/* Copyright (c) 2008-2020, The Linux Foundation. All rights reserved. * Copyright (c) 2022-2023, Qualcomm Innovation Center, Inc. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "kgsl.h" #include "kgsl_debugfs.h" #include "kgsl_log.h" #include "kgsl_sharedmem.h" #include "kgsl_drawobj.h" #include "kgsl_device.h" #include "kgsl_trace.h" #include "kgsl_sync.h" #include "kgsl_compat.h" #include "kgsl_pool.h" #undef MODULE_PARAM_PREFIX #define MODULE_PARAM_PREFIX "kgsl." #ifndef arch_mmap_check #define arch_mmap_check(addr, len, flags) (0) #endif #ifndef pgprot_writebackcache #define pgprot_writebackcache(_prot) (_prot) #endif #ifndef pgprot_writethroughcache #define pgprot_writethroughcache(_prot) (_prot) #endif #ifdef CONFIG_ARM_LPAE #define KGSL_DMA_BIT_MASK DMA_BIT_MASK(64) #else #define KGSL_DMA_BIT_MASK DMA_BIT_MASK(32) #endif static char *kgsl_mmu_type; module_param_named(mmutype, kgsl_mmu_type, charp, 0000); MODULE_PARM_DESC(kgsl_mmu_type, "Type of MMU to be used for graphics"); /* Mutex used for the IOMMU sync quirk */ DEFINE_MUTEX(kgsl_mmu_sync); EXPORT_SYMBOL(kgsl_mmu_sync); /* List of dmabufs mapped */ static LIST_HEAD(kgsl_dmabuf_list); static DEFINE_SPINLOCK(kgsl_dmabuf_lock); struct dmabuf_list_entry { struct page *firstpage; struct list_head node; struct list_head dmabuf_list; }; struct kgsl_dma_buf_meta { struct kgsl_mem_entry *entry; struct dma_buf_attachment *attach; struct dma_buf *dmabuf; struct sg_table *table; struct dmabuf_list_entry *dle; struct list_head node; }; static inline struct kgsl_pagetable *_get_memdesc_pagetable( struct kgsl_pagetable *pt, struct kgsl_mem_entry *entry) { /* if a secured buffer, map it to secure global pagetable */ if (kgsl_memdesc_is_secured(&entry->memdesc)) return pt->mmu->securepagetable; return pt; } static void kgsl_mem_entry_detach_process(struct kgsl_mem_entry *entry); static const struct file_operations kgsl_fops; /* * The memfree list contains the last N blocks of memory that have been freed. * On a GPU fault we walk the list to see if the faulting address had been * recently freed and print out a message to that effect */ #define MEMFREE_ENTRIES 512 static DEFINE_SPINLOCK(memfree_lock); struct memfree_entry { pid_t ptname; uint64_t gpuaddr; uint64_t size; pid_t pid; uint64_t flags; }; static struct { struct memfree_entry *list; int head; int tail; } memfree; static int kgsl_memfree_init(void) { memfree.list = kcalloc(MEMFREE_ENTRIES, sizeof(struct memfree_entry), GFP_KERNEL); return (memfree.list) ? 0 : -ENOMEM; } static void kgsl_memfree_exit(void) { kfree(memfree.list); memset(&memfree, 0, sizeof(memfree)); } static inline bool match_memfree_addr(struct memfree_entry *entry, pid_t ptname, uint64_t gpuaddr) { return ((entry->ptname == ptname) && (entry->size > 0) && (gpuaddr >= entry->gpuaddr && gpuaddr < (entry->gpuaddr + entry->size))); } int kgsl_memfree_find_entry(pid_t ptname, uint64_t *gpuaddr, uint64_t *size, uint64_t *flags, pid_t *pid) { int ptr; if (memfree.list == NULL) return 0; spin_lock(&memfree_lock); ptr = memfree.head - 1; if (ptr < 0) ptr = MEMFREE_ENTRIES - 1; /* Walk backwards through the list looking for the last match */ while (ptr != memfree.tail) { struct memfree_entry *entry = &memfree.list[ptr]; if (match_memfree_addr(entry, ptname, *gpuaddr)) { *gpuaddr = entry->gpuaddr; *flags = entry->flags; *size = entry->size; *pid = entry->pid; spin_unlock(&memfree_lock); return 1; } ptr = ptr - 1; if (ptr < 0) ptr = MEMFREE_ENTRIES - 1; } spin_unlock(&memfree_lock); return 0; } static void kgsl_memfree_purge(struct kgsl_pagetable *pagetable, uint64_t gpuaddr, uint64_t size) { pid_t ptname = pagetable ? pagetable->name : 0; int i; if (memfree.list == NULL) return; spin_lock(&memfree_lock); for (i = 0; i < MEMFREE_ENTRIES; i++) { struct memfree_entry *entry = &memfree.list[i]; if (entry->ptname != ptname || entry->size == 0) continue; if (gpuaddr > entry->gpuaddr && gpuaddr < entry->gpuaddr + entry->size) { /* truncate the end of the entry */ entry->size = gpuaddr - entry->gpuaddr; } else if (gpuaddr <= entry->gpuaddr) { if (gpuaddr + size > entry->gpuaddr && gpuaddr + size < entry->gpuaddr + entry->size) /* Truncate the beginning of the entry */ entry->gpuaddr = gpuaddr + size; else if (gpuaddr + size >= entry->gpuaddr + entry->size) /* Remove the entire entry */ entry->size = 0; } } spin_unlock(&memfree_lock); } static void kgsl_memfree_add(pid_t pid, pid_t ptname, uint64_t gpuaddr, uint64_t size, uint64_t flags) { struct memfree_entry *entry; if (memfree.list == NULL) return; spin_lock(&memfree_lock); entry = &memfree.list[memfree.head]; entry->pid = pid; entry->ptname = ptname; entry->gpuaddr = gpuaddr; entry->size = size; entry->flags = flags; memfree.head = (memfree.head + 1) % MEMFREE_ENTRIES; if (memfree.head == memfree.tail) memfree.tail = (memfree.tail + 1) % MEMFREE_ENTRIES; spin_unlock(&memfree_lock); } int kgsl_readtimestamp(struct kgsl_device *device, void *priv, enum kgsl_timestamp_type type, unsigned int *timestamp) { return device->ftbl->readtimestamp(device, priv, type, timestamp); } EXPORT_SYMBOL(kgsl_readtimestamp); /* Scheduled by kgsl_mem_entry_put_deferred() */ static void _deferred_put(struct work_struct *work) { struct kgsl_mem_entry *entry = container_of(work, struct kgsl_mem_entry, work); kgsl_mem_entry_put(entry); } static inline struct kgsl_mem_entry * kgsl_mem_entry_create(void) { struct kgsl_mem_entry *entry = kzalloc(sizeof(*entry), GFP_KERNEL); if (entry != NULL) { kref_init(&entry->refcount); /* put this ref in userspace memory alloc and map ioctls */ kref_get(&entry->refcount); } atomic_set(&entry->map_count, 0); return entry; } static void add_dmabuf_list(struct kgsl_dma_buf_meta *meta) { struct dmabuf_list_entry *dle; struct page *page; /* * Get the first page. We will use it to identify the imported * buffer, since the same buffer can be mapped as different * mem entries. */ page = sg_page(meta->table->sgl); spin_lock(&kgsl_dmabuf_lock); /* Go through the list to see if we imported this buffer before */ list_for_each_entry(dle, &kgsl_dmabuf_list, node) { if (dle->firstpage == page) { /* Add the dmabuf meta to the list for this dle */ meta->dle = dle; list_add(&meta->node, &dle->dmabuf_list); spin_unlock(&kgsl_dmabuf_lock); return; } } /* This is a new buffer. Add a new entry for it */ dle = kzalloc(sizeof(*dle), GFP_ATOMIC); if (dle) { dle->firstpage = page; INIT_LIST_HEAD(&dle->dmabuf_list); list_add(&dle->node, &kgsl_dmabuf_list); meta->dle = dle; list_add(&meta->node, &dle->dmabuf_list); } spin_unlock(&kgsl_dmabuf_lock); } static void remove_dmabuf_list(struct kgsl_dma_buf_meta *meta) { struct dmabuf_list_entry *dle = meta->dle; if (!dle) return; spin_lock(&kgsl_dmabuf_lock); list_del(&meta->node); if (list_empty(&dle->dmabuf_list)) { list_del(&dle->node); kfree(dle); } spin_unlock(&kgsl_dmabuf_lock); } #ifdef