You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/drivers/cpuidle/lpm-levels-of-legacy.c

1014 lines
23 KiB

/* Copyright (c) 2014-2020, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/err.h>
#include <linux/sysfs.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/moduleparam.h>
#include "lpm-levels-legacy.h"
bool use_psci;
enum lpm_type {
IDLE = 0,
SUSPEND,
LPM_TYPE_NR
};
struct lpm_type_str {
enum lpm_type type;
char *str;
};
static const struct lpm_type_str lpm_types[] = {
{IDLE, "idle_enabled"},
{SUSPEND, "suspend_enabled"},
};
static DEFINE_PER_CPU(uint32_t *, max_residency);
static struct lpm_level_avail *cpu_level_available[NR_CPUS];
static struct platform_device *lpm_pdev;
static void *get_enabled_ptr(struct kobj_attribute *attr,
struct lpm_level_avail *avail)
{
void *arg = NULL;
if (!strcmp(attr->attr.name, lpm_types[IDLE].str))
arg = (void *) &avail->idle_enabled;
else if (!strcmp(attr->attr.name, lpm_types[SUSPEND].str))
arg = (void *) &avail->suspend_enabled;
return arg;
}
static struct lpm_level_avail *get_avail_ptr(struct kobject *kobj,
struct kobj_attribute *attr)
{
struct lpm_level_avail *avail = NULL;
if (!strcmp(attr->attr.name, lpm_types[IDLE].str))
avail = container_of(attr, struct lpm_level_avail,
idle_enabled_attr);
else if (!strcmp(attr->attr.name, lpm_types[SUSPEND].str))
avail = container_of(attr, struct lpm_level_avail,
suspend_enabled_attr);
return avail;
}
static void set_optimum_cpu_residency(struct lpm_cpu *cpu, int cpu_id,
bool probe_time)
{
int i, j;
bool mode_avail;
uint32_t *residency = per_cpu(max_residency, cpu_id);
for (i = 0; i < cpu->nlevels; i++) {
struct power_params *pwr = &cpu->levels[i].pwr;
mode_avail = probe_time ||
lpm_cpu_mode_allow(cpu_id, i, true);
if (!mode_avail) {
residency[i] = 0;
continue;
}
residency[i] = ~0;
for (j = i + 1; j < cpu->nlevels; j++) {
mode_avail = probe_time ||
lpm_cpu_mode_allow(cpu_id, j, true);
if (mode_avail &&
(residency[i] > pwr->residencies[j]) &&
(pwr->residencies[j] != 0))
residency[i] = pwr->residencies[j];
}
}
}
static void set_optimum_cluster_residency(struct lpm_cluster *cluster,
bool probe_time)
{
int i, j;
bool mode_avail;
for (i = 0; i < cluster->nlevels; i++) {
struct power_params *pwr = &cluster->levels[i].pwr;
mode_avail = probe_time ||
lpm_cluster_mode_allow(cluster, i,
true);
if (!mode_avail) {
pwr->max_residency = 0;
continue;
}
pwr->max_residency = ~0;
for (j = i+1; j < cluster->nlevels; j++) {
mode_avail = probe_time ||
lpm_cluster_mode_allow(cluster, j,
true);
if (mode_avail &&
(pwr->max_residency > pwr->residencies[j]) &&
(pwr->residencies[j] != 0))
pwr->max_residency = pwr->residencies[j];
}
}
}
uint32_t *get_per_cpu_max_residency(int cpu)
{
return per_cpu(max_residency, cpu);
}
static ssize_t lpm_enable_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
int ret = 0;
struct kernel_param kp;
kp.arg = get_enabled_ptr(attr, get_avail_ptr(kobj, attr));
ret = param_get_bool(buf, &kp);
if (ret > 0) {
strlcat(buf, "\n", PAGE_SIZE);
ret++;
}
return ret;
}
static ssize_t lpm_enable_store(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t len)
