You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/drivers/spi/spi_qsd.c

2837 lines
69 KiB

/* Copyright (c) 2008-2018, 2020 The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
/*
* SPI driver for Qualcomm MSM platforms
*
*/
#include <linux/version.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/list.h>
#include <linux/irq.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <linux/interrupt.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/workqueue.h>
#include <linux/io.h>
#include <linux/debugfs.h>
#include <linux/gpio.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
#include <linux/dma-mapping.h>
#include <linux/sched.h>
#include <linux/mutex.h>
#include <linux/atomic.h>
#include <linux/pm_runtime.h>
#include <linux/spi/qcom-spi.h>
#include <linux/msm-sps.h>
#include <linux/msm-bus.h>
#include <linux/msm-bus-board.h>
#include "spi_qsd.h"
#define SPI_MAX_BYTES_PER_WORD (4)
static int msm_spi_pm_resume_runtime(struct device *device);
static int msm_spi_pm_suspend_runtime(struct device *device);
static inline void msm_spi_dma_unmap_buffers(struct msm_spi *dd);
static int get_local_resources(struct msm_spi *dd);
static void put_local_resources(struct msm_spi *dd);
static inline int msm_spi_configure_gsbi(struct msm_spi *dd,
struct platform_device *pdev)
{
struct resource *resource;
unsigned long gsbi_mem_phys_addr;
size_t gsbi_mem_size;
void __iomem *gsbi_base;
resource = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (!resource)
return 0;
gsbi_mem_phys_addr = resource->start;
gsbi_mem_size = resource_size(resource);
if (!devm_request_mem_region(&pdev->dev, gsbi_mem_phys_addr,
gsbi_mem_size, SPI_DRV_NAME))
return -ENXIO;
gsbi_base = devm_ioremap(&pdev->dev, gsbi_mem_phys_addr,
gsbi_mem_size);
if (!gsbi_base)
return -ENXIO;
/* Set GSBI to SPI mode */
writel_relaxed(GSBI_SPI_CONFIG, gsbi_base + GSBI_CTRL_REG);
return 0;
}
static inline void msm_spi_register_init(struct msm_spi *dd)
{
writel_relaxed(0x00000001, dd->base + SPI_SW_RESET);
msm_spi_set_state(dd, SPI_OP_STATE_RESET);
writel_relaxed(0x00000000, dd->base + SPI_OPERATIONAL);
writel_relaxed(0x00000000, dd->base + SPI_CONFIG);
writel_relaxed(0x00000000, dd->base + SPI_IO_MODES);
if (dd->qup_ver)
writel_relaxed(0x00000000, dd->base + QUP_OPERATIONAL_MASK);
}
static int msm_spi_pinctrl_init(struct msm_spi *dd)
{
dd->pinctrl = devm_pinctrl_get(dd->dev);
if (IS_ERR_OR_NULL(dd->pinctrl)) {
dev_err(dd->dev, "Failed to get pin ctrl\n");
return PTR_ERR(dd->pinctrl);
}
dd->pins_active = pinctrl_lookup_state(dd->pinctrl,
SPI_PINCTRL_STATE_DEFAULT);
if (IS_ERR_OR_NULL(dd->pins_active)) {
dev_err(dd->dev, "Failed to lookup pinctrl default state\n");
return PTR_ERR(dd->pins_active);
}
dd->pins_sleep = pinctrl_lookup_state(dd->pinctrl,
SPI_PINCTRL_STATE_SLEEP);
if (IS_ERR_OR_NULL(dd->pins_sleep)) {
dev_err(dd->dev, "Failed to lookup pinctrl sleep state\n");
return PTR_ERR(dd->pins_sleep);
}
return 0;
}
static inline int msm_spi_request_gpios(struct msm_spi *dd)
{
int i = 0;
int result = 0;
if (!dd->pdata->use_pinctrl) {
for (i = 0; i < ARRAY_SIZE(spi_rsrcs); ++i) {
if (dd->spi_gpios[i] >= 0) {
result = gpio_request(dd->spi_gpios[i],
spi_rsrcs[i]);
if (result) {
dev_err(dd->dev,
"error %d gpio_request for pin %d\n",
result, dd->spi_gpios[i]);
goto error;
}
}
}
} else {
result = pinctrl_select_state(dd->pinctrl, dd->pins_active);
if (result) {
dev_err(dd->dev, "%s: Can not set %s pins\n",
__func__, SPI_PINCTRL_STATE_DEFAULT);
goto error;
}
}
return 0;
error:
if (!dd->pdata->use_pinctrl) {
for (; --i >= 0;) {
if (dd->spi_gpios[i] >= 0)
gpio_free(dd->spi_gpios[i]);
}
}
return result;
}
static inline void msm_spi_free_gpios(struct msm_spi *dd)
{
int i;
int result = 0;
if (!dd->pdata->use_pinctrl) {
for (i = 0; i < ARRAY_SIZE(spi_rsrcs); ++i) {
if (dd->spi_gpios[i] >= 0)
gpio_free(dd->spi_gpios[i]);
}
for (i = 0; i < ARRAY_SIZE(spi_cs_rsrcs); ++i) {
if (dd->cs_gpios[i].valid) {
gpio_free(dd->cs_gpios[i].gpio_num);
dd->cs_gpios[i].valid = 0;
}
}
} else {
result = pinctrl_select_state(dd->pinctrl, dd->pins_sleep);
if (result)
dev_err(dd->dev, "%s: Can not set %s pins\n",
__func__, SPI_PINCTRL_STATE_SLEEP);
}
}
static inline int msm_spi_request_cs_gpio(struct msm_spi *dd)
{
int cs_num;
int rc;
cs_num = dd->spi->chip_select;
if (!(dd->spi->mode & SPI_LOOP)) {
if (!dd->pdata->use_pinctrl) {
if ((!(dd->cs_gpios[cs_num].valid)) &&
(dd->cs_gpios[cs_num].gpio_num >= 0)) {
rc = gpio_request(dd->cs_gpios[cs_num].gpio_num,
spi_cs_rsrcs[cs_num]);
if (rc) {
dev_err(dd->dev,
"gpio_request for pin %d failed,error %d\n",
dd->cs_gpios[cs_num].gpio_num, rc);
return rc;
}
dd->cs_gpios[cs_num].valid = 1;
}
}
}
return 0;
}
static inline void msm_spi_free_cs_gpio(struct msm_spi *dd)
{
int cs_num;
cs_num = dd->spi->chip_select;
if (!dd->pdata->use_pinctrl) {
if (dd->cs_gpios[cs_num].valid) {
gpio_free(dd->cs_gpios[cs_num].gpio_num);
dd->cs_gpios[cs_num].valid = 0;
}
}
}
/**
* msm_spi_clk_max_rate: finds the nearest lower rate for a clk
* @clk the clock for which to find nearest lower rate
* @rate clock frequency in Hz
* @return nearest lower rate or negative error value
*
* Public clock API extends clk_round_rate which is a ceiling function. This
* function is a floor function implemented as a binary search using the
* ceiling function.
*/
static long msm_spi_clk_max_rate(struct clk *clk, unsigned long rate)
{
long lowest_available, nearest_low, step_size, cur;
long step_direction = -1;
long guess = rate;
int max_steps = 10;
cur = clk_round_rate(clk, rate);
if (cur == rate)
return rate;
/* if we got here then: cur > rate */
lowest_available = clk_round_rate(clk, 0);
if (lowest_available > rate)
return -EINVAL;
step_size = (rate - lowest_available) >> 1;
nearest_low = lowest_available;
while (max_steps-- && step_size) {
guess += step_size * step_direction;
cur = clk_round_rate(clk, guess);
if ((cur < rate) && (cur > nearest_low))
nearest_low = cur;
/*
* if we stepped too far, then start stepping in the other
* direction with half the step size
*/
if (((cur > rate) && (step_direction > 0))
|| ((cur < rate) && (step_direction < 0))) {
step_direction = -step_direction;
step_size >>= 1;
}
}
return nearest_low;
}
static void msm_spi_clock_set(struct msm_spi *dd, int speed)
{
long rate;
int rc;
rate = msm_spi_clk_max_rate(dd->clk, speed);
if (rate < 0) {
dev_err(dd->dev,
"%s: no match found for requested clock frequency:%d\n",
__func__, speed);
return;
}
rc = clk_set_rate(dd->clk, rate);
if (!rc)
dd->clock_speed = rate;
}
static void msm_spi_clk_path_vote(struct msm_spi *dd, u32 rate)
{
if (dd->bus_cl_hdl) {
u64 ib = rate * dd->pdata->bus_width;
msm_bus_scale_update_bw(dd->bus_cl_hdl, 0, ib);
}
}
static void msm_spi_clk_path_teardown(struct msm_spi *dd)
{
msm_spi_clk_path_vote(dd, 0);
if (dd->bus_cl_hdl) {
msm_bus_scale_unregister(dd->bus_cl_hdl);
dd->bus_cl_hdl = NULL;
}
}
/**
* msm_spi_clk_path_postponed_register: reg with bus-scaling after it is probed
*
* @return zero on success
*
* Workaround: SPI driver may be probed before the bus scaling driver. Calling
* msm_bus_scale_register_client() will fail if the bus scaling driver is not
* ready yet. Thus, this function should be called not from probe but from a
* later context. Also, this function may be called more then once before
* register succeed. At this case only one error message will be logged. At boot
* time all clocks are on, so earlier SPI transactions should succeed.
*/
static int msm_spi_clk_path_postponed_register(struct msm_spi *dd)
{
int ret = 0;
dd->bus_cl_hdl = msm_bus_scale_register(dd->pdata->master_id,
MSM_BUS_SLAVE_EBI_CH0,
(char *)dev_name(dd->dev),
false);
if (IS_ERR_OR_NULL(dd->bus_cl_hdl)) {
ret = (dd->bus_cl_hdl ? PTR_ERR(dd->bus_cl_hdl) : -EAGAIN);
dev_err(dd->dev, "Failed bus registration Err %d\n", ret);
}
return ret;
}
static void msm_spi_clk_path_init(struct msm_spi *dd)
{
/*
* bail out if path voting is diabled (master_id == 0) or if it is
* already registered (client_hdl != 0)
*/
if (!dd->pdata->master_id || dd->bus_cl_hdl)
return;
/* on failure try again later */
if (msm_spi_clk_path_postponed_register(dd))
return;
}
static int msm_spi_calculate_size(int *fifo_size,
int *block_size,
int block,
int mult)
{
int words;
switch (block) {
case 0:
words = 1; /* 4 bytes */
break;
case 1:
words = 4; /* 16 bytes */
break;
case 2:
words = 8; /* 32 bytes */
break;
default:
return -EINVAL;
}
switch (mult) {
case 0:
*fifo_size = words * 2;
break;
case 1:
*fifo_size = words * 4;
break;
case 2:
*fifo_size = words * 8;
break;
case 3:
*fifo_size = words * 16;
break;
default:
return -EINVAL;
}
*block_size = words * sizeof(u32); /* in bytes */
return 0;
}
static void msm_spi_calculate_fifo_size(struct msm_spi *dd)
{
u32 spi_iom;
int block;
int mult;
spi_iom = readl_relaxed(dd->base + SPI_IO_MODES);
block = (spi_iom & SPI_IO_M_INPUT_BLOCK_SIZE) >> INPUT_BLOCK_SZ_SHIFT;
mult = (spi_iom & SPI_IO_M_INPUT_FIFO_SIZE) >> INPUT_FIFO_SZ_SHIFT;
if (msm_spi_calculate_size(&dd->input_fifo_size, &dd->input_block_size,
block, mult)) {
goto fifo_size_err;
}
block = (spi_iom & SPI_IO_M_OUTPUT_BLOCK_SIZE) >> OUTPUT_BLOCK_SZ_SHIFT;
mult = (spi_iom & SPI_IO_M_OUTPUT_FIFO_SIZE) >> OUTPUT_FIFO_SZ_SHIFT;
if (msm_spi_calculate_size(&dd->output_fifo_size,
&dd->output_block_size, block, mult)) {
goto fifo_size_err;
}
if (dd->qup_ver == SPI_QUP_VERSION_NONE) {
/* DM mode is not available for this block size */
if (dd->input_block_size == 4 || dd->output_block_size == 4)
dd->use_dma = 0;
if (dd->use_dma) {
dd->input_burst_size = max(dd->input_block_size,
DM_BURST_SIZE);
dd->output_burst_size = max(dd->output_block_size,
DM_BURST_SIZE);
}
}
return;
fifo_size_err:
dd->use_dma = 0;
pr_err("%s: invalid FIFO size, SPI_IO_MODES=0x%x\n", __func__, spi_iom);
}
static void msm_spi_read_word_from_fifo(struct msm_spi *dd)
{
u32 data_in;
int i;
int shift;
int read_bytes = (dd->pack_words ?
