You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/drivers/mfd/qcom-i2c-pmic.c

745 lines
18 KiB

/* Copyright (c) 2016-2017 The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "I2C PMIC: %s: " fmt, __func__
#include <linux/bitops.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/pinctrl/consumer.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#define I2C_INTR_STATUS_BASE 0x0550
#define INT_RT_STS_OFFSET 0x10
#define INT_SET_TYPE_OFFSET 0x11
#define INT_POL_HIGH_OFFSET 0x12
#define INT_POL_LOW_OFFSET 0x13
#define INT_LATCHED_CLR_OFFSET 0x14
#define INT_EN_SET_OFFSET 0x15
#define INT_EN_CLR_OFFSET 0x16
#define INT_LATCHED_STS_OFFSET 0x18
#define INT_PENDING_STS_OFFSET 0x19
#define INT_MID_SEL_OFFSET 0x1A
#define INT_MID_SEL_MASK GENMASK(1, 0)
#define INT_PRIORITY_OFFSET 0x1B
#define INT_PRIORITY_BIT BIT(0)
enum {
IRQ_SET_TYPE = 0,
IRQ_POL_HIGH,
IRQ_POL_LOW,
IRQ_LATCHED_CLR, /* not needed but makes life easy */
IRQ_EN_SET,
IRQ_MAX_REGS,
};
struct i2c_pmic_periph {
void *data;
u16 addr;
u8 cached[IRQ_MAX_REGS];
u8 synced[IRQ_MAX_REGS];
u8 wake;
struct mutex lock;
};
struct i2c_pmic {
struct device *dev;
struct regmap *regmap;
struct irq_domain *domain;
struct i2c_pmic_periph *periph;
struct pinctrl *pinctrl;
struct mutex irq_complete;
const char *pinctrl_name;
int num_periphs;
int summary_irq;
bool resume_completed;
bool irq_waiting;
};
static void i2c_pmic_irq_bus_lock(struct irq_data *d)
{
struct i2c_pmic_periph *periph = irq_data_get_irq_chip_data(d);
mutex_lock(&periph->lock);
}
static void i2c_pmic_sync_type_polarity(struct i2c_pmic *chip,
struct i2c_pmic_periph *periph)
{
int rc;
/* did any irq type change? */
if (periph->cached[IRQ_SET_TYPE] ^ periph->synced[IRQ_SET_TYPE]) {
rc = regmap_write(chip->regmap,
periph->addr | INT_SET_TYPE_OFFSET,
periph->cached[IRQ_SET_TYPE]);
if (rc < 0) {
pr_err("Couldn't set periph 0x%04x irqs 0x%02x type rc=%d\n",
periph->addr, periph->cached[IRQ_SET_TYPE], rc);
return;
}
periph->synced[IRQ_SET_TYPE] = periph->cached[IRQ_SET_TYPE];
}
/* did any polarity high change? */
if (periph->cached[IRQ_POL_HIGH] ^ periph->synced[IRQ_POL_HIGH]) {
rc = regmap_write(chip->regmap,
periph->addr | INT_POL_HIGH_OFFSET,
periph->cached[IRQ_POL_HIGH]);
if (rc < 0) {
pr_err("Couldn't set periph 0x%04x irqs 0x%02x polarity high rc=%d\n",
periph->addr, periph->cached[IRQ_POL_HIGH], rc);
return;
}
periph->synced[IRQ_POL_HIGH] = periph->cached[IRQ_POL_HIGH];
}
/* did any polarity low change? */
if (periph->cached[IRQ_POL_LOW] ^ periph->synced[IRQ_POL_LOW]) {
rc = regmap_write(chip->regmap,
periph->addr | INT_POL_LOW_OFFSET,
periph->cached[IRQ_POL_LOW]);
if (rc < 0) {
pr_err("Couldn't set periph 0x%04x irqs 0x%02x polarity low rc=%d\n",
periph->addr, periph->cached[IRQ_POL_LOW], rc);
return;
}
periph->synced[IRQ_POL_LOW] = periph->cached[IRQ_POL_LOW];