{
int ret = 0;
struct kernel_param kp;
struct lpm_level_avail *avail;
avail = get_avail_ptr(kobj, attr);
if (WARN_ON(!avail))
return -EINVAL;
kp.arg = get_enabled_ptr(attr, avail);
ret = param_set_bool(buf, &kp);
if (avail->cpu_node)
set_optimum_cpu_residency(avail->data, avail->idx, false);
else
set_optimum_cluster_residency(avail->data, false);
return ret ? ret : len;
}
static int create_lvl_avail_nodes(const char *name,
struct kobject *parent, struct lpm_level_avail *avail,
void *data, int index, bool cpu_node)
{
struct attribute_group *attr_group = NULL;
struct attribute **attr = NULL;
struct kobject *kobj = NULL;
int ret = 0;
kobj = kobject_create_and_add(name, parent);
if (!kobj)
return -ENOMEM;
attr_group = devm_kzalloc(&lpm_pdev->dev, sizeof(*attr_group),
GFP_KERNEL);
if (!attr_group) {
ret = -ENOMEM;
goto failed;
}
attr = devm_kzalloc(&lpm_pdev->dev,
sizeof(*attr) * (LPM_TYPE_NR + 1), GFP_KERNEL);
if (!attr) {
ret = -ENOMEM;
goto failed;
}
sysfs_attr_init(&avail->idle_enabled_attr.attr);
avail->idle_enabled_attr.attr.name = lpm_types[IDLE].str;
avail->idle_enabled_attr.attr.mode = 0644;
avail->idle_enabled_attr.show = lpm_enable_show;
avail->idle_enabled_attr.store = lpm_enable_store;
sysfs_attr_init(&avail->suspend_enabled_attr.attr);
avail->suspend_enabled_attr.attr.name = lpm_types[SUSPEND].str;
avail->suspend_enabled_attr.attr.mode = 0644;
avail->suspend_enabled_attr.show = lpm_enable_show;
avail->suspend_enabled_attr.store = lpm_enable_store;
attr[0] = &avail->idle_enabled_attr.attr;
attr[1] = &avail->suspend_enabled_attr.attr;
attr[2] = NULL;
attr_group->attrs = attr;
ret = sysfs_create_group(kobj, attr_group);
if (ret) {
ret = -ENOMEM;
goto failed;
}
avail->idle_enabled = true;
avail->suspend_enabled = true;
avail->kobj = kobj;
avail->data = data;
avail->idx = index;
avail->cpu_node = cpu_node;
return ret;
failed:
kobject_put(kobj);
return ret;
}
static int create_cpu_lvl_nodes(struct lpm_cluster *p, struct kobject *parent)
{
int cpu;
int i, cpu_idx;
struct kobject **cpu_kobj = NULL;
struct lpm_level_avail *level_list = NULL;
char cpu_name[20] = {0};
int ret = 0;
cpu_kobj = devm_kzalloc(&lpm_pdev->dev, sizeof(*cpu_kobj) *
cpumask_weight(&p->child_cpus), GFP_KERNEL);
if (!cpu_kobj)
return -ENOMEM;
cpu_idx = 0;
for_each_cpu(cpu, &p->child_cpus) {
snprintf(cpu_name, sizeof(cpu_name), "cpu%d", cpu);
cpu_kobj[cpu_idx] = kobject_create_and_add(cpu_name, parent);
if (!cpu_kobj[cpu_idx]) {
ret = -ENOMEM;
goto release_kobj;
}
level_list = devm_kzalloc(&lpm_pdev->dev,
p->cpu->nlevels * sizeof(*level_list),
GFP_KERNEL);
if (!level_list) {
ret = -ENOMEM;
goto release_kobj;
}
for (i = 0; i < p->cpu->nlevels; i++) {
ret = create_lvl_avail_nodes(p->cpu->levels[i].name,
cpu_kobj[cpu_idx], &level_list[i],
(void *)p->cpu, cpu, true);
if (ret)
goto release_kobj;
}
cpu_level_available[cpu] = level_list;
cpu_idx++;
}
return ret;
release_kobj:
for (i = 0; i < cpumask_weight(&p->child_cpus); i++)
kobject_put(cpu_kobj[i]);
return ret;
}
int create_cluster_lvl_nodes(struct lpm_cluster *p, struct kobject *kobj)
{
int ret = 0;
struct lpm_cluster *child = NULL;
int i;
struct kobject *cluster_kobj = NULL;
if (!p)
return -ENODEV;
cluster_kobj = kobject_create_and_add(p->cluster_name, kobj);
if (!cluster_kobj)
return -ENOMEM;
for (i = 0; i < p->nlevels; i++) {
ret = create_lvl_avail_nodes(p->levels[i].level_name,
cluster_kobj, &p->levels[i].available,
(void *)p, 0, false);
if (ret)
return ret;
}
list_for_each_entry(child, &p->child, list) {
ret = create_cluster_lvl_nodes(child, cluster_kobj);
if (ret)
return ret;
}
if (p->cpu) {
ret = create_cpu_lvl_nodes(p, cluster_kobj);
if (ret)
return ret;
}
return 0;
}
bool lpm_cpu_mode_allow(unsigned int cpu,
unsigned int index, bool from_idle)
{
struct lpm_level_avail *avail = cpu_level_available[cpu];
if (!lpm_pdev || !avail)
return !from_idle;
return !!(from_idle ? avail[index].idle_enabled :
avail[index].suspend_enabled);
}
bool lpm_cluster_mode_allow(struct lpm_cluster *cluster,
unsigned int mode, bool from_idle)
{
struct lpm_level_avail *avail = &cluster->levels[mode].available;
if (!lpm_pdev || !avail)
return false;
return !!(from_idle ? avail->idle_enabled :
avail->suspend_enabled);
}
static int parse_legacy_cluster_params(struct device_node *node,
struct lpm_cluster *c)
{
int i;
char *key;
int ret;
struct lpm_match {
char *devname;
int (*set_mode)(struct low_power_ops *, int,
struct lpm_cluster_level *);
};
struct lpm_match match_tbl[] = {
{"l2", set_l2_mode},
{"cci", set_system_mode},
{"l3", set_l3_mode},
{"cbf", set_system_mode},
};
key = "qcom,spm-device-names";
c->ndevices = of_property_count_strings(node, key);
if (c->ndevices < 0) {
pr_info("%s(): Ignoring cluster params\n", __func__);
c->no_saw_devices = true;
c->ndevices = 0;
return 0;
}
c->name = devm_kzalloc(&lpm_pdev->dev, c->ndevices * sizeof(*c->name),
GFP_KERNEL);
c->lpm_dev = devm_kzalloc(&lpm_pdev->dev,
c->ndevices * sizeof(*c->lpm_dev),
GFP_KERNEL);
if (!c->name || !c->lpm_dev) {
ret = -ENOMEM;
goto failed;
}
for (i = 0; i < c->ndevices; i++) {
char device_name[20];
int j;
ret = of_property_read_string_index(node, key, i, &c->name[i]);
if (ret)
goto failed;
snprintf(device_name, sizeof(device_name), "%s-%s",
c->cluster_name, c->name[i]);
c->lpm_dev[i].spm = msm_spm_get_device_by_name(device_name);
if (IS_ERR_OR_NULL(c->lpm_dev[i].spm)) {
pr_err("Failed to get spm device by name:%s\n",
device_name);
ret = PTR_ERR(c->lpm_dev[i].spm);
goto failed;
}
for (j = 0; j < ARRAY_SIZE(match_tbl); j++) {
if (!strcmp(c->name[i], match_tbl[j].devname))
c->lpm_dev[i].set_mode = match_tbl[j].set_mode;
}
if (!c->lpm_dev[i].set_mode) {
ret = -ENODEV;
goto failed;
}
}
key = "qcom,default-level";
if (of_property_read_u32(node, key, &c->default_level))
c->default_level = 0;
return 0;
failed:
pr_err("%s(): Failed reading %s\n", __func__, key);
return ret;
}
static int parse_cluster_params(struct device_node *node,
struct lpm_cluster *c)
{
char *key;
int ret;
key = "label";
ret = of_property_read_string(node, key, &c->cluster_name);
if (ret) {
pr_err("%s(): Cannot read required param %s\n", __func__, key);
return ret;
}
if (use_psci) {
key = "qcom,psci-mode-shift";
ret = of_property_read_u32(node, key,
&c->psci_mode_shift);
if (ret) {
pr_err("%s(): Failed to read param: %s\n",
__func__, key);
return ret;
}
key = "qcom,psci-mode-mask";
ret = of_property_read_u32(node, key,
&c->psci_mode_mask);
if (ret) {
pr_err("%s(): Failed to read param: %s\n",
__func__, key);
return ret;
}
/* Set ndevice to 1 as default */
c->ndevices = 1;
return 0;
} else
return parse_legacy_cluster_params(node, c);
}
static int parse_lpm_mode(const char *str)
{
int i;
struct lpm_lookup_table mode_lookup[] = {
{MSM_SPM_MODE_POWER_COLLAPSE, "pc"},
{MSM_SPM_MODE_STANDALONE_POWER_COLLAPSE, "spc"},
{MSM_SPM_MODE_FASTPC, "fpc"},
{MSM_SPM_MODE_GDHS, "gdhs"},
{MSM_SPM_MODE_RETENTION, "retention"},
{MSM_SPM_MODE_CLOCK_GATING, "wfi"},
{MSM_SPM_MODE_DISABLED, "active"}
};
for (i = 0; i < ARRAY_SIZE(mode_lookup); i++)
if (!strcmp(str, mode_lookup[i].mode_name))
return mode_lookup[i].modes;
return -EINVAL;
}
static int parse_power_params(struct device_node *node,
struct power_params *pwr)
{
char *key;
int ret;
key = "qcom,latency-us";
ret = of_property_read_u32(node, key, &pwr->latency_us);
if (ret)
goto fail;
key = "qcom,ss-power";
ret = of_property_read_u32(node, key, &pwr->ss_power);
if (ret)
goto fail;
key = "qcom,energy-overhead";
ret = of_property_read_u32(node, key, &pwr->energy_overhead);
if (ret)
goto fail;
key = "qcom,time-overhead";
ret = of_property_read_u32(node, key, &pwr->time_overhead_us);
if (ret)
goto fail;
fail:
if (ret)
pr_err("%s(): %s Error reading %s\n", __func__, node->name,
key);
return ret;
}
static int parse_cluster_level(struct device_node *node,
struct lpm_cluster *cluster)
{
int i = 0;
struct lpm_cluster_level *level = &cluster->levels[cluster->nlevels];
int ret = -ENOMEM;
char *key;
key = "label";
ret = of_property_read_string(node, key, &level->level_name);
if (ret)
goto failed;
if (use_psci) {
char *k = "qcom,psci-mode";
ret = of_property_read_u32(node, k, &level->psci_id);
if (ret)
goto failed;
level->is_reset = of_property_read_bool(node, "qcom,is-reset");
} else if (!cluster->no_saw_devices) {
key = "no saw-devices";
level->mode = devm_kzalloc(&lpm_pdev->dev,
cluster->ndevices * sizeof(*level->mode),
GFP_KERNEL);
if (!level->mode) {
pr_err("Memory allocation failed\n");
goto failed;
}
for (i = 0; i < cluster->ndevices; i++) {
const char *spm_mode;
char key[25] = {0};
snprintf(key, 25, "qcom,spm-%s-mode", cluster->name[i]);
ret = of_property_read_string(node, key, &spm_mode);
if (ret)
goto failed;
level->mode[i] = parse_lpm_mode(spm_mode);
if (level->mode[i] < 0)
goto failed;
if (level->mode[i] == MSM_SPM_MODE_POWER_COLLAPSE
|| level->mode[i] ==
MSM_SPM_MODE_STANDALONE_POWER_COLLAPSE)
level->is_reset |= true;
}
}
key = "label";
ret = of_property_read_string(node, key, &level->level_name);
if (ret)
goto failed;
if (cluster->nlevels != cluster->default_level) {
key = "min child idx";
ret = of_property_read_u32(node, "qcom,min-child-idx",
&level->min_child_level);
if (ret)
goto failed;
if (cluster->min_child_level > level->min_child_level)