SPI_MAX_BYTES_PER_WORD : dd->bytes_per_word);
data_in = readl_relaxed(dd->base + SPI_INPUT_FIFO);
if (dd->read_buf) {
for (i = 0; (i < read_bytes) &&
dd->rx_bytes_remaining; i++) {
/* The data format depends on bytes_per_word:
* 4 bytes: 0x12345678
* 3 bytes: 0x00123456
* 2 bytes: 0x00001234
* 1 byte : 0x00000012
*/
shift = BITS_PER_BYTE * i;
*dd->read_buf++ = (data_in & (0xFF << shift)) >> shift;
dd->rx_bytes_remaining--;
}
} else {
if (dd->rx_bytes_remaining >= read_bytes)
dd->rx_bytes_remaining -= read_bytes;
else
dd->rx_bytes_remaining = 0;
}
dd->read_xfr_cnt++;
}
static inline bool msm_spi_is_valid_state(struct msm_spi *dd)
{
u32 spi_op = readl_relaxed(dd->base + SPI_STATE);
return spi_op & SPI_OP_STATE_VALID;
}
static inline void msm_spi_udelay(unsigned int delay_usecs)
{
/*
* For smaller values of delay, context switch time
* would negate the usage of usleep
*/
if (delay_usecs > 20)
usleep_range(delay_usecs, delay_usecs + 1);
else if (delay_usecs)
udelay(delay_usecs);
}
static inline int msm_spi_wait_valid(struct msm_spi *dd)
{
unsigned int delay = 0;
unsigned long timeout = 0;
if (dd->clock_speed == 0)
return -EINVAL;
/*
* Based on the SPI clock speed, sufficient time
* should be given for the SPI state transition
* to occur
*/
delay = (10 * USEC_PER_SEC) / dd->clock_speed;
/*
* For small delay values, the default timeout would
* be one jiffy
*/
if (delay < SPI_DELAY_THRESHOLD)
delay = SPI_DELAY_THRESHOLD;
/* Adding one to round off to the nearest jiffy */
timeout = jiffies + msecs_to_jiffies(delay * SPI_DEFAULT_TIMEOUT) + 1;
while (!msm_spi_is_valid_state(dd)) {
if (time_after(jiffies, timeout)) {
if (!msm_spi_is_valid_state(dd)) {
dev_err(dd->dev, "Invalid SPI operational state\n");
return -ETIMEDOUT;
} else
return 0;
}
msm_spi_udelay(delay);
}
return 0;
}
static inline int msm_spi_set_state(struct msm_spi *dd,
enum msm_spi_state state)
{
enum msm_spi_state cur_state;
if (msm_spi_wait_valid(dd))
return -EIO;
cur_state = readl_relaxed(dd->base + SPI_STATE);
/* Per spec:
* For PAUSE_STATE to RESET_STATE, two writes of (10) are required
*/
if (((cur_state & SPI_OP_STATE) == SPI_OP_STATE_PAUSE) &&
(state == SPI_OP_STATE_RESET)) {
writel_relaxed(SPI_OP_STATE_CLEAR_BITS, dd->base + SPI_STATE);
writel_relaxed(SPI_OP_STATE_CLEAR_BITS, dd->base + SPI_STATE);
} else {
writel_relaxed((cur_state & ~SPI_OP_STATE) | state,
dd->base + SPI_STATE);
}
if (msm_spi_wait_valid(dd))
return -EIO;
return 0;
}
/**
* msm_spi_set_bpw_and_no_io_flags: configure N, and no-input/no-output flags
*/
static inline void
msm_spi_set_bpw_and_no_io_flags(struct msm_spi *dd, u32 *config, int n)
{
*config &= ~(SPI_NO_INPUT|SPI_NO_OUTPUT);
if (n != (*config & SPI_CFG_N))
*config = (*config & ~SPI_CFG_N) | n;
if (dd->tx_mode == SPI_BAM_MODE) {
if (dd->read_buf == NULL)
*config |= SPI_NO_INPUT;
if (dd->write_buf == NULL)
*config |= SPI_NO_OUTPUT;
}
}
/**
* msm_spi_calc_spi_config_loopback_and_input_first: Calculate the values that
* should be updated into SPI_CONFIG's LOOPBACK and INPUT_FIRST flags
* @return calculatd value for SPI_CONFIG
*/
static u32
msm_spi_calc_spi_config_loopback_and_input_first(u32 spi_config, u8 mode)
{
if (mode & SPI_LOOP)
spi_config |= SPI_CFG_LOOPBACK;
else
spi_config &= ~SPI_CFG_LOOPBACK;
if (mode & SPI_CPHA)
spi_config &= ~SPI_CFG_INPUT_FIRST;
else
spi_config |= SPI_CFG_INPUT_FIRST;
return spi_config;
}
/**
* msm_spi_set_spi_config: prepares register SPI_CONFIG to process the
* next transfer
*/
static void msm_spi_set_spi_config(struct msm_spi *dd, int bpw)
{
u32 spi_config = readl_relaxed(dd->base + SPI_CONFIG);
spi_config = msm_spi_calc_spi_config_loopback_and_input_first(
spi_config, dd->spi->mode);
if (dd->qup_ver == SPI_QUP_VERSION_NONE)
/* flags removed from SPI_CONFIG in QUP version-2 */
msm_spi_set_bpw_and_no_io_flags(dd, &spi_config, bpw-1);
/*
* HS_MODE improves signal stability for spi-clk high rates
* but is invalid in LOOPBACK mode.
*/
if ((dd->clock_speed >= SPI_HS_MIN_RATE) &&
!(dd->spi->mode & SPI_LOOP))
spi_config |= SPI_CFG_HS_MODE;
else
spi_config &= ~SPI_CFG_HS_MODE;
writel_relaxed(spi_config, dd->base + SPI_CONFIG);
}
/**
* msm_spi_set_mx_counts: set SPI_MX_INPUT_COUNT and SPI_MX_INPUT_COUNT
* for FIFO-mode. set SPI_MX_INPUT_COUNT and SPI_MX_OUTPUT_COUNT for
* BAM and DMOV modes.
* @n_words The number of reads/writes of size N.
*/
static void msm_spi_set_mx_counts(struct msm_spi *dd, u32 n_words)
{
/*
* For FIFO mode:
* - Set the MX_OUTPUT_COUNT/MX_INPUT_COUNT registers to 0
* - Set the READ/WRITE_COUNT registers to 0 (infinite mode)
* or num bytes (finite mode) if less than fifo worth of data.
* For Block mode:
* - Set the MX_OUTPUT/MX_INPUT_COUNT registers to num xfer bytes.
* - Set the READ/WRITE_COUNT registers to 0.
*/
if (dd->tx_mode != SPI_BAM_MODE) {
if (dd->tx_mode == SPI_FIFO_MODE) {
if (n_words <= dd->input_fifo_size)
msm_spi_set_write_count(dd, n_words);
else
msm_spi_set_write_count(dd, 0);
writel_relaxed(0, dd->base + SPI_MX_OUTPUT_COUNT);
} else
writel_relaxed(n_words, dd->base + SPI_MX_OUTPUT_COUNT);
if (dd->rx_mode == SPI_FIFO_MODE) {
if (n_words <= dd->input_fifo_size)
writel_relaxed(n_words,
dd->base + SPI_MX_READ_COUNT);
else
writel_relaxed(0,
dd->base + SPI_MX_READ_COUNT);
writel_relaxed(0, dd->base + SPI_MX_INPUT_COUNT);
} else
writel_relaxed(n_words, dd->base + SPI_MX_INPUT_COUNT);
} else {
/* must be zero for BAM and DMOV */
writel_relaxed(0, dd->base + SPI_MX_READ_COUNT);
msm_spi_set_write_count(dd, 0);
/*
* for DMA transfers, both QUP_MX_INPUT_COUNT and
* QUP_MX_OUTPUT_COUNT must be zero to all cases but one.
* That case is a non-balanced transfer when there is
* only a read_buf.
*/
if (dd->qup_ver == SPI_QUP_VERSION_BFAM) {
if (dd->write_buf)
writel_relaxed(0,
dd->base + SPI_MX_INPUT_COUNT);
else
writel_relaxed(n_words,
dd->base + SPI_MX_INPUT_COUNT);
writel_relaxed(0, dd->base + SPI_MX_OUTPUT_COUNT);
}
}
}
static int msm_spi_bam_pipe_disconnect(struct msm_spi *dd,
struct msm_spi_bam_pipe *pipe)
{
int ret = sps_disconnect(pipe->handle);
if (ret) {
dev_dbg(dd->dev, "%s disconnect bam %s pipe failed\n",
__func__, pipe->name);
return ret;
}
return 0;
}
static int msm_spi_bam_pipe_connect(struct msm_spi *dd,
struct msm_spi_bam_pipe *pipe, struct sps_connect *config)
{
int ret;
struct sps_register_event event = {
.mode = SPS_TRIGGER_WAIT,
.options = SPS_O_EOT,
};
if (pipe == &dd->bam.prod)
event.xfer_done = &dd->rx_transfer_complete;
else if (pipe == &dd->bam.cons)
event.xfer_done = &dd->tx_transfer_complete;
ret = sps_connect(pipe->handle, config);
if (ret) {
dev_err(dd->dev, "%s: sps_connect(%s:0x%pK):%d\n",
__func__, pipe->name, pipe->handle, ret);
return ret;
}
ret = sps_register_event(pipe->handle, &event);
if (ret) {
dev_err(dd->dev, "%s sps_register_event(hndl:0x%pK %s):%d\n",
__func__, pipe->handle, pipe->name, ret);
msm_spi_bam_pipe_disconnect(dd, pipe);
return ret;
}
pipe->teardown_required = true;
return 0;
}
static void msm_spi_bam_pipe_flush(struct msm_spi *dd,
enum msm_spi_pipe_direction pipe_dir)
{
struct msm_spi_bam_pipe *pipe = (pipe_dir == SPI_BAM_CONSUMER_PIPE) ?
(&dd->bam.prod) : (&dd->bam.cons);
struct sps_connect config = pipe->config;
int ret;
ret = msm_spi_bam_pipe_disconnect(dd, pipe);
if (ret)
return;
ret = msm_spi_bam_pipe_connect(dd, pipe, &config);
if (ret)
return;
}
static void msm_spi_bam_flush(struct msm_spi *dd)
{
dev_dbg(dd->dev, "%s flushing bam for recovery\n", __func__);
msm_spi_bam_pipe_flush(dd, SPI_BAM_CONSUMER_PIPE);
msm_spi_bam_pipe_flush(dd, SPI_BAM_PRODUCER_PIPE);
}
static int
msm_spi_bam_process_rx(struct msm_spi *dd, u32 *bytes_to_send, u32 desc_cnt)
{
int ret = 0;
u32 data_xfr_size = 0, rem_bc = 0;
u32 prod_flags = 0;
rem_bc = dd->cur_rx_transfer->len - dd->bam.curr_rx_bytes_recvd;
data_xfr_size = (rem_bc < *bytes_to_send) ? rem_bc : *bytes_to_send;
/*
* set flags for last descriptor only
*/
if ((desc_cnt == 1)
|| (*bytes_to_send == data_xfr_size))
prod_flags = (dd->write_buf)
? 0 : (SPS_IOVEC_FLAG_EOT | SPS_IOVEC_FLAG_NWD);
/*
* enqueue read buffer in BAM
*/
ret = sps_transfer_one(dd->bam.prod.handle,
dd->cur_rx_transfer->rx_dma
+ dd->bam.curr_rx_bytes_recvd,
data_xfr_size, dd, prod_flags);
if (ret < 0) {
dev_err(dd->dev,
"%s: Failed to queue producer BAM transfer\n",
__func__);
return ret;
}
dd->bam.curr_rx_bytes_recvd += data_xfr_size;
*bytes_to_send -= data_xfr_size;
dd->bam.bam_rx_len -= data_xfr_size;
return data_xfr_size;
}
static int
msm_spi_bam_process_tx(struct msm_spi *dd, u32 *bytes_to_send, u32 desc_cnt)
{
int ret = 0;
u32 data_xfr_size = 0, rem_bc = 0;
u32 cons_flags = 0;
rem_bc = dd->cur_tx_transfer->len - dd->bam.curr_tx_bytes_sent;
data_xfr_size = (rem_bc < *bytes_to_send) ? rem_bc : *bytes_to_send;
/*
* set flags for last descriptor only
*/
if ((desc_cnt == 1)
|| (*bytes_to_send == data_xfr_size))
cons_flags = SPS_IOVEC_FLAG_EOT | SPS_IOVEC_FLAG_NWD;
/*
* enqueue write buffer in BAM
*/
ret = sps_transfer_one(dd->bam.cons.handle,
dd->cur_tx_transfer->tx_dma
+ dd->bam.curr_tx_bytes_sent,
data_xfr_size, dd, cons_flags);
if (ret < 0) {
dev_err(dd->dev,
"%s: Failed to queue consumer BAM transfer\n",
__func__);
return ret;
}
dd->bam.curr_tx_bytes_sent += data_xfr_size;
*bytes_to_send -= data_xfr_size;
dd->bam.bam_tx_len -= data_xfr_size;
return data_xfr_size;
}
/**
* msm_spi_bam_begin_transfer: transfer dd->tx_bytes_remaining bytes
* using BAM.
* @brief BAM can transfer SPI_MAX_TRFR_BTWN_RESETS byte at a single
* transfer. Between transfer QUP must change to reset state. A loop is
* issuing a single BAM transfer at a time.
* @return zero on success
*/
static int
msm_spi_bam_begin_transfer(struct msm_spi *dd)
{
u32 tx_bytes_to_send = 0, rx_bytes_to_recv = 0;
u32 n_words_xfr;
s32 ret = 0;
u32 prod_desc_cnt = SPI_BAM_MAX_DESC_NUM - 1;
u32 cons_desc_cnt = SPI_BAM_MAX_DESC_NUM - 1;
u32 byte_count = 0;
rx_bytes_to_recv = min_t(u32, dd->bam.bam_rx_len,
SPI_MAX_TRFR_BTWN_RESETS);
tx_bytes_to_send = min_t(u32, dd->bam.bam_tx_len,
SPI_MAX_TRFR_BTWN_RESETS);
n_words_xfr = DIV_ROUND_UP(rx_bytes_to_recv,
dd->bytes_per_word);
msm_spi_set_mx_counts(dd, n_words_xfr);
ret = msm_spi_set_state(dd, SPI_OP_STATE_RUN);
if (ret < 0) {
dev_err(dd->dev,
"%s: Failed to set QUP state to run\n",
__func__);
goto xfr_err;
}
while ((rx_bytes_to_recv + tx_bytes_to_send) &&
((cons_desc_cnt + prod_desc_cnt) > 0)) {
struct spi_transfer *t = NULL;
if (dd->read_buf && (prod_desc_cnt > 0)) {
ret = msm_spi_bam_process_rx(dd, &rx_bytes_to_recv,
prod_desc_cnt);
if (ret < 0)
goto xfr_err;
if (!(dd->cur_rx_transfer->len
- dd->bam.curr_rx_bytes_recvd))
t = dd->cur_rx_transfer;
prod_desc_cnt--;
}
if (dd->write_buf && (cons_desc_cnt > 0)) {
ret = msm_spi_bam_process_tx(dd, &tx_bytes_to_send,
cons_desc_cnt);
if (ret < 0)
goto xfr_err;
if (!(dd->cur_tx_transfer->len
- dd->bam.curr_tx_bytes_sent))
t = dd->cur_tx_transfer;
cons_desc_cnt--;
}
byte_count += ret;
}
dd->tx_bytes_remaining -= min_t(u32, byte_count,
SPI_MAX_TRFR_BTWN_RESETS);
return 0;
xfr_err:
return ret;
}
static int
msm_spi_bam_next_transfer(struct msm_spi *dd)
{
if (dd->tx_mode != SPI_BAM_MODE)
return 0;
if (dd->tx_bytes_remaining > 0) {
if (msm_spi_set_state(dd, SPI_OP_STATE_RESET))
return 0;
if ((msm_spi_bam_begin_transfer(dd)) < 0) {
dev_err(dd->dev, "%s: BAM transfer setup failed\n",
__func__);
return 0;
}
return 1;
}
return 0;
}
static int msm_spi_dma_send_next(struct msm_spi *dd)
{
int ret = 0;
if (dd->tx_mode == SPI_BAM_MODE)
ret = msm_spi_bam_next_transfer(dd);
return ret;
}
static inline void msm_spi_ack_transfer(struct msm_spi *dd)
{
writel_relaxed(SPI_OP_MAX_INPUT_DONE_FLAG |
SPI_OP_MAX_OUTPUT_DONE_FLAG,
dd->base + SPI_OPERATIONAL);
/* Ensure done flag was cleared before proceeding further */
mb();
}
/* Figure which irq occurred and call the relevant functions */
static inline irqreturn_t msm_spi_qup_irq(int irq, void *dev_id)
{
u32 op, ret = IRQ_NONE;
struct msm_spi *dd = dev_id;
if (pm_runtime_suspended(dd->dev)) {
dev_warn(dd->dev, "QUP: pm runtime suspend, irq:%d\n", irq);
return ret;
}
if (readl_relaxed(dd->base + SPI_ERROR_FLAGS) ||
readl_relaxed(dd->base + QUP_ERROR_FLAGS)) {
struct spi_master *master = dev_get_drvdata(dd->dev);
ret |= msm_spi_error_irq(irq, master);
}
op = readl_relaxed(dd->base + SPI_OPERATIONAL);
writel_relaxed(op, dd->base + SPI_OPERATIONAL);
/*
* Ensure service flag was cleared before further
* processing of interrupt.
*/
mb();
if (op & SPI_OP_INPUT_SERVICE_FLAG)
ret |= msm_spi_input_irq(irq, dev_id);
if (op & SPI_OP_OUTPUT_SERVICE_FLAG)
ret |= msm_spi_output_irq(irq, dev_id);
if (dd->tx_mode != SPI_BAM_MODE) {
if (!dd->rx_done) {
if (dd->rx_bytes_remaining == 0)
dd->rx_done = true;
}
if (!dd->tx_done) {
if (!dd->tx_bytes_remaining &&
(op & SPI_OP_IP_FIFO_NOT_EMPTY)) {
dd->tx_done = true;
}
}
}
if (dd->tx_done && dd->rx_done) {
msm_spi_set_state(dd, SPI_OP_STATE_RESET);
dd->tx_done = false;
dd->rx_done = false;
complete(&dd->rx_transfer_complete);
complete(&dd->tx_transfer_complete);
}
return ret;
}
static irqreturn_t msm_spi_input_irq(int irq, void *dev_id)
{
struct msm_spi *dd = dev_id;
dd->stat_rx++;
if (dd->rx_mode == SPI_MODE_NONE)
return IRQ_HANDLED;
if (dd->rx_mode == SPI_FIFO_MODE) {
while ((readl_relaxed(dd->base + SPI_OPERATIONAL) &
SPI_OP_IP_FIFO_NOT_EMPTY) &&
(dd->rx_bytes_remaining > 0)) {
msm_spi_read_word_from_fifo(dd);
}
} else if (dd->rx_mode == SPI_BLOCK_MODE) {
int count = 0;
while (dd->rx_bytes_remaining &&
(count < dd->input_block_size)) {
msm_spi_read_word_from_fifo(dd);
count += SPI_MAX_BYTES_PER_WORD;
}
}
return IRQ_HANDLED;
}
static void msm_spi_write_word_to_fifo(struct msm_spi *dd)
{
u32 word;
u8 byte;
int i;
int write_bytes =
(dd->pack_words ? SPI_MAX_BYTES_PER_WORD : dd->bytes_per_word);
word = 0;
if (dd->write_buf) {
for (i = 0; (i < write_bytes) &&
dd->tx_bytes_remaining; i++) {
dd->tx_bytes_remaining--;
byte = *dd->write_buf++;
word |= (byte << (BITS_PER_BYTE * i));
}
} else
if (dd->tx_bytes_remaining > write_bytes)
dd->tx_bytes_remaining -= write_bytes;
else
dd->tx_bytes_remaining = 0;
dd->write_xfr_cnt++;
writel_relaxed(word, dd->base + SPI_OUTPUT_FIFO);
}
static inline void msm_spi_write_rmn_to_fifo(struct msm_spi *dd)
{
int count = 0;
if (dd->tx_mode == SPI_FIFO_MODE) {
while ((dd->tx_bytes_remaining > 0) &&
(count < dd->input_fifo_size) &&
!(readl_relaxed(dd->base + SPI_OPERATIONAL)
& SPI_OP_OUTPUT_FIFO_FULL)) {
msm_spi_write_word_to_fifo(dd);
count++;
}
}
if (dd->tx_mode == SPI_BLOCK_MODE) {
while (dd->tx_bytes_remaining &&
(count < dd->output_block_size)) {
msm_spi_write_word_to_fifo(dd);
count += SPI_MAX_BYTES_PER_WORD;
}
}
}
static irqreturn_t msm_spi_output_irq(int irq, void *dev_id)
{
struct msm_spi *dd = dev_id;
dd->stat_tx++;
if (dd->tx_mode == SPI_MODE_NONE)
return IRQ_HANDLED;
/* Output FIFO is empty. Transmit any outstanding write data. */
if ((dd->tx_mode == SPI_FIFO_MODE) || (dd->tx_mode == SPI_BLOCK_MODE))
msm_spi_write_rmn_to_fifo(dd);
return IRQ_HANDLED;
}
static irqreturn_t msm_spi_error_irq(int irq, void *dev_id)
{
struct spi_master *master = dev_id;
struct msm_spi *dd = spi_master_get_devdata(master);
u32 spi_err;
spi_err = readl_relaxed(dd->base + SPI_ERROR_FLAGS);
if (spi_err & SPI_ERR_OUTPUT_OVER_RUN_ERR)
dev_warn(master->dev.parent, "SPI output overrun error\n");
if (spi_err & SPI_ERR_INPUT_UNDER_RUN_ERR)
dev_warn(master->dev.parent, "SPI input underrun error\n");
if (spi_err & SPI_ERR_OUTPUT_UNDER_RUN_ERR)
dev_warn(master->dev.parent, "SPI output underrun error\n");
msm_spi_get_clk_err(dd, &spi_err);
if (spi_err & SPI_ERR_CLK_OVER_RUN_ERR)
dev_warn(master->dev.parent, "SPI clock overrun error\n");
if (spi_err & SPI_ERR_CLK_UNDER_RUN_ERR)
dev_warn(master->dev.parent, "SPI clock underrun error\n");
msm_spi_clear_error_flags(dd);
msm_spi_ack_clk_err(dd);
/* Ensure clearing of QUP_ERROR_FLAGS was completed */
mb();
return IRQ_HANDLED;
}
static int msm_spi_bam_map_buffers(struct msm_spi *dd)
{
int ret = -EINVAL;
struct device *dev;
struct spi_transfer *xfr;
void *tx_buf, *rx_buf;
u32 tx_len, rx_len;
dev = dd->dev;
xfr = dd->cur_transfer;
tx_buf = (void *)xfr->tx_buf;
rx_buf = xfr->rx_buf;
tx_len = rx_len = xfr->len;
if (tx_buf != NULL) {
xfr->tx_dma = dma_map_single(dev, tx_buf,
tx_len, DMA_TO_DEVICE);
if (dma_mapping_error(dev, xfr->tx_dma)) {
ret = -ENOMEM;
goto error;
}
}
if (rx_buf != NULL) {
xfr->rx_dma = dma_map_single(dev, rx_buf, rx_len,
DMA_FROM_DEVICE);
if (dma_mapping_error(dev, xfr->rx_dma)) {
if (tx_buf != NULL)
dma_unmap_single(dev,
xfr->tx_dma,
tx_len, DMA_TO_DEVICE);
ret = -ENOMEM;
goto error;
}
}
return 0;
error:
msm_spi_dma_unmap_buffers(dd);
return ret;
}
static int msm_spi_dma_map_buffers(struct msm_spi *dd)
{
int ret = 0;
if (dd->tx_mode == SPI_BAM_MODE)
ret = msm_spi_bam_map_buffers(dd);
return ret;
}
static void msm_spi_bam_unmap_buffers(struct msm_spi *dd)
{
struct device *dev;
struct spi_transfer *xfr;
void *tx_buf, *rx_buf;
u32 tx_len, rx_len;
dev = dd->dev;
xfr = dd->cur_transfer;
tx_buf = (void *)xfr->tx_buf;
rx_buf = xfr->rx_buf;
tx_len = rx_len = xfr->len;
if (tx_buf != NULL)
dma_unmap_single(dev, xfr->tx_dma,
tx_len, DMA_TO_DEVICE);
if (rx_buf != NULL)
dma_unmap_single(dev, xfr->rx_dma,
rx_len, DMA_FROM_DEVICE);
}
static inline void msm_spi_dma_unmap_buffers(struct msm_spi *dd)
{
if (dd->tx_mode == SPI_BAM_MODE)
msm_spi_bam_unmap_buffers(dd);
}
/**
* msm_spi_use_dma - decides whether to use Data-Mover or BAM for
* the given transfer
* @dd: device
* @tr: transfer
*
* Start using DMA if:
* 1. Is supported by HW
* 2. Is not diabled by platform data
* 3. Transfer size is greater than 3*block size.
* 4. Buffers are aligned to cache line.
* 5. Bytes-per-word is 8,16 or 32.
*/
static inline bool
msm_spi_use_dma(struct msm_spi *dd, struct spi_transfer *tr, u8 bpw)
{
if (!dd->use_dma)
return false;
/* check constraints from platform data */
if ((dd->qup_ver == SPI_QUP_VERSION_BFAM) && !dd->pdata->use_bam)
return false;
if (dd->cur_msg_len < 3*dd->input_block_size)
return false;
if ((dd->qup_ver != SPI_QUP_VERSION_BFAM) &&
!dd->read_len && !dd->write_len)
return false;
if (dd->qup_ver == SPI_QUP_VERSION_NONE) {
u32 cache_line = dma_get_cache_alignment();
if (tr->tx_buf) {
if (!IS_ALIGNED((size_t)tr->tx_buf, cache_line))
return 0;
}
if (tr->rx_buf) {
if (!IS_ALIGNED((size_t)tr->rx_buf, cache_line))
return false;
}
if (tr->cs_change &&
((bpw != 8) && (bpw != 16) && (bpw != 32)))
return false;
}
return true;
}
/**
* msm_spi_set_transfer_mode: Chooses optimal transfer mode. Sets dd->mode and
* prepares to process a transfer.
*/
static void
msm_spi_set_transfer_mode(struct msm_spi *dd, u8 bpw, u32 read_count)
{
if (msm_spi_use_dma(dd, dd->cur_transfer, bpw)) {
dd->tx_mode = SPI_BAM_MODE;
dd->rx_mode = SPI_BAM_MODE;
} else {
dd->rx_mode = SPI_FIFO_MODE;
dd->tx_mode = SPI_FIFO_MODE;
dd->read_len = dd->cur_transfer->len;
dd->write_len = dd->cur_transfer->len;
}
}
/**
* msm_spi_set_qup_io_modes: prepares register QUP_IO_MODES to process a
* transfer
*/
static void msm_spi_set_qup_io_modes(struct msm_spi *dd)
{
u32 spi_iom;
spi_iom = readl_relaxed(dd->base + SPI_IO_MODES);
/* Set input and output transfer mode: FIFO, DMOV, or BAM */
spi_iom &= ~(SPI_IO_M_INPUT_MODE | SPI_IO_M_OUTPUT_MODE);
spi_iom = (spi_iom | (dd->tx_mode << OUTPUT_MODE_SHIFT));
spi_iom = (spi_iom | (dd->rx_mode << INPUT_MODE_SHIFT));
/* Always enable packing for the BAM mode and for non BAM mode only
* if bpw is % 8 and transfer length is % 4 Bytes.
*/
if (dd->tx_mode == SPI_BAM_MODE ||
((dd->cur_msg_len % SPI_MAX_BYTES_PER_WORD == 0) &&
(dd->cur_transfer->bits_per_word) &&
(dd->cur_transfer->bits_per_word <= 32) &&
(dd->cur_transfer->bits_per_word % 8 == 0))) {
spi_iom |= SPI_IO_M_PACK_EN | SPI_IO_M_UNPACK_EN;
dd->pack_words = true;
} else {
spi_iom &= ~(SPI_IO_M_PACK_EN | SPI_IO_M_UNPACK_EN);
spi_iom |= SPI_IO_M_OUTPUT_BIT_SHIFT_EN;
dd->pack_words = false;
}
writel_relaxed(spi_iom, dd->base + SPI_IO_MODES);
}
static u32 msm_spi_calc_spi_ioc_clk_polarity(u32 spi_ioc, u8 mode)
{
if (mode & SPI_CPOL)
spi_ioc |= SPI_IO_C_CLK_IDLE_HIGH;
else
spi_ioc &= ~SPI_IO_C_CLK_IDLE_HIGH;
return spi_ioc;
}
/**
* msm_spi_set_spi_io_control: prepares register SPI_IO_CONTROL to process the
* next transfer
* @return the new set value of SPI_IO_CONTROL
*/
static u32 msm_spi_set_spi_io_control(struct msm_spi *dd)
{
u32 spi_ioc, spi_ioc_orig, chip_select;
spi_ioc = readl_relaxed(dd->base + SPI_IO_CONTROL);
spi_ioc_orig = spi_ioc;
spi_ioc = msm_spi_calc_spi_ioc_clk_polarity(spi_ioc
, dd->spi->mode);
/* Set chip-select */
chip_select = dd->spi->chip_select << 2;
if ((spi_ioc & SPI_IO_C_CS_SELECT) != chip_select)
spi_ioc = (spi_ioc & ~SPI_IO_C_CS_SELECT) | chip_select;
if (!dd->cur_transfer->cs_change)
spi_ioc |= SPI_IO_C_MX_CS_MODE;
if (spi_ioc != spi_ioc_orig)
writel_relaxed(spi_ioc, dd->base + SPI_IO_CONTROL);
/*
* Ensure that the IO control mode register gets written
* before proceeding with the transfer.
*/
mb();
return spi_ioc;
}
/**
* msm_spi_set_qup_op_mask: prepares register QUP_OPERATIONAL_MASK to process
* the next transfer
*/
static void msm_spi_set_qup_op_mask(struct msm_spi *dd)
{
/* mask INPUT and OUTPUT service flags in to prevent IRQs on FIFO status
* change in BAM mode
*/
u32 mask = (dd->tx_mode == SPI_BAM_MODE) ?
QUP_OP_MASK_OUTPUT_SERVICE_FLAG | QUP_OP_MASK_INPUT_SERVICE_FLAG
: 0;
writel_relaxed(mask, dd->base + QUP_OPERATIONAL_MASK);
}
static void get_transfer_length(struct msm_spi *dd)
{
struct spi_transfer *xfer = dd->cur_transfer;
dd->cur_msg_len = 0;
dd->read_len = dd->write_len = 0;
dd->bam.bam_tx_len = dd->bam.bam_rx_len = 0;
if (xfer->tx_buf)
dd->bam.bam_tx_len = dd->write_len = xfer->len;
if (xfer->rx_buf)
dd->bam.bam_rx_len = dd->read_len = xfer->len;
dd->cur_msg_len = xfer->len;
}
static int msm_spi_process_transfer(struct msm_spi *dd)
{
u8 bpw;
u32 max_speed;
u32 read_count;
u32 timeout;
u32 spi_ioc;
u32 int_loopback = 0;
int ret;
int status = 0;
get_transfer_length(dd);
dd->cur_tx_transfer = dd->cur_transfer;
dd->cur_rx_transfer = dd->cur_transfer;
dd->bam.curr_rx_bytes_recvd = dd->bam.curr_tx_bytes_sent = 0;
dd->write_xfr_cnt = dd->read_xfr_cnt = 0;
dd->tx_bytes_remaining = dd->cur_msg_len;
dd->rx_bytes_remaining = dd->cur_msg_len;
dd->read_buf = dd->cur_transfer->rx_buf;
dd->write_buf = dd->cur_transfer->tx_buf;
dd->tx_done = false;
dd->rx_done = false;
init_completion(&dd->tx_transfer_complete);
init_completion(&dd->rx_transfer_complete);
if (dd->cur_transfer->bits_per_word)
bpw = dd->cur_transfer->bits_per_word;
else
bpw = 8;
dd->bytes_per_word = (bpw + 7) / 8;
if (dd->cur_transfer->speed_hz)
max_speed = dd->cur_transfer->speed_hz;
else
max_speed = dd->spi->max_speed_hz;
if (!dd->clock_speed || max_speed != dd->clock_speed)
msm_spi_clock_set(dd, max_speed);
timeout = 100 * msecs_to_jiffies(
DIV_ROUND_UP(dd->cur_msg_len * 8,
DIV_ROUND_UP(max_speed, MSEC_PER_SEC)));
read_count = DIV_ROUND_UP(dd->cur_msg_len, dd->bytes_per_word);
if (dd->spi->mode & SPI_LOOP)
int_loopback = 1;
ret = msm_spi_set_state(dd, SPI_OP_STATE_RESET);
if (ret < 0) {
dev_err(dd->dev,
"%s: Error setting QUP to reset-state\n",
__func__);
return ret;
}
msm_spi_set_transfer_mode(dd, bpw, read_count);
msm_spi_set_mx_counts(dd, read_count);
if (dd->tx_mode == SPI_BAM_MODE) {
ret = msm_spi_dma_map_buffers(dd);
if (ret < 0) {
pr_err("%s(): Error Mapping DMA buffers\n", __func__);
dd->tx_mode = SPI_MODE_NONE;
dd->rx_mode = SPI_MODE_NONE;
return ret;
}
}
msm_spi_set_qup_io_modes(dd);
msm_spi_set_spi_config(dd, bpw);
msm_spi_set_qup_config(dd, bpw);
spi_ioc = msm_spi_set_spi_io_control(dd);
msm_spi_set_qup_op_mask(dd);
/* The output fifo interrupt handler will handle all writes after
* the first. Restricting this to one write avoids contention
* issues and race conditions between this thread and the int handler
*/
if (dd->tx_mode != SPI_BAM_MODE) {
if (msm_spi_prepare_for_write(dd))
goto transfer_end;
msm_spi_start_write(dd, read_count);
} else {
if ((msm_spi_bam_begin_transfer(dd)) < 0) {
dev_err(dd->dev, "%s: BAM transfer setup failed\n",
__func__);
status = -EIO;
goto transfer_end;
}
}
/*
* On BAM mode, current state here is run.
* Only enter the RUN state after the first word is written into
* the output FIFO. Otherwise, the output FIFO EMPTY interrupt
* might fire before the first word is written resulting in a
* possible race condition.
*/
if (dd->tx_mode != SPI_BAM_MODE)
if (msm_spi_set_state(dd, SPI_OP_STATE_RUN)) {
dev_warn(dd->dev,
"%s: Failed to set QUP to run-state. Mode:%d\n",
__func__, dd->tx_mode);
goto transfer_end;
}
/* Assume success, this might change later upon transaction result */
do {
if (dd->write_buf &&
!wait_for_completion_timeout(&dd->tx_transfer_complete,
timeout)) {
dev_err(dd->dev, "%s: SPI Tx transaction timeout\n",
__func__);
status = -EIO;
break;
}
if (dd->read_buf &&
!wait_for_completion_timeout(&dd->rx_transfer_complete,
timeout)) {
dev_err(dd->dev, "%s: SPI Rx transaction timeout\n",
__func__);
status = -EIO;
break;
}
} while (msm_spi_dma_send_next(dd));
msm_spi_udelay(dd->xfrs_delay_usec);
transfer_end:
if ((dd->tx_mode == SPI_BAM_MODE) && status)
msm_spi_bam_flush(dd);
msm_spi_dma_unmap_buffers(dd);
dd->tx_mode = SPI_MODE_NONE;
dd->rx_mode = SPI_MODE_NONE;
msm_spi_set_state(dd, SPI_OP_STATE_RESET);
if (!dd->cur_transfer->cs_change)
writel_relaxed(spi_ioc & ~SPI_IO_C_MX_CS_MODE,
dd->base + SPI_IO_CONTROL);
return status;
}
static inline void msm_spi_set_cs(struct spi_device *spi, bool set_flag)
{
struct msm_spi *dd = spi_master_get_devdata(spi->master);
u32 spi_ioc;
u32 spi_ioc_orig;
int rc = 0;
rc = pm_runtime_get_sync(dd->dev);
if (rc < 0) {
dev_err(dd->dev, "Failure during runtime get,rc=%d\n", rc);
return;
}
if (dd->pdata->is_shared) {
rc = get_local_resources(dd);
if (rc)
return;
}
msm_spi_clk_path_vote(dd, spi->max_speed_hz);
if (!(spi->mode & SPI_CS_HIGH))
set_flag = !set_flag;
/* Serve only under mutex lock as RT suspend may cause a race */
mutex_lock(&dd->core_lock);
if (dd->suspended) {
dev_err(dd->dev, "%s: SPI operational state=%d Invalid\n",
__func__, dd->suspended);
mutex_unlock(&dd->core_lock);
return;
}
spi_ioc = readl_relaxed(dd->base + SPI_IO_CONTROL);
spi_ioc_orig = spi_ioc;
if (set_flag)
spi_ioc |= SPI_IO_C_FORCE_CS;
else
spi_ioc &= ~SPI_IO_C_FORCE_CS;
if (spi_ioc != spi_ioc_orig)
writel_relaxed(spi_ioc, dd->base + SPI_IO_CONTROL);
if (dd->pdata->is_shared)
put_local_resources(dd);
mutex_unlock(&dd->core_lock);
pm_runtime_mark_last_busy(dd->dev);
pm_runtime_put_autosuspend(dd->dev);
}
static void reset_core(struct msm_spi *dd)
{
u32 spi_ioc;
msm_spi_register_init(dd);
/*
* The SPI core generates a bogus input overrun error on some targets,
* when a transition from run to reset state occurs and if the FIFO has
* an odd number of entries. Hence we disable the INPUT_OVER_RUN_ERR_EN
* bit.
*/
msm_spi_enable_error_flags(dd);
spi_ioc = readl_relaxed(dd->base + SPI_IO_CONTROL);
spi_ioc |= SPI_IO_C_NO_TRI_STATE;
writel_relaxed(spi_ioc, dd->base + SPI_IO_CONTROL);
/*
* Ensure that the IO control is written to before returning.
*/
mb();
msm_spi_set_state(dd, SPI_OP_STATE_RESET);
}
static void put_local_resources(struct msm_spi *dd)
{
msm_spi_disable_irqs(dd);
clk_disable_unprepare(dd->clk);
dd->clock_speed = 0;
clk_disable_unprepare(dd->pclk);
/* Free the spi clk, miso, mosi, cs gpio */
if (dd->pdata && dd->pdata->gpio_release)
dd->pdata->gpio_release();
msm_spi_free_gpios(dd);
}
static int get_local_resources(struct msm_spi *dd)
{
int ret = -EINVAL;
/* Configure the spi clk, miso, mosi and cs gpio */
if (dd->pdata->gpio_config) {
ret = dd->pdata->gpio_config();
if (ret) {
dev_err(dd->dev,
"%s: error configuring GPIOs\n",
__func__);
return ret;
}
}
ret = msm_spi_request_gpios(dd);
if (ret)
return ret;
ret = clk_prepare_enable(dd->clk);
if (ret)
goto clk0_err;
ret = clk_prepare_enable(dd->pclk);
if (ret)
goto clk1_err;
msm_spi_enable_irqs(dd);
return 0;
clk1_err:
clk_disable_unprepare(dd->clk);
clk0_err:
msm_spi_free_gpios(dd);
return ret;
}
/**
* msm_spi_transfer_one: To process one spi transfer at a time
* @master: spi master controller reference
* @msg: one multi-segment SPI transaction
* @return zero on success or negative error value
*
*/
static int msm_spi_transfer_one(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *xfer)
{
struct msm_spi *dd;
unsigned long flags;
u32 status_error = 0;
dd = spi_master_get_devdata(master);
/* Check message parameters */
if (xfer->speed_hz > dd->pdata->max_clock_speed ||
(xfer->bits_per_word &&
(xfer->bits_per_word < 4 || xfer->bits_per_word > 32)) ||
(xfer->tx_buf == NULL && xfer->rx_buf == NULL)) {
dev_err(dd->dev,
"Invalid transfer: %d Hz, %d bpw tx=%pK, rx=%pK\n",
xfer->speed_hz, xfer->bits_per_word,
xfer->tx_buf, xfer->rx_buf);
return -EINVAL;
}
dd->spi = spi;
dd->cur_transfer = xfer;
mutex_lock(&dd->core_lock);
spin_lock_irqsave(&dd->queue_lock, flags);
dd->transfer_pending = 1;
spin_unlock_irqrestore(&dd->queue_lock, flags);
/*
* get local resources for each transfer to ensure we're in a good
* state and not interfering with other EE's using this device
*/
if (dd->pdata->is_shared) {
if (get_local_resources(dd)) {
mutex_unlock(&dd->core_lock);
spi_finalize_current_message(master);
return -EINVAL;
}
reset_core(dd);
if (dd->use_dma) {
msm_spi_bam_pipe_connect(dd, &dd->bam.prod,
&dd->bam.prod.config);
msm_spi_bam_pipe_connect(dd, &dd->bam.cons,
&dd->bam.cons.config);
}
}
if (dd->suspended || !msm_spi_is_valid_state(dd)) {
dev_err(dd->dev, "%s: SPI operational state not valid\n",
__func__);
status_error = 1;
}
if (!status_error)
status_error =
msm_spi_process_transfer(dd);
spin_lock_irqsave(&dd->queue_lock, flags);
dd->transfer_pending = 0;
spin_unlock_irqrestore(&dd->queue_lock, flags);
/*
* Put local resources prior to calling finalize to ensure the hw
* is in a known state before notifying the calling thread (which is a
* different context since we're running in the spi kthread here) to
* prevent race conditions between us and any other EE's using this hw.
*/
if (dd->pdata->is_shared) {
if (dd->use_dma) {
msm_spi_bam_pipe_disconnect(dd, &dd->bam.prod);
msm_spi_bam_pipe_disconnect(dd, &dd->bam.cons);
}
put_local_resources(dd);
}
mutex_unlock(&dd->core_lock);
if (dd->suspended)
wake_up_interruptible(&dd->continue_suspend);
return status_error;
}
static int msm_spi_pm_get_sync(struct device *dev)
{
int ret;
/*
* Counter-part of system-suspend when runtime-pm is not enabled.
* This way, resume can be left empty and device will be put in
* active mode only if client requests anything on the bus
*/
if (!pm_runtime_enabled(dev)) {
dev_info(dev, "%s: pm_runtime not enabled\n", __func__);
ret = msm_spi_pm_resume_runtime(dev);
} else {
ret = pm_runtime_get_sync(dev);
}
return ret;
}
static int msm_spi_pm_put_sync(struct device *dev)
{
int ret = 0;
if (!pm_runtime_enabled(dev)) {
dev_info(dev, "%s: pm_runtime not enabled\n", __func__);
ret = msm_spi_pm_suspend_runtime(dev);
} else {
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
}
return ret;
}
static int msm_spi_prepare_message(struct spi_master *master,
struct spi_message *spi_msg)
{
struct msm_spi *dd = spi_master_get_devdata(master);
int resume_state;
resume_state = msm_spi_pm_get_sync(dd->dev);
if (resume_state < 0)
return resume_state;
return 0;
}
static int msm_spi_unprepare_message(struct spi_master *master,
struct spi_message *spi_msg)
{
struct msm_spi *dd = spi_master_get_devdata(master);
int ret;
ret = msm_spi_pm_put_sync(dd->dev);
if (ret < 0)
return ret;
return 0;
}
static int msm_spi_prepare_transfer_hardware(struct spi_master *master)
{
struct msm_spi *dd = spi_master_get_devdata(master);
int resume_state;
if (!dd->pdata->shared_ee) {
resume_state = msm_spi_pm_get_sync(dd->dev);
if (resume_state < 0)
goto spi_finalize;
if (dd->suspended) {
resume_state = -EBUSY;
goto spi_finalize;
}
}
return 0;
spi_finalize:
spi_finalize_current_message(master);
return resume_state;
}
static int msm_spi_unprepare_transfer_hardware(struct spi_master *master)
{
struct msm_spi *dd = spi_master_get_devdata(master);
int ret;
if (!dd->pdata->shared_ee) {
ret = msm_spi_pm_put_sync(dd->dev);
if (ret < 0)
return ret;
}
return 0;
}
static int msm_spi_setup(struct spi_device *spi)
{
struct msm_spi *dd;
int rc = 0;
u32 spi_ioc;
u32 spi_config;
u32 mask;
if (spi->bits_per_word < 4 || spi->bits_per_word > 32) {
dev_err(&spi->dev, "%s: invalid bits_per_word %d\n",
__func__, spi->bits_per_word);
return -EINVAL;
}
if (spi->chip_select > SPI_NUM_CHIPSELECTS-1) {
dev_err(&spi->dev, "%s, chip select %d exceeds max value %d\n",
__func__, spi->chip_select, SPI_NUM_CHIPSELECTS - 1);
return -EINVAL;
}
dd = spi_master_get_devdata(spi->master);
rc = pm_runtime_get_sync(dd->dev);
if (rc < 0 && !dd->is_init_complete &&
pm_runtime_enabled(dd->dev)) {
pm_runtime_set_suspended(dd->dev);
pm_runtime_put_sync(dd->dev);
rc = 0;
goto err_setup_exit;
} else
rc = 0;
mutex_lock(&dd->core_lock);
/* Counter-part of system-suspend when runtime-pm is not enabled. */
if (!pm_runtime_enabled(dd->dev)) {
rc = msm_spi_pm_resume_runtime(dd->dev);
if (rc < 0 && !dd->is_init_complete) {
rc = 0;
mutex_unlock(&dd->core_lock);
goto err_setup_exit;
}
}
if (dd->suspended) {
rc = -EBUSY;
mutex_unlock(&dd->core_lock);
goto err_setup_exit;
}
if (dd->pdata->is_shared) {
rc = get_local_resources(dd);
if (rc)
goto no_resources;
}
spi_ioc = readl_relaxed(dd->base + SPI_IO_CONTROL);
mask = SPI_IO_C_CS_N_POLARITY_0 << spi->chip_select;
if (spi->mode & SPI_CS_HIGH)
spi_ioc |= mask;
else
spi_ioc &= ~mask;
spi_ioc = msm_spi_calc_spi_ioc_clk_polarity(spi_ioc, spi->mode);
writel_relaxed(spi_ioc, dd->base + SPI_IO_CONTROL);
spi_config = readl_relaxed(dd->base + SPI_CONFIG);
spi_config = msm_spi_calc_spi_config_loopback_and_input_first(
spi_config, spi->mode);
writel_relaxed(spi_config, dd->base + SPI_CONFIG);
/* Ensure previous write completed before disabling the clocks */
mb();
if (dd->pdata->is_shared)
put_local_resources(dd);
/* Counter-part of system-resume when runtime-pm is not enabled. */
if (!pm_runtime_enabled(dd->dev))
msm_spi_pm_suspend_runtime(dd->dev);
no_resources:
mutex_unlock(&dd->core_lock);
pm_runtime_mark_last_busy(dd->dev);
pm_runtime_put_autosuspend(dd->dev);
err_setup_exit:
return rc;
}
#ifdef CONFIG_DEBUG_FS
static int debugfs_iomem_x32_set(void *data, u64 val)
{
struct msm_spi_debugfs_data *reg = (struct msm_spi_debugfs_data *)data;
struct msm_spi *dd = reg->dd;
int ret;
ret = pm_runtime_get_sync(dd->dev);
if (ret < 0)
return ret;
writel_relaxed(val, (dd->base + reg->offset));
/* Ensure the previous write completed. */
mb();
pm_runtime_mark_last_busy(dd->dev);
pm_runtime_put_autosuspend(dd->dev);
return 0;
}
static int debugfs_iomem_x32_get(void *data, u64 *val)
{
struct msm_spi_debugfs_data *reg = (struct msm_spi_debugfs_data *)data;
struct msm_spi *dd = reg->dd;
int ret;
ret = pm_runtime_get_sync(dd->dev);
if (ret < 0)
return ret;
*val = readl_relaxed(dd->base + reg->offset);
/* Ensure the previous read completed. */
mb();
pm_runtime_mark_last_busy(dd->dev);
pm_runtime_put_autosuspend(dd->dev);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_iomem_x32, debugfs_iomem_x32_get,
debugfs_iomem_x32_set, "0x%08llx\n");
static void spi_debugfs_init(struct msm_spi *dd)
{
char dir_name[20];
scnprintf(dir_name, sizeof(dir_name), "%s_dbg", dev_name(dd->dev));
dd->dent_spi = debugfs_create_dir(dir_name, NULL);
if (dd->dent_spi) {
int i;
for (i = 0; i < ARRAY_SIZE(debugfs_spi_regs); i++) {
dd->reg_data[i].offset = debugfs_spi_regs[i].offset;
dd->reg_data[i].dd = dd;
dd->debugfs_spi_regs[i] =
debugfs_create_file(
debugfs_spi_regs[i].name,
debugfs_spi_regs[i].mode,
dd->dent_spi, &dd->reg_data[i],
&fops_iomem_x32);
}
}
}
static void spi_debugfs_exit(struct msm_spi *dd)
{
if (dd->dent_spi) {
int i;
debugfs_remove_recursive(dd->dent_spi);
dd->dent_spi = NULL;
for (i = 0; i < ARRAY_SIZE(debugfs_spi_regs); i++)
dd->debugfs_spi_regs[i] = NULL;
}
}
#else
static void spi_debugfs_init(struct msm_spi *dd) {}
static void spi_debugfs_exit(struct msm_spi *dd) {}
#endif
/* ===Device attributes begin=== */
static ssize_t show_stats(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct spi_master *master = dev_get_drvdata(dev);
struct msm_spi *dd = spi_master_get_devdata(master);
return snprintf(buf, PAGE_SIZE,
"Device %s\n"
"rx fifo_size = %d spi words\n"
"tx fifo_size = %d spi words\n"
"use_dma ? %s\n"
"rx block size = %d bytes\n"
"tx block size = %d bytes\n"
"input burst size = %d bytes\n"
"output burst size = %d bytes\n"
"DMA configuration:\n"
"tx_ch=%d, rx_ch=%d, tx_crci= %d, rx_crci=%d\n"
"--statistics--\n"
"Rx isrs = %d\n"
"Tx isrs = %d\n"
"--debug--\n"
"NA yet\n",
dev_name(dev),
dd->input_fifo_size,
dd->output_fifo_size,
dd->use_dma ? "yes" : "no",
dd->input_block_size,
dd->output_block_size,
dd->input_burst_size,
dd->output_burst_size,
dd->tx_dma_chan,
dd->rx_dma_chan,
dd->tx_dma_crci,
dd->rx_dma_crci,
dd->stat_rx,
dd->stat_tx
);
}
/* Reset statistics on write */
static ssize_t set_stats(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct msm_spi *dd = dev_get_drvdata(dev);
dd->stat_rx = 0;
dd->stat_tx = 0;
return count;
}
static DEVICE_ATTR(stats, 0644, show_stats, set_stats);
static struct attribute *dev_attrs[] = {
&dev_attr_stats.attr,
NULL,
};
static struct attribute_group dev_attr_grp = {
.attrs = dev_attrs,
};
/* ===Device attributes end=== */
static void msm_spi_bam_pipe_teardown(struct msm_spi *dd,
enum msm_spi_pipe_direction pipe_dir)
{
struct msm_spi_bam_pipe *pipe = (pipe_dir == SPI_BAM_CONSUMER_PIPE) ?
(&dd->bam.prod) : (&dd->bam.cons);
if (!pipe->teardown_required)
return;
msm_spi_bam_pipe_disconnect(dd, pipe);
dma_free_coherent(dd->dev, pipe->config.desc.size,
pipe->config.desc.base, pipe->config.desc.phys_base);
sps_free_endpoint(pipe->handle);
pipe->handle = NULL;
pipe->teardown_required = false;
}
static int msm_spi_bam_pipe_init(struct msm_spi *dd,
enum msm_spi_pipe_direction pipe_dir)
{
int rc = 0;
struct sps_pipe *pipe_handle;
struct msm_spi_bam_pipe *pipe = (pipe_dir == SPI_BAM_CONSUMER_PIPE) ?
(&dd->bam.prod) : (&dd->bam.cons);
struct sps_connect *pipe_conf = &pipe->config;
pipe->name = (pipe_dir == SPI_BAM_CONSUMER_PIPE) ? "cons" : "prod";
pipe->handle = NULL;
pipe_handle = sps_alloc_endpoint();
if (!pipe_handle) {
dev_err(dd->dev, "%s: Failed to allocate BAM endpoint\n"
, __func__);
return -ENOMEM;
}
memset(pipe_conf, 0, sizeof(*pipe_conf));
rc = sps_get_config(pipe_handle, pipe_conf);
if (rc) {
dev_err(dd->dev, "%s: Failed to get BAM pipe config\n"
, __func__);
goto config_err;
}
if (pipe_dir == SPI_BAM_CONSUMER_PIPE) {
pipe_conf->source = dd->bam.handle;
pipe_conf->destination = SPS_DEV_HANDLE_MEM;
pipe_conf->mode = SPS_MODE_SRC;
pipe_conf->src_pipe_index =
dd->pdata->bam_producer_pipe_index;
pipe_conf->dest_pipe_index = 0;
} else {
pipe_conf->source = SPS_DEV_HANDLE_MEM;
pipe_conf->destination = dd->bam.handle;
pipe_conf->mode = SPS_MODE_DEST;
pipe_conf->src_pipe_index = 0;
pipe_conf->dest_pipe_index =
dd->pdata->bam_consumer_pipe_index;
}
pipe_conf->options = SPS_O_EOT | SPS_O_AUTO_ENABLE;
pipe_conf->desc.size = SPI_BAM_MAX_DESC_NUM * sizeof(struct sps_iovec);
pipe_conf->desc.base = dma_alloc_coherent(dd->dev,
pipe_conf->desc.size,
&pipe_conf->desc.phys_base,
GFP_KERNEL);
if (!pipe_conf->desc.base) {
dev_err(dd->dev, "%s: Failed allocate BAM pipe memory\n"
, __func__);
rc = -ENOMEM;
goto config_err;
}
/* zero descriptor FIFO for convenient debugging of first descs */
memset(pipe_conf->desc.base, 0x00, pipe_conf->desc.size);
pipe->handle = pipe_handle;
return 0;
config_err:
sps_free_endpoint(pipe_handle);
return rc;
}
static void msm_spi_bam_teardown(struct msm_spi *dd)
{
msm_spi_bam_pipe_teardown(dd, SPI_BAM_PRODUCER_PIPE);
msm_spi_bam_pipe_teardown(dd, SPI_BAM_CONSUMER_PIPE);
if (dd->bam.deregister_required) {
sps_deregister_bam_device(dd->bam.handle);
dd->bam.deregister_required = false;
}
}
static int msm_spi_bam_init(struct msm_spi *dd)
{
struct sps_bam_props bam_props = {0};
uintptr_t bam_handle;
int rc = 0;
rc = sps_phy2h(dd->bam.phys_addr, &bam_handle);
if (rc || !bam_handle) {
bam_props.phys_addr = dd->bam.phys_addr;
bam_props.virt_addr = dd->bam.base;
bam_props.irq = dd->bam.irq;
bam_props.manage = SPS_BAM_MGR_DEVICE_REMOTE;
bam_props.summing_threshold = 0x10;
rc = sps_register_bam_device(&bam_props, &bam_handle);
if (rc) {
dev_err(dd->dev,
"%s: Failed to register BAM device\n",
__func__);
return rc;
}
dd->bam.deregister_required = true;
}
dd->bam.handle = bam_handle;
rc = msm_spi_bam_pipe_init(dd, SPI_BAM_PRODUCER_PIPE);
if (rc) {
dev_err(dd->dev,
"%s: Failed to init producer BAM-pipe\n",
__func__);
goto bam_init_error;
}
rc = msm_spi_bam_pipe_init(dd, SPI_BAM_CONSUMER_PIPE);
if (rc) {
dev_err(dd->dev,
"%s: Failed to init consumer BAM-pipe\n",
__func__);
goto bam_init_error;
}
return 0;
bam_init_error:
msm_spi_bam_teardown(dd);
return rc;
}
enum msm_spi_dt_entry_status {
DT_REQ, /* Required: fail if missing */
DT_SGST, /* Suggested: warn if missing */
DT_OPT, /* Optional: don't warn if missing */
};
enum msm_spi_dt_entry_type {
DT_U32,
DT_GPIO,
DT_BOOL,
};
struct msm_spi_dt_to_pdata_map {
const char *dt_name;
void *ptr_data;
enum msm_spi_dt_entry_status status;
enum msm_spi_dt_entry_type type;
int default_val;
};
static int msm_spi_dt_to_pdata_populate(struct platform_device *pdev,
struct msm_spi_platform_data *pdata,
struct msm_spi_dt_to_pdata_map *itr)
{
int ret, err = 0;
struct device_node *node = pdev->dev.of_node;
for (; itr->dt_name; ++itr) {
switch (itr->type) {
case DT_GPIO:
ret = of_get_named_gpio(node, itr->dt_name, 0);
if (ret >= 0) {
*((int *) itr->ptr_data) = ret;
ret = 0;
}
break;
case DT_U32:
ret = of_property_read_u32(node, itr->dt_name,
(u32 *) itr->ptr_data);
break;
case DT_BOOL:
*((bool *) itr->ptr_data) =
of_property_read_bool(node, itr->dt_name);
ret = 0;
break;
default:
dev_err(&pdev->dev, "%d is an unknown DT entry type\n",
itr->type);
ret = -EBADE;
}
dev_dbg(&pdev->dev, "DT entry ret:%d name:%s val:%d\n",
ret, itr->dt_name, *((int *)itr->ptr_data));
if (ret) {
*((int *)itr->ptr_data) = itr->default_val;
if (itr->status < DT_OPT) {
dev_err(&pdev->dev, "Missing '%s' DT entry\n",
itr->dt_name);
/* cont on err to dump all missing entries */
if (itr->status == DT_REQ && !err)
err = ret;
}
}
}
return err;
}
/**
* msm_spi_dt_to_pdata: create pdata and read gpio config from device tree
*/
static struct msm_spi_platform_data *msm_spi_dt_to_pdata(
struct platform_device *pdev, struct msm_spi *dd)
{
struct msm_spi_platform_data *pdata;
pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return NULL;
if (pdata) {
struct msm_spi_dt_to_pdata_map map[] = {
{"spi-max-frequency",
&pdata->max_clock_speed, DT_SGST, DT_U32, 0},
{"qcom,infinite-mode",
&pdata->infinite_mode, DT_OPT, DT_U32, 0},
{"qcom,master-id",
&pdata->master_id, DT_SGST, DT_U32, 0},
{"qcom,bus-width",
&pdata->bus_width, DT_OPT, DT_U32, 8},
{"qcom,ver-reg-exists",
&pdata->ver_reg_exists, DT_OPT, DT_BOOL, 0},
{"qcom,use-bam",
&pdata->use_bam, DT_OPT, DT_BOOL, 0},
{"qcom,use-pinctrl",
&pdata->use_pinctrl, DT_OPT, DT_BOOL, 0},
{"qcom,bam-consumer-pipe-index",
&pdata->bam_consumer_pipe_index, DT_OPT, DT_U32, 0},
{"qcom,bam-producer-pipe-index",
&pdata->bam_producer_pipe_index, DT_OPT, DT_U32, 0},
{"qcom,gpio-clk",
&dd->spi_gpios[0], DT_OPT, DT_GPIO, -1},
{"qcom,gpio-miso",
&dd->spi_gpios[1], DT_OPT, DT_GPIO, -1},
{"qcom,gpio-mosi",
&dd->spi_gpios[2], DT_OPT, DT_GPIO, -1},
{"qcom,gpio-cs0",
&dd->cs_gpios[0].gpio_num, DT_OPT, DT_GPIO, -1},
{"qcom,gpio-cs1",
&dd->cs_gpios[1].gpio_num, DT_OPT, DT_GPIO, -1},
{"qcom,gpio-cs2",
&dd->cs_gpios[2].gpio_num, DT_OPT, DT_GPIO, -1},
{"qcom,gpio-cs3",
&dd->cs_gpios[3].gpio_num, DT_OPT, DT_GPIO, -1},
{"qcom,rt-priority",
&pdata->rt_priority, DT_OPT, DT_BOOL, 0},
{"qcom,shared",
&pdata->is_shared, DT_OPT, DT_BOOL, 0},
{"qcom,shared_ee",
&pdata->shared_ee, DT_OPT, DT_BOOL, 0},
{NULL, NULL, 0, 0, 0},
};
if (msm_spi_dt_to_pdata_populate(pdev, pdata, map)) {
devm_kfree(&pdev->dev, pdata);
return NULL;
}
}
if (pdata->use_bam) {
if (!pdata->bam_consumer_pipe_index) {
dev_warn(&pdev->dev,
"missing qcom,bam-consumer-pipe-index entry in device-tree\n");
pdata->use_bam = false;
}
if (!pdata->bam_producer_pipe_index) {
dev_warn(&pdev->dev,
"missing qcom,bam-producer-pipe-index entry in device-tree\n");
pdata->use_bam = false;
}
}
return pdata;
}
static int msm_spi_get_qup_hw_ver(struct device *dev, struct msm_spi *dd)
{
u32 data = readl_relaxed(dd->base + QUP_HARDWARE_VER);
return (data >= QUP_HARDWARE_VER_2_1_1) ? SPI_QUP_VERSION_BFAM
: SPI_QUP_VERSION_NONE;
}
static int msm_spi_bam_get_resources(struct msm_spi *dd,
struct platform_device *pdev, struct spi_master *master)
{
struct resource *resource;
size_t bam_mem_size;
resource = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"spi_bam_physical");
if (!resource) {
dev_warn(&pdev->dev,
"%s: Missing spi_bam_physical entry in DT\n",
__func__);
return -ENXIO;
}
dd->bam.phys_addr = resource->start;
bam_mem_size = resource_size(resource);
dd->bam.base = devm_ioremap(&pdev->dev, dd->bam.phys_addr,
bam_mem_size);
if (!dd->bam.base) {
dev_warn(&pdev->dev,
"%s: Failed to ioremap(spi_bam_physical)\n",
__func__);
return -ENXIO;
}
dd->bam.irq = platform_get_irq_byname(pdev, "spi_bam_irq");
if (dd->bam.irq < 0) {
dev_warn(&pdev->dev, "%s: Missing spi_bam_irq entry in DT\n",
__func__);
return -EINVAL;
}
dd->dma_init = msm_spi_bam_init;
dd->dma_teardown = msm_spi_bam_teardown;
return 0;
}
static int init_resources(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
struct msm_spi *dd;
int rc = -ENXIO;
int clk_enabled = 0;
int pclk_enabled = 0;
dd = spi_master_get_devdata(master);
if (dd->pdata && dd->pdata->use_pinctrl) {
rc = msm_spi_pinctrl_init(dd);
if (rc) {
dev_err(&pdev->dev, "%s: pinctrl init failed\n",
__func__);
return rc;
}
}
mutex_lock(&dd->core_lock);
dd->clk = clk_get(&pdev->dev, "core_clk");
if (IS_ERR(dd->clk)) {
dev_err(&pdev->dev, "%s: unable to get core_clk\n", __func__);
rc = PTR_ERR(dd->clk);
goto err_clk_get;
}
dd->pclk = clk_get(&pdev->dev, "iface_clk");
if (IS_ERR(dd->pclk)) {
dev_err(&pdev->dev, "%s: unable to get iface_clk\n", __func__);
rc = PTR_ERR(dd->pclk);
goto err_pclk_get;
}
if (dd->pdata && dd->pdata->max_clock_speed)
msm_spi_clock_set(dd, dd->pdata->max_clock_speed);
rc = clk_prepare_enable(dd->clk);
if (rc) {
dev_err(&pdev->dev, "%s: unable to enable core_clk\n",
__func__);
goto err_clk_enable;
}
clk_enabled = 1;
rc = clk_prepare_enable(dd->pclk);
if (rc) {
dev_err(&pdev->dev, "%s: unable to enable iface_clk\n",
__func__);
goto err_pclk_enable;
}
pclk_enabled = 1;
if (dd->pdata && dd->pdata->ver_reg_exists) {
enum msm_spi_qup_version ver =
msm_spi_get_qup_hw_ver(&pdev->dev, dd);
if (dd->qup_ver != ver)
dev_warn(&pdev->dev,
"%s: HW version different then assumed by probe\n",
__func__);
}
/* GSBI dose not exists on B-family MSM-chips */
if (dd->qup_ver != SPI_QUP_VERSION_BFAM) {
rc = msm_spi_configure_gsbi(dd, pdev);
if (rc)
goto err_config_gsbi;
}
msm_spi_calculate_fifo_size(dd);
if (dd->use_dma) {
rc = dd->dma_init(dd);
if (rc) {
dev_err(&pdev->dev,
"%s: failed to init DMA. Disabling DMA mode\n",
__func__);
dd->use_dma = 0;
}
}
msm_spi_register_init(dd);
/*
* The SPI core generates a bogus input overrun error on some targets,
* when a transition from run to reset state occurs and if the FIFO has
* an odd number of entries. Hence we disable the INPUT_OVER_RUN_ERR_EN
* bit.
*/
msm_spi_enable_error_flags(dd);
writel_relaxed(SPI_IO_C_NO_TRI_STATE, dd->base + SPI_IO_CONTROL);
rc = msm_spi_set_state(dd, SPI_OP_STATE_RESET);
if (rc)
goto err_spi_state;
clk_disable_unprepare(dd->clk);
clk_disable_unprepare(dd->pclk);
clk_enabled = 0;
pclk_enabled = 0;
dd->transfer_pending = 0;
dd->tx_mode = SPI_MODE_NONE;
dd->rx_mode = SPI_MODE_NONE;
rc = msm_spi_request_irq(dd, pdev, master);
if (rc)
goto err_irq;
msm_spi_disable_irqs(dd);
mutex_unlock(&dd->core_lock);
return 0;
err_irq:
err_spi_state:
if (dd->use_dma && dd->dma_teardown)
dd->dma_teardown(dd);
err_config_gsbi:
if (pclk_enabled)
clk_disable_unprepare(dd->pclk);
err_pclk_enable:
if (clk_enabled)
clk_disable_unprepare(dd->clk);
err_clk_enable:
clk_put(dd->pclk);
err_pclk_get:
clk_put(dd->clk);
err_clk_get:
mutex_unlock(&dd->core_lock);
return rc;
}
static int msm_spi_probe(struct platform_device *pdev)
{
struct spi_master *master;
struct msm_spi *dd;
struct resource *resource;
int i = 0;
int rc = -ENXIO;
struct msm_spi_platform_data *pdata;
master = spi_alloc_master(&pdev->dev, sizeof(struct msm_spi));
if (!master) {
rc = -ENOMEM;
dev_err(&pdev->dev, "master allocation failed\n");
goto err_probe_exit;
}
master->bus_num = pdev->id;
master->mode_bits = SPI_SUPPORTED_MODES;
master->num_chipselect = SPI_NUM_CHIPSELECTS;
master->set_cs = msm_spi_set_cs;
master->setup = msm_spi_setup;
master->prepare_transfer_hardware = msm_spi_prepare_transfer_hardware;
master->transfer_one = msm_spi_transfer_one;
master->unprepare_transfer_hardware
= msm_spi_unprepare_transfer_hardware;
platform_set_drvdata(pdev, master);
dd = spi_master_get_devdata(master);
if (pdev->dev.of_node) {
dd->qup_ver = SPI_QUP_VERSION_BFAM;
master->dev.of_node = pdev->dev.of_node;
pdata = msm_spi_dt_to_pdata(pdev, dd);
if (!pdata) {
dev_err(&pdev->dev, "platform data allocation failed\n");
rc = -ENOMEM;
goto err_probe_exit;
}
rc = of_alias_get_id(pdev->dev.of_node, "spi");
if (rc < 0)
dev_warn(&pdev->dev,
"using default bus_num %d\n", pdev->id);
else
master->bus_num = pdev->id = rc;
} else {
pdata = pdev->dev.platform_data;
dd->qup_ver = SPI_QUP_VERSION_NONE;
for (i = 0; i < ARRAY_SIZE(spi_rsrcs); ++i) {
resource = platform_get_resource(pdev, IORESOURCE_IO,
i);
dd->spi_gpios[i] = resource ? resource->start : -1;
}
for (i = 0; i < ARRAY_SIZE(spi_cs_rsrcs); ++i) {
resource = platform_get_resource(pdev, IORESOURCE_IO,
i + ARRAY_SIZE(spi_rsrcs));
dd->cs_gpios[i].gpio_num = resource ?
resource->start : -1;
}
}
for (i = 0; i < ARRAY_SIZE(spi_cs_rsrcs); ++i)
dd->cs_gpios[i].valid = 0;
dd->pdata = pdata;
resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!resource) {
rc = -ENXIO;
goto err_probe_res;
}
dd->mem_phys_addr = resource->start;
dd->mem_size = resource_size(resource);
dd->dev = &pdev->dev;
if (pdata) {
master->rt = pdata->rt_priority;
if (pdata->dma_config) {
rc = pdata->dma_config();
if (rc) {
dev_warn(&pdev->dev,
"%s: DM mode not supported\n",
__func__);
dd->use_dma = 0;
goto skip_dma_resources;
}
}
if (!dd->pdata->use_bam)
goto skip_dma_resources;
rc = msm_spi_bam_get_resources(dd, pdev, master);
if (rc) {
dev_warn(dd->dev,
"%s: Failed to get BAM resources\n",
__func__);
goto skip_dma_resources;
}
dd->use_dma = 1;
}
spi_dma_mask(&pdev->dev);
skip_dma_resources:
spin_lock_init(&dd->queue_lock);
mutex_init(&dd->core_lock);
init_waitqueue_head(&dd->continue_suspend);
if (!devm_request_mem_region(&pdev->dev, dd->mem_phys_addr,
dd->mem_size, SPI_DRV_NAME)) {
rc = -ENXIO;
goto err_probe_reqmem;
}
dd->base = devm_ioremap(&pdev->dev, dd->mem_phys_addr, dd->mem_size);
if (!dd->base) {
rc = -ENOMEM;
goto err_probe_reqmem;
}
/* This property is required for Dual EE use case of spi */
if (dd->pdata->shared_ee) {
master->prepare_message = msm_spi_prepare_message;
master->unprepare_message = msm_spi_unprepare_message;
}
pm_runtime_set_autosuspend_delay(&pdev->dev, MSEC_PER_SEC);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_enable(&pdev->dev);
dd->suspended = 1;
rc = spi_register_master(master);
if (rc)
goto err_probe_reg_master;
rc = sysfs_create_group(&(dd->dev->kobj), &dev_attr_grp);
if (rc) {
dev_err(&pdev->dev, "failed to create dev. attrs : %d\n", rc);
goto err_attrs;
}
spi_debugfs_init(dd);
return 0;
err_attrs:
spi_unregister_master(master);
err_probe_reg_master:
pm_runtime_disable(&pdev->dev);
err_probe_reqmem:
err_probe_res:
spi_master_put(master);
err_probe_exit:
return rc;
}
static int msm_spi_pm_suspend_runtime(struct device *device)
{
struct platform_device *pdev = to_platform_device(device);
struct spi_master *master = platform_get_drvdata(pdev);
struct msm_spi *dd;
unsigned long flags;
dev_dbg(device, "pm_runtime: suspending...\n");
if (!master)
goto suspend_exit;
dd = spi_master_get_devdata(master);
if (!dd)
goto suspend_exit;
if (dd->suspended)
return 0;
/*
* Make sure nothing is added to the queue while we're
* suspending
*/
spin_lock_irqsave(&dd->queue_lock, flags);
dd->suspended = 1;
spin_unlock_irqrestore(&dd->queue_lock, flags);
/* Wait for transactions to end, or time out */
wait_event_interruptible(dd->continue_suspend,
!dd->transfer_pending);
mutex_lock(&dd->core_lock);
if (dd->pdata && !dd->pdata->is_shared && dd->use_dma) {
msm_spi_bam_pipe_disconnect(dd, &dd->bam.prod);
msm_spi_bam_pipe_disconnect(dd, &dd->bam.cons);
}
if (dd->pdata && !dd->pdata->is_shared)
put_local_resources(dd);
if (dd->pdata)
msm_spi_clk_path_vote(dd, 0);
mutex_unlock(&dd->core_lock);
suspend_exit:
return 0;
}
static int msm_spi_pm_resume_runtime(struct device *device)
{
struct platform_device *pdev = to_platform_device(device);
struct spi_master *master = platform_get_drvdata(pdev);
struct msm_spi *dd;
int ret = 0;
dev_dbg(device, "pm_runtime: resuming...\n");
if (!master)
goto resume_exit;
dd = spi_master_get_devdata(master);
if (!dd)
goto resume_exit;
if (!dd->suspended)
return 0;
if (!dd->is_init_complete) {
ret = init_resources(pdev);
if (ret != 0)
return ret;
dd->is_init_complete = true;
}
msm_spi_clk_path_init(dd);
msm_spi_clk_path_vote(dd, dd->pdata->max_clock_speed);
if (!dd->pdata->is_shared) {
ret = get_local_resources(dd);
if (ret)
return ret;
}
if (!dd->pdata->is_shared && dd->use_dma) {
msm_spi_bam_pipe_connect(dd, &dd->bam.prod,
&dd->bam.prod.config);
msm_spi_bam_pipe_connect(dd, &dd->bam.cons,
&dd->bam.cons.config);
}
dd->suspended = 0;
resume_exit:
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int msm_spi_suspend(struct device *device)
{
if (!pm_runtime_enabled(device) || !pm_runtime_suspended(device)) {
struct platform_device *pdev = to_platform_device(device);
struct spi_master *master = platform_get_drvdata(pdev);
struct msm_spi *dd;
dev_dbg(device, "system suspend\n");
if (!master)
goto suspend_exit;
dd = spi_master_get_devdata(master);
if (!dd)
goto suspend_exit;
msm_spi_pm_suspend_runtime(device);
/*
* set the device's runtime PM status to 'suspended'
*/
pm_runtime_disable(device);
pm_runtime_set_suspended(device);
pm_runtime_enable(device);
}
suspend_exit:
return 0;
}
static int msm_spi_resume(struct device *device)
{
/*
* Rely on runtime-PM to call resume in case it is enabled
* Even if it's not enabled, rely on 1st client transaction to do
* clock ON and gpio configuration
*/
dev_dbg(device, "system resume\n");
return 0;
}
#else
#define msm_spi_suspend NULL
#define msm_spi_resume NULL
#endif
static int msm_spi_remove(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
struct msm_spi *dd = spi_master_get_devdata(master);
spi_debugfs_exit(dd);
sysfs_remove_group(&pdev->dev.kobj, &dev_attr_grp);
if (dd->dma_teardown)
dd->dma_teardown(dd);
pm_runtime_disable(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
clk_put(dd->clk);
clk_put(dd->pclk);
msm_spi_clk_path_teardown(dd);
platform_set_drvdata(pdev, NULL);
spi_unregister_master(master);
spi_master_put(master);
return 0;
}
static const struct of_device_id msm_spi_dt_match[] = {
{
.compatible = "qcom,spi-qup-v2",
},
{}
};
static const struct dev_pm_ops msm_spi_dev_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(msm_spi_suspend, msm_spi_resume)
SET_RUNTIME_PM_OPS(msm_spi_pm_suspend_runtime,
msm_spi_pm_resume_runtime, NULL)
};
static struct platform_driver msm_spi_driver = {
.driver = {
.name = SPI_DRV_NAME,
.owner = THIS_MODULE,
.pm = &msm_spi_dev_pm_ops,
.of_match_table = msm_spi_dt_match,
},
.probe = msm_spi_probe,
.remove = msm_spi_remove,
};
module_platform_driver(msm_spi_driver);
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:"SPI_DRV_NAME);