}
}
static void i2c_pmic_sync_enable(struct i2c_pmic *chip,
struct i2c_pmic_periph *periph)
{
u8 en_set, en_clr;
int rc;
/* determine which irqs were enabled and which were disabled */
en_clr = periph->synced[IRQ_EN_SET] & ~periph->cached[IRQ_EN_SET];
en_set = ~periph->synced[IRQ_EN_SET] & periph->cached[IRQ_EN_SET];
/* were any irqs disabled? */
if (en_clr) {
rc = regmap_write(chip->regmap,
periph->addr | INT_EN_CLR_OFFSET, en_clr);
if (rc < 0) {
pr_err("Couldn't disable periph 0x%04x irqs 0x%02x rc=%d\n",
periph->addr, en_clr, rc);
return;
}
}
/* were any irqs enabled? */
if (en_set) {
rc = regmap_write(chip->regmap,
periph->addr | INT_EN_SET_OFFSET, en_set);
if (rc < 0) {
pr_err("Couldn't enable periph 0x%04x irqs 0x%02x rc=%d\n",
periph->addr, en_set, rc);
return;
}
}
/* irq enabled status was written to hardware */
periph->synced[IRQ_EN_SET] = periph->cached[IRQ_EN_SET];
}
static void i2c_pmic_irq_bus_sync_unlock(struct irq_data *d)
{
struct i2c_pmic_periph *periph = irq_data_get_irq_chip_data(d);
struct i2c_pmic *chip = periph->data;
i2c_pmic_sync_type_polarity(chip, periph);
i2c_pmic_sync_enable(chip, periph);
mutex_unlock(&periph->lock);
}
static void i2c_pmic_irq_disable(struct irq_data *d)
{
struct i2c_pmic_periph *periph = irq_data_get_irq_chip_data(d);
periph->cached[IRQ_EN_SET] &= ~d->hwirq & 0xFF;
}
static void i2c_pmic_irq_enable(struct irq_data *d)
{
struct i2c_pmic_periph *periph = irq_data_get_irq_chip_data(d);
periph->cached[IRQ_EN_SET] |= d->hwirq & 0xFF;
}
static int i2c_pmic_irq_set_type(struct irq_data *d, unsigned int irq_type)
{
struct i2c_pmic_periph *periph = irq_data_get_irq_chip_data(d);
switch (irq_type) {
case IRQ_TYPE_EDGE_RISING:
periph->cached[IRQ_SET_TYPE] |= d->hwirq & 0xFF;
periph->cached[IRQ_POL_HIGH] |= d->hwirq & 0xFF;
periph->cached[IRQ_POL_LOW] &= ~d->hwirq & 0xFF;
break;
case IRQ_TYPE_EDGE_FALLING:
periph->cached[IRQ_SET_TYPE] |= d->hwirq & 0xFF;
periph->cached[IRQ_POL_HIGH] &= ~d->hwirq & 0xFF;
periph->cached[IRQ_POL_LOW] |= d->hwirq & 0xFF;
break;
case IRQ_TYPE_EDGE_BOTH:
periph->cached[IRQ_SET_TYPE] |= d->hwirq & 0xFF;
periph->cached[IRQ_POL_HIGH] |= d->hwirq & 0xFF;
periph->cached[IRQ_POL_LOW] |= d->hwirq & 0xFF;
break;
case IRQ_TYPE_LEVEL_HIGH:
periph->cached[IRQ_SET_TYPE] &= ~d->hwirq & 0xFF;
periph->cached[IRQ_POL_HIGH] |= d->hwirq & 0xFF;
periph->cached[IRQ_POL_LOW] &= ~d->hwirq & 0xFF;
break;
case IRQ_TYPE_LEVEL_LOW:
periph->cached[IRQ_SET_TYPE] &= ~d->hwirq & 0xFF;
periph->cached[IRQ_POL_HIGH] &= ~d->hwirq & 0xFF;
periph->cached[IRQ_POL_LOW] |= d->hwirq & 0xFF;
break;
default:
pr_err("irq type 0x%04x is not supported\n", irq_type);
return -EINVAL;
}
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int i2c_pmic_irq_set_wake(struct irq_data *d, unsigned int on)
{
struct i2c_pmic_periph *periph = irq_data_get_irq_chip_data(d);
if (on)
periph->wake |= d->hwirq & 0xFF;
else
periph->wake &= ~d->hwirq & 0xFF;
return 0;
}
#else
#define i2c_pmic_irq_set_wake NULL
#endif
static struct irq_chip i2c_pmic_irq_chip = {
.name = "i2c_pmic_irq_chip",
.irq_bus_lock = i2c_pmic_irq_bus_lock,
.irq_bus_sync_unlock = i2c_pmic_irq_bus_sync_unlock,
.irq_disable = i2c_pmic_irq_disable,
.irq_enable = i2c_pmic_irq_enable,
.irq_set_type = i2c_pmic_irq_set_type,
.irq_set_wake = i2c_pmic_irq_set_wake,
};
static struct i2c_pmic_periph *i2c_pmic_find_periph(struct i2c_pmic *chip,
irq_hw_number_t hwirq)
{
int i;
for (i = 0; i < chip->num_periphs; i++)
if (chip->periph[i].addr == (hwirq & 0xFF00))
return &chip->periph[i];
pr_err_ratelimited("Couldn't find periph struct for hwirq 0x%04lx\n",
hwirq);
return NULL;
}
static int i2c_pmic_domain_map(struct irq_domain *d, unsigned int virq,
irq_hw_number_t hwirq)
{
struct i2c_pmic *chip = d->host_data;
struct i2c_pmic_periph *periph = i2c_pmic_find_periph(chip, hwirq);
if (!periph)
return -ENODEV;
irq_set_chip_data(virq, periph);
irq_set_chip_and_handler(virq, &i2c_pmic_irq_chip, handle_level_irq);
irq_set_nested_thread(virq, 1);
irq_set_noprobe(virq);
return 0;
}
static int i2c_pmic_domain_xlate(struct irq_domain *d,
struct device_node *ctrlr, const u32 *intspec,
unsigned int intsize, unsigned long *out_hwirq,
unsigned int *out_type)
{
if (intsize != 3)
return -EINVAL;
if (intspec[0] > 0xFF || intspec[1] > 0x7 ||
intspec[2] > IRQ_TYPE_SENSE_MASK)
return -EINVAL;
/*
* Interrupt specifiers are triplets
* <peripheral-address, irq-number, IRQ_TYPE_*>
*
* peripheral-address - The base address of the peripheral
* irq-number - The zero based bit position of the peripheral's
* interrupt registers corresponding to the irq
* where the LSB is 0 and the MSB is 7
* IRQ_TYPE_* - Please refer to linux/irq.h
*/
*out_hwirq = intspec[0] << 8 | BIT(intspec[1]);
*out_type = intspec[2] & IRQ_TYPE_SENSE_MASK;
return 0;
}
static const struct irq_domain_ops i2c_pmic_domain_ops = {
.map = i2c_pmic_domain_map,
.xlate = i2c_pmic_domain_xlate,
};
static void i2c_pmic_irq_ack_now(struct i2c_pmic *chip, u16 hwirq)
{
int rc;
rc = regmap_write(chip->regmap,
(hwirq & 0xFF00) | INT_LATCHED_CLR_OFFSET,
hwirq & 0xFF);
if (rc < 0)
pr_err_ratelimited("Couldn't ack 0x%04x rc=%d\n", hwirq, rc);
}
static void i2c_pmic_irq_disable_now(struct i2c_pmic *chip, u16 hwirq)
{
struct i2c_pmic_periph *periph = i2c_pmic_find_periph(chip, hwirq);
int rc;
if (!periph)
return;
mutex_lock(&periph->lock);
periph->cached[IRQ_EN_SET] &= ~hwirq & 0xFF;
rc = regmap_write(chip->regmap,
(hwirq & 0xFF00) | INT_EN_CLR_OFFSET,
hwirq & 0xFF);
if (rc < 0) {
pr_err_ratelimited("Couldn't disable irq 0x%04x rc=%d\n",
hwirq, rc);
goto unlock;
}
periph->synced[IRQ_EN_SET] = periph->cached[IRQ_EN_SET];
unlock:
mutex_unlock(&periph->lock);
}
static void i2c_pmic_periph_status_handler(struct i2c_pmic *chip,
u16 periph_address, u8 periph_status)
{
unsigned int hwirq, virq;
int i;
while (periph_status) {
i = ffs(periph_status) - 1;
periph_status &= ~BIT(i);
hwirq = periph_address | BIT(i);
virq = irq_find_mapping(chip->domain, hwirq);
if (virq == 0) {
pr_err_ratelimited("Couldn't find mapping; disabling 0x%04x\n",
hwirq);
i2c_pmic_irq_disable_now(chip, hwirq);
continue;
}
handle_nested_irq(virq);
i2c_pmic_irq_ack_now(chip, hwirq);
}
}
static void i2c_pmic_summary_status_handler(struct i2c_pmic *chip,
struct i2c_pmic_periph *periph,
u8 summary_status)
{
unsigned int periph_status;
int rc, i;
while (summary_status) {
i = ffs(summary_status) - 1;
summary_status &= ~BIT(i);
rc = regmap_read(chip->regmap,
periph[i].addr | INT_LATCHED_STS_OFFSET,
&periph_status);
if (rc < 0) {
pr_err_ratelimited("Couldn't read 0x%04x | INT_LATCHED_STS rc=%d\n",
periph[i].addr, rc);
continue;
}
i2c_pmic_periph_status_handler(chip, periph[i].addr,
periph_status);
}
}
static irqreturn_t i2c_pmic_irq_handler(int irq, void *dev_id)
{
struct i2c_pmic *chip = dev_id;
struct i2c_pmic_periph *periph;
unsigned int summary_status;
int rc, i;
mutex_lock(&chip->irq_complete);
chip->irq_waiting = true;
if (!chip->resume_completed) {
pr_debug("IRQ triggered before device-resume\n");
disable_irq_nosync(irq);
mutex_unlock(&chip->irq_complete);
return IRQ_HANDLED;
}
chip->irq_waiting = false;
for (i = 0; i < DIV_ROUND_UP(chip->num_periphs, BITS_PER_BYTE); i++) {
rc = regmap_read(chip->regmap, I2C_INTR_STATUS_BASE + i,
&summary_status);
if (rc < 0) {
pr_err_ratelimited("Couldn't read I2C_INTR_STATUS%d rc=%d\n",
i, rc);
continue;
}
if (summary_status == 0)
continue;
periph = &chip->periph[i * 8];
i2c_pmic_summary_status_handler(chip, periph, summary_status);
}
mutex_unlock(&chip->irq_complete);
return IRQ_HANDLED;
}
static int i2c_pmic_parse_dt(struct i2c_pmic *chip)
{
struct device_node *node = chip->dev->of_node;
int rc, i;
u32 temp;
if (!node) {
pr_err("missing device tree\n");
return -EINVAL;
}
chip->num_periphs = of_property_count_u32_elems(node,
"qcom,periph-map");
if (chip->num_periphs < 0) {
pr_err("missing qcom,periph-map property rc=%d\n",
chip->num_periphs);
return chip->num_periphs;
}
if (chip->num_periphs == 0) {
pr_err("qcom,periph-map must contain at least one address\n");
return -EINVAL;
}
chip->periph = devm_kcalloc(chip->dev, chip->num_periphs,
sizeof(*chip->periph), GFP_KERNEL);
if (!chip->periph)
return -ENOMEM;
for (i = 0; i < chip->num_periphs; i++) {
rc = of_property_read_u32_index(node, "qcom,periph-map",
i, &temp);
if (rc < 0) {
pr_err("Couldn't read qcom,periph-map[%d] rc=%d\n",
i, rc);
return rc;
}
chip->periph[i].addr = (u16)(temp << 8);
chip->periph[i].data = chip;
mutex_init(&chip->periph[i].lock);
}
of_property_read_string(node, "pinctrl-names", &chip->pinctrl_name);
return rc;
}
#define MAX_I2C_RETRIES 3
static int i2c_pmic_read(struct regmap *map, unsigned int reg, void *val,
size_t val_count)
{
int rc, retries = 0;
do {
rc = regmap_bulk_read(map, reg, val, val_count);
} while (rc == -ENOTCONN && retries++ < MAX_I2C_RETRIES);
if (retries > 1)
pr_err("i2c_pmic_read failed for %d retries, rc = %d\n",
retries - 1, rc);
return rc;
}
static int i2c_pmic_determine_initial_status(struct i2c_pmic *chip)
{
int rc, i;
for (i = 0; i < chip->num_periphs; i++) {
rc = i2c_pmic_read(chip->regmap,
chip->periph[i].addr | INT_SET_TYPE_OFFSET,
chip->periph[i].cached, IRQ_MAX_REGS);
if (rc < 0) {
pr_err("Couldn't read irq data rc=%d\n", rc);
return rc;
}
memcpy(chip->periph[i].synced, chip->periph[i].cached,
IRQ_MAX_REGS * sizeof(*chip->periph[i].synced));
}
return 0;
}
static struct regmap_config i2c_pmic_regmap_config = {
.reg_bits = 16,
.val_bits = 8,
.max_register = 0xFFFF,
};
static int i2c_pmic_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct i2c_pmic *chip;
int rc = 0;
chip = devm_kzalloc(&client->dev, sizeof(*chip), GFP_KERNEL);
if (!chip)
return -ENOMEM;
chip->dev = &client->dev;
chip->regmap = devm_regmap_init_i2c(client, &i2c_pmic_regmap_config);
if (!chip->regmap)
return -ENODEV;
i2c_set_clientdata(client, chip);
if (!of_property_read_bool(chip->dev->of_node, "interrupt-controller"))
goto probe_children;
chip->domain = irq_domain_add_tree(client->dev.of_node,
&i2c_pmic_domain_ops, chip);
if (!chip->domain) {
rc = -ENOMEM;
goto cleanup;
}
rc = i2c_pmic_parse_dt(chip);
if (rc < 0) {
pr_err("Couldn't parse device tree rc=%d\n", rc);
goto cleanup;
}
rc = i2c_pmic_determine_initial_status(chip);
if (rc < 0) {
pr_err("Couldn't determine initial status rc=%d\n", rc);
goto cleanup;
}
if (chip->pinctrl_name) {
chip->pinctrl = devm_pinctrl_get_select(chip->dev,
chip->pinctrl_name);
if (IS_ERR(chip->pinctrl)) {
pr_err("Couldn't select %s pinctrl rc=%ld\n",
chip->pinctrl_name, PTR_ERR(chip->pinctrl));
rc = PTR_ERR(chip->pinctrl);
goto cleanup;
}
}
chip->resume_completed = true;
mutex_init(&chip->irq_complete);
rc = devm_request_threaded_irq(&client->dev, client->irq, NULL,
i2c_pmic_irq_handler,
IRQF_ONESHOT | IRQF_SHARED,
"i2c_pmic_stat_irq", chip);
if (rc < 0) {
pr_err("Couldn't request irq %d rc=%d\n", client->irq, rc);
goto cleanup;
}
chip->summary_irq = client->irq;
enable_irq_wake(client->irq);
probe_children:
of_platform_populate(chip->dev->of_node, NULL, NULL, chip->dev);
pr_info("I2C PMIC probe successful\n");
return rc;
cleanup:
if (chip->domain)
irq_domain_remove(chip->domain);
i2c_set_clientdata(client, NULL);
return rc;
}
static int i2c_pmic_remove(struct i2c_client *client)
{
struct i2c_pmic *chip = i2c_get_clientdata(client);
of_platform_depopulate(chip->dev);
if (chip->domain)
irq_domain_remove(chip->domain);
i2c_set_clientdata(client, NULL);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int i2c_pmic_suspend_noirq(struct device *dev)
{
struct i2c_pmic *chip = dev_get_drvdata(dev);
if (chip->irq_waiting) {
pr_err_ratelimited("Aborting suspend, an interrupt was detected while suspending\n");
return -EBUSY;
}
return 0;
}
static int i2c_pmic_suspend(struct device *dev)
{
struct i2c_pmic *chip = dev_get_drvdata(dev);
struct i2c_pmic_periph *periph;
int rc = 0, i;
for (i = 0; i < chip->num_periphs; i++) {
periph = &chip->periph[i];
rc = regmap_write(chip->regmap,
periph->addr | INT_EN_CLR_OFFSET, 0xFF);
if (rc < 0) {
pr_err_ratelimited("Couldn't clear 0x%04x irqs rc=%d\n",
periph->addr, rc);
continue;
}
rc = regmap_write(chip->regmap,
periph->addr | INT_EN_SET_OFFSET,
periph->wake);
if (rc < 0)
pr_err_ratelimited("Couldn't enable 0x%04x wake irqs 0x%02x rc=%d\n",
periph->addr, periph->wake, rc);
}
if (!rc) {
mutex_lock(&chip->irq_complete);
chip->resume_completed = false;
mutex_unlock(&chip->irq_complete);
}
return rc;
}
static int i2c_pmic_resume(struct device *dev)
{
struct i2c_pmic *chip = dev_get_drvdata(dev);
struct i2c_pmic_periph *periph;
int rc = 0, i;
for (i = 0; i < chip->num_periphs; i++) {
periph = &chip->periph[i];
rc = regmap_write(chip->regmap,
periph->addr | INT_EN_CLR_OFFSET, 0xFF);
if (rc < 0) {
pr_err("Couldn't clear 0x%04x irqs rc=%d\n",
periph->addr, rc);
continue;
}
rc = regmap_write(chip->regmap,
periph->addr | INT_EN_SET_OFFSET,
periph->synced[IRQ_EN_SET]);
if (rc < 0)
pr_err("Couldn't restore 0x%04x synced irqs 0x%02x rc=%d\n",
periph->addr, periph->synced[IRQ_EN_SET], rc);
}
mutex_lock(&chip->irq_complete);
chip->resume_completed = true;
if (chip->irq_waiting) {
mutex_unlock(&chip->irq_complete);
/* irq was pending, call the handler */
i2c_pmic_irq_handler(chip->summary_irq, chip);
enable_irq(chip->summary_irq);
} else {
mutex_unlock(&chip->irq_complete);
}
return rc;
}
#else
static int i2c_pmic_suspend(struct device *dev)
{
return 0;
}
static int i2c_pmic_resume(struct device *dev)
{
return 0;
}
static int i2c_pmic_suspend_noirq(struct device *dev)
{
return 0
}
#endif
static const struct dev_pm_ops i2c_pmic_pm_ops = {
.suspend = i2c_pmic_suspend,
.suspend_noirq = i2c_pmic_suspend_noirq,
.resume = i2c_pmic_resume,
};
static const struct of_device_id i2c_pmic_match_table[] = {
{ .compatible = "qcom,i2c-pmic", },
{ },
};
static const struct i2c_device_id i2c_pmic_id[] = {
{ "i2c-pmic", 0 },
{ },
};
MODULE_DEVICE_TABLE(i2c, i2c_pmic_id);
static struct i2c_driver i2c_pmic_driver = {
.driver = {
.name = "i2c_pmic",
.owner = THIS_MODULE,
.pm = &i2c_pmic_pm_ops,
.of_match_table = i2c_pmic_match_table,
},
.probe = i2c_pmic_probe,
.remove = i2c_pmic_remove,
.id_table = i2c_pmic_id,
};
module_i2c_driver(i2c_pmic_driver);
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("i2c:i2c_pmic");