cluster->min_child_level = level->min_child_level;
}
level->notify_rpm = of_property_read_bool(node, "qcom,notify-rpm");
level->disable_dynamic_routing = of_property_read_bool(node,
"qcom,disable-dynamic-int-routing");
level->last_core_only = of_property_read_bool(node,
"qcom,last-core-only");
level->no_cache_flush = of_property_read_bool(node,
"qcom,no-cache-flush");
key = "parse_power_params";
ret = parse_power_params(node, &level->pwr);
if (ret)
goto failed;
key = "qcom,reset-level";
ret = of_property_read_u32(node, key, &level->reset_level);
if (ret == -EINVAL)
level->reset_level = LPM_RESET_LVL_NONE;
else if (ret)
goto failed;
cluster->nlevels++;
return 0;
failed:
pr_err("Failed %s() key = %s ret = %d\n", __func__, key, ret);
return ret;
}
static int parse_cpu_spm_mode(const char *mode_name)
{
struct lpm_lookup_table pm_sm_lookup[] = {
{MSM_PM_SLEEP_MODE_WAIT_FOR_INTERRUPT,
"wfi"},
{MSM_PM_SLEEP_MODE_POWER_COLLAPSE_STANDALONE,
"standalone_pc"},
{MSM_PM_SLEEP_MODE_POWER_COLLAPSE,
"pc"},
{MSM_PM_SLEEP_MODE_RETENTION,
"retention"},
{MSM_PM_SLEEP_MODE_FASTPC,
"fpc"},
};
int i;
int ret = -EINVAL;
for (i = 0; i < ARRAY_SIZE(pm_sm_lookup); i++) {
if (!strcmp(mode_name, pm_sm_lookup[i].mode_name)) {
ret = pm_sm_lookup[i].modes;
break;
}
}
return ret;
}
static int parse_cpu_mode(struct device_node *n, struct lpm_cpu_level *l)
{
char *key;
int ret;
key = "qcom,spm-cpu-mode";
ret = of_property_read_string(n, key, &l->name);
if (ret) {
pr_err("Failed %s %d\n", n->name, __LINE__);
return ret;
}
if (use_psci) {
key = "qcom,psci-cpu-mode";
ret = of_property_read_u32(n, key, &l->psci_id);
if (ret) {
pr_err("Failed reading %s on device %s\n", key,
n->name);
return ret;
}
key = "qcom,hyp-psci";
l->hyp_psci = of_property_read_bool(n, key);
} else {
l->mode = parse_cpu_spm_mode(l->name);
if (l->mode < 0)
return l->mode;
}
return 0;
}
static int get_cpumask_for_node(struct device_node *node, struct cpumask *mask)
{
struct device_node *cpu_node;
int cpu;
int idx = 0;
cpu_node = of_parse_phandle(node, "qcom,cpu", idx++);
if (!cpu_node) {
pr_info("%s: No CPU phandle, assuming single cluster\n",
node->full_name);
/*
* Not all targets have the cpu node populated in the device
* tree. If cpu node is not populated assume all possible
* nodes belong to this cluster
*/
cpumask_copy(mask, cpu_possible_mask);
return 0;
}
while (cpu_node) {
for_each_possible_cpu(cpu) {
if (of_get_cpu_node(cpu, NULL) == cpu_node) {
cpumask_set_cpu(cpu, mask);
break;
}
}
of_node_put(cpu_node);
cpu_node = of_parse_phandle(node, "qcom,cpu", idx++);
}
return 0;
}
static int calculate_residency(struct power_params *base_pwr,
struct power_params *next_pwr)
{
int32_t residency = (int32_t)(next_pwr->energy_overhead -
base_pwr->energy_overhead) -
((int32_t)(next_pwr->ss_power * next_pwr->time_overhead_us)
- (int32_t)(base_pwr->ss_power * base_pwr->time_overhead_us));
residency /= (int32_t)(base_pwr->ss_power - next_pwr->ss_power);
if (residency < 0) {
pr_err("%s: residency < 0 for LPM\n",
__func__);
return next_pwr->time_overhead_us;
}
return residency < next_pwr->time_overhead_us ?
next_pwr->time_overhead_us : residency;
}
static int parse_cpu_levels(struct device_node *node, struct lpm_cluster *c)
{
struct device_node *n;
int ret = -ENOMEM;
int i, j;
char *key;
c->cpu = devm_kzalloc(&lpm_pdev->dev, sizeof(*c->cpu), GFP_KERNEL);
if (!c->cpu)
return ret;
c->cpu->parent = c;
if (use_psci) {
key = "qcom,psci-mode-shift";
ret = of_property_read_u32(node, key, &c->cpu->psci_mode_shift);
if (ret) {
pr_err("Failed reading %s on device %s\n", key,
node->name);
return ret;
}
key = "qcom,psci-mode-mask";
ret = of_property_read_u32(node, key, &c->cpu->psci_mode_mask);
if (ret) {
pr_err("Failed reading %s on device %s\n", key,
node->name);
return ret;
}
}
for_each_child_of_node(node, n) {
struct lpm_cpu_level *l = &c->cpu->levels[c->cpu->nlevels];
c->cpu->nlevels++;
ret = parse_cpu_mode(n, l);
if (ret < 0) {
pr_info("Failed %s\n", l->name);
goto failed;
}
ret = parse_power_params(n, &l->pwr);
if (ret)
goto failed;
key = "qcom,use-broadcast-timer";
l->use_bc_timer = of_property_read_bool(n, key);
l->is_reset = of_property_read_bool(n, "qcom,is-reset");
key = "qcom,jtag-save-restore";
l->jtag_save_restore = of_property_read_bool(n, key);
key = "qcom,reset-level";
ret = of_property_read_u32(n, key, &l->reset_level);
if (ret == -EINVAL)
l->reset_level = LPM_RESET_LVL_NONE;
else if (ret)
goto failed;
of_node_put(n);
}
for (i = 0; i < c->cpu->nlevels; i++) {
for (j = 0; j < c->cpu->nlevels; j++) {
if (i >= j) {
c->cpu->levels[i].pwr.residencies[j] = 0;
continue;
}
c->cpu->levels[i].pwr.residencies[j] =
calculate_residency(&c->cpu->levels[i].pwr,
&c->cpu->levels[j].pwr);
pr_err("%s: idx %d %u\n", __func__, j,
c->cpu->levels[i].pwr.residencies[j]);
}
}
return 0;
failed:
of_node_put(n);
pr_err("%s(): Failed with error code:%d\n", __func__, ret);
return ret;
}
void free_cluster_node(struct lpm_cluster *cluster)
{
struct lpm_cluster *cl, *m;
list_for_each_entry_safe(cl, m, &cluster->child, list) {
list_del(&cl->list);
free_cluster_node(cl);
};
cluster->ndevices = 0;
}
/*
* TODO:
* Expects a CPU or a cluster only. This ensures that affinity
* level of a cluster is consistent with reference to its
* child nodes.