CONFIG_DMA_SHARED_BUFFER static void kgsl_destroy_ion(struct kgsl_dma_buf_meta *meta) { if (meta != NULL) { remove_dmabuf_list(meta); dma_buf_unmap_attachment(meta->attach, meta->table, DMA_BIDIRECTIONAL); dma_buf_detach(meta->dmabuf, meta->attach); dma_buf_put(meta->dmabuf); kfree(meta); } } #else static void kgsl_destroy_ion(struct kgsl_dma_buf_meta *meta) { } #endif void kgsl_mem_entry_destroy(struct kref *kref) { struct kgsl_mem_entry *entry = container_of(kref, struct kgsl_mem_entry, refcount); unsigned int memtype; if (entry == NULL) return; /* pull out the memtype before the flags get cleared */ memtype = kgsl_memdesc_usermem_type(&entry->memdesc); if (!(entry->memdesc.flags & KGSL_MEMFLAGS_SPARSE_VIRT)) kgsl_process_sub_stats(entry->priv, memtype, entry->memdesc.size); /* Detach from process list */ kgsl_mem_entry_detach_process(entry); if (memtype != KGSL_MEM_ENTRY_KERNEL) atomic_long_sub(entry->memdesc.size, &kgsl_driver.stats.mapped); /* * Ion takes care of freeing the sg_table for us so * clear the sg table before freeing the sharedmem * so kgsl_sharedmem_free doesn't try to free it again */ if (memtype == KGSL_MEM_ENTRY_ION) entry->memdesc.sgt = NULL; if ((memtype == KGSL_MEM_ENTRY_USER) && !(entry->memdesc.flags & KGSL_MEMFLAGS_GPUREADONLY)) { int i = 0, j; struct scatterlist *sg; struct page *page; /* * Mark all of pages in the scatterlist as dirty since they * were writable by the GPU. */ for_each_sg(entry->memdesc.sgt->sgl, sg, entry->memdesc.sgt->nents, i) { page = sg_page(sg); for (j = 0; j < (sg->length >> PAGE_SHIFT); j++) set_page_dirty_lock(nth_page(page, j)); } } kgsl_sharedmem_free(&entry->memdesc); switch (memtype) { case KGSL_MEM_ENTRY_ION: kgsl_destroy_ion(entry->priv_data); break; default: break; } kfree(entry); } EXPORT_SYMBOL(kgsl_mem_entry_destroy); /* Allocate a IOVA for memory objects that don't use SVM */ static int kgsl_mem_entry_track_gpuaddr(struct kgsl_device *device, struct kgsl_process_private *process, struct kgsl_mem_entry *entry) { struct kgsl_pagetable *pagetable; /* * If SVM is enabled for this object then the address needs to be * assigned elsewhere * Also do not proceed further in case of NoMMU. */ if (kgsl_memdesc_use_cpu_map(&entry->memdesc) || (kgsl_mmu_get_mmutype(device) == KGSL_MMU_TYPE_NONE)) return 0; pagetable = kgsl_memdesc_is_secured(&entry->memdesc) ? device->mmu.securepagetable : process->pagetable; return kgsl_mmu_get_gpuaddr(pagetable, &entry->memdesc); } /* Commit the entry to the process so it can be accessed by other operations */ static void kgsl_mem_entry_commit_process(struct kgsl_mem_entry *entry) { if (!entry) return; spin_lock(&entry->priv->mem_lock); idr_replace(&entry->priv->mem_idr, entry, entry->id); spin_unlock(&entry->priv->mem_lock); } /* * Attach the memory object to a process by (possibly) getting a GPU address and * (possibly) mapping it */ static int kgsl_mem_entry_attach_process(struct kgsl_device *device, struct kgsl_process_private *process, struct kgsl_mem_entry *entry) { int id, ret; ret = kgsl_process_private_get(process); if (!ret) return -EBADF; ret = kgsl_mem_entry_track_gpuaddr(device, process, entry); if (ret) { kgsl_process_private_put(process); return ret; } idr_preload(GFP_KERNEL); spin_lock(&process->mem_lock); /* Allocate the ID but don't attach the pointer just yet */ id = idr_alloc(&process->mem_idr, NULL, 1, 0, GFP_NOWAIT); spin_unlock(&process->mem_lock); idr_preload_end(); if (id < 0) { if (!kgsl_memdesc_use_cpu_map(&entry->memdesc)) kgsl_mmu_put_gpuaddr(&entry->memdesc); kgsl_process_private_put(process); return id; } entry->id = id; entry->priv = process; /* * Map the memory if a GPU address is already assigned, either through * kgsl_mem_entry_track_gpuaddr() or via some other SVM process */ if (entry->memdesc.gpuaddr) { if (entry->memdesc.flags & KGSL_MEMFLAGS_SPARSE_VIRT) ret = kgsl_mmu_sparse_dummy_map( entry->memdesc.pagetable, &entry->memdesc, 0, kgsl_memdesc_footprint(&entry->memdesc)); else if (entry->memdesc.gpuaddr) ret = kgsl_mmu_map(entry->memdesc.pagetable, &entry->memdesc); if (ret) kgsl_mem_entry_detach_process(entry); } kgsl_memfree_purge(entry->memdesc.pagetable, entry->memdesc.gpuaddr, entry->memdesc.size); return ret; } /* Detach a memory entry from a process and unmap it from the MMU */ static void kgsl_mem_entry_detach_process(struct kgsl_mem_entry *entry) { if (entry == NULL) return; /* * First remove the entry from mem_idr list * so that no one can operate on obsolete values */ spin_lock(&entry->priv->mem_lock); if (entry->id != 0) idr_remove(&entry->priv->mem_idr, entry->id); entry->id = 0; spin_unlock(&entry->priv->mem_lock); kgsl_mmu_put_gpuaddr(&entry->memdesc); kgsl_process_private_put(entry->priv); entry->priv = NULL; } /** * kgsl_context_dump() - dump information about a draw context * @device: KGSL device that owns the context * @context: KGSL context to dump information about * * Dump specific information about the context to the kernel log. Used for * fence timeout callbacks */ void kgsl_context_dump(struct kgsl_context *context) { struct kgsl_device *device; if (_kgsl_context_get(context) == 0) return; device = context->device; if (kgsl_context_detached(context)) { dev_err(device->dev, " context[%u]: context detached\n", context->id); } else if (device->ftbl->drawctxt_dump != NULL) device->ftbl->drawctxt_dump(device, context); kgsl_context_put(context); } EXPORT_SYMBOL(kgsl_context_dump); /* Allocate a new context ID */ static int _kgsl_get_context_id(struct kgsl_device *device) { int id; idr_preload(GFP_KERNEL); write_lock(&device->context_lock); /* Allocate the slot but don't put a pointer in it yet */ id = idr_alloc(&device->context_idr, NULL, 1, KGSL_MEMSTORE_MAX, GFP_NOWAIT); write_unlock(&device->context_lock); idr_preload_end(); return id; } /** * kgsl_context_init() - helper to initialize kgsl_context members * @dev_priv: the owner of the context * @context: the newly created context struct, should be allocated by * the device specific drawctxt_create function. * * This is a helper function for the device specific drawctxt_create * function to initialize the common members of its context struct. * If this function succeeds, reference counting is active in the context * struct and the caller should kgsl_context_put() it on error. * If it fails, the caller should just free the context structure * it passed in. */ int kgsl_context_init(struct kgsl_device_private *dev_priv, struct kgsl_context *context) { struct kgsl_device *device = dev_priv->device; char name[64]; int ret = 0, id; struct kgsl_process_private *proc_priv = dev_priv->process_priv; /* * Read and increment the context count under lock to make sure * no process goes beyond the specified context limit. */ spin_lock(&proc_priv->ctxt_count_lock); if (atomic_read(&proc_priv->ctxt_count) > KGSL_MAX_CONTEXTS_PER_PROC) { KGSