_seq = devm_kcalloc(dev,
phy->param_override_seq_cnt,
sizeof(*phy->param_override_seq),
GFP_KERNEL);
if (!phy->param_override_seq)
return -ENOMEM;
if (phy->param_override_seq_cnt % 2) {
dev_err(dev, "invalid param_override_seq_len\n");
return -EINVAL;
}
ret = of_property_read_u32_array(dev->of_node,
"qcom,param-override-seq",
phy->param_override_seq,
phy->param_override_seq_cnt);
if (ret) {
dev_err(dev, "qcom,param-override-seq read failed %d\n",
ret);
return ret;
}
}
ret = of_property_read_u32_array(dev->of_node, "qcom,vdd-voltage-level",
(u32 *) phy->vdd_levels,
ARRAY_SIZE(phy->vdd_levels));
if (ret) {
dev_err(dev, "error reading qcom,vdd-voltage-level property\n");
goto err_ret;
}
phy->vdd = devm_regulator_get(dev, "vdd");
if (IS_ERR(phy->vdd)) {
dev_err(dev, "unable to get vdd supply\n");
ret = PTR_ERR(phy->vdd);
goto err_ret;
}
phy->vdda33 = devm_regulator_get(dev, "vdda33");
if (IS_ERR(phy->vdda33)) {
dev_err(dev, "unable to get vdda33 supply\n");
ret = PTR_ERR(phy->vdda33);
goto err_ret;
}
phy->vdda18 = devm_regulator_get(dev, "vdda18");
if (IS_ERR(phy->vdda18)) {
dev_err(dev, "unable to get vdda18 supply\n");
ret = PTR_ERR(phy->vdda18);
goto err_ret;
}
mutex_init(&phy->phy_lock);
platform_set_drvdata(pdev, phy);
if (phy->emu_init_seq)
phy->phy.init = msm_hsphy_emu_init;
else
phy->phy.init = msm_hsphy_init;
phy->phy.set_suspend = msm_hsphy_set_suspend;
phy->phy.notify_connect = msm_hsphy_notify_connect;
phy->phy.notify_disconnect = msm_hsphy_notify_disconnect;
phy->phy.type = USB_PHY_TYPE_USB2;
phy->phy.drive_dp_pulse = msm_hsphy_drive_dp_pulse;
ret = usb_add_phy_dev(&phy->phy);
if (ret)
return ret;
ret = msm_hsphy_regulator_init(phy);
if (ret) {
usb_remove_phy(&phy->phy);
return ret;
}
msm_hsphy_create_debugfs(phy);
return 0;
err_ret:
return ret;
}
static int msm_hsphy_remove(struct platform_device *pdev)
{
struct msm_hsphy *phy = platform_get_drvdata(pdev);
if (!phy)
return 0;
debugfs_remove_recursive(phy->root);
usb_remove_phy(&phy->phy);
clk_disable_unprepare(phy->ref_clk_src);
msm_hsphy_enable_clocks(phy, false);
msm_hsphy_enable_power(phy, false);
return 0;
}
static const struct of_device_id msm_usb_id_table[] = {
{
.compatible = "qcom,usb-hsphy-snps-femto",
},
{ },
};
MODULE_DEVICE_TABLE(of, msm_usb_id_table);
static struct platform_driver msm_hsphy_driver = {
.probe = msm_hsphy_probe,
.remove = msm_hsphy_remove,
.driver = {
.name = "msm-usb-hsphy",
.of_match_table = of_match_ptr(msm_usb_id_table),
},
};
module_platform_driver(msm_hsphy_driver);
MODULE_DESCRIPTION("MSM USB HS PHY driver");
MODULE_LICENSE("GPL v2");