*/
static struct lpm_cluster *parse_cluster(struct device_node *node,
struct lpm_cluster *parent)
{
struct lpm_cluster *c;
struct device_node *n;
char *key;
int ret = 0;
int i, j;
c = devm_kzalloc(&lpm_pdev->dev, sizeof(*c), GFP_KERNEL);
if (!c)
return ERR_PTR(-ENOMEM);
ret = parse_cluster_params(node, c);
if (ret)
goto failed_parse_params;
INIT_LIST_HEAD(&c->child);
c->parent = parent;
spin_lock_init(&c->sync_lock);
c->min_child_level = NR_LPM_LEVELS;
for_each_child_of_node(node, n) {
if (!n->name)
continue;
key = "qcom,pm-cluster-level";
if (!of_node_cmp(n->name, key)) {
if (parse_cluster_level(n, c)) {
of_node_put(n);
goto failed_parse_cluster;
}
of_node_put(n);
continue;
}
key = "qcom,pm-cluster";
if (!of_node_cmp(n->name, key)) {
struct lpm_cluster *child;
if (c->no_saw_devices)
pr_info("%s: SAW device not provided.\n",
__func__);
child = parse_cluster(n, c);
if (!child) {
of_node_put(n);
goto failed_parse_cluster;
}
list_add(&child->list, &c->child);
cpumask_or(&c->child_cpus, &c->child_cpus,
&child->child_cpus);
c->aff_level = child->aff_level + 1;
of_node_put(n);
continue;
}
key = "qcom,pm-cpu";
if (!of_node_cmp(n->name, key)) {
/*
* Parse the the cpu node only if a pm-cpu node
* is available, though the mask is defined @ the
* cluster level
*/
if (get_cpumask_for_node(node, &c->child_cpus))
goto failed_parse_cluster;
if (parse_cpu_levels(n, c)) {
of_node_put(n);
goto failed_parse_cluster;
}
c->aff_level = 1;
of_node_put(n);
for_each_cpu(i, &c->child_cpus) {
per_cpu(max_residency, i) = devm_kzalloc(
&lpm_pdev->dev,
sizeof(uint32_t) * c->cpu->nlevels,
GFP_KERNEL);
if (!per_cpu(max_residency, i))
return ERR_PTR(-ENOMEM);
set_optimum_cpu_residency(c->cpu, i, true);
}
}
}
if (cpumask_intersects(&c->child_cpus, cpu_online_mask))
c->last_level = c->default_level;
else
c->last_level = c->nlevels-1;
for (i = 0; i < c->nlevels; i++) {
for (j = 0; j < c->nlevels; j++) {
if (i >= j) {
c->levels[i].pwr.residencies[j] = 0;
continue;
}
c->levels[i].pwr.residencies[j] = calculate_residency(
&c->levels[i].pwr, &c->levels[j].pwr);
}
}
set_optimum_cluster_residency(c, true);
return c;
failed_parse_cluster:
pr_err("Failed parse cluster:%s\n", key);
if (parent)
list_del(&c->list);
free_cluster_node(c);
failed_parse_params:
pr_err("Failed parse params\n");
return NULL;
}
struct lpm_cluster *lpm_of_parse_cluster(struct platform_device *pdev)
{
struct device_node *top = NULL;
struct lpm_cluster *c;
use_psci = of_property_read_bool(pdev->dev.of_node, "qcom,use-psci");
top = of_find_node_by_name(pdev->dev.of_node, "qcom,pm-cluster");
if (!top) {
pr_err("Failed to find root node\n");
return ERR_PTR(-ENODEV);
}
lpm_pdev = pdev;
c = parse_cluster(top, NULL);
of_node_put(top);
return c;
}
void cluster_dt_walkthrough(struct lpm_cluster *cluster)
{
struct list_head *list;
int i, j;
static int id;
char str[10] = {0};
if (!cluster)
return;
for (i = 0; i < id; i++)
snprintf(str+i, 10 - i, "\t");
pr_info("%d\n", __LINE__);
for (i = 0; i < cluster->nlevels; i++) {
struct lpm_cluster_level *l = &cluster->levels[i];
pr_info("%d ndevices:%d\n", __LINE__, cluster->ndevices);
for (j = 0; j < cluster->ndevices; j++)
pr_info("%sDevice: %pK id:%pK\n", str,
&cluster->name[j], &l->mode[i]);
}
if (cluster->cpu) {
pr_info("%d\n", __LINE__);
for (j = 0; j < cluster->cpu->nlevels; j++)
pr_info("%s\tCPU mode: %s id:%d\n", str,
cluster->cpu->levels[j].name,
cluster->cpu->levels[j].mode);
}
id++;
list_for_each(list, &cluster->child) {
struct lpm_cluster *n;
pr_info("%d\n", __LINE__);
n = list_entry(list, typeof(*n), list);
cluster_dt_walkthrough(n);
}
id--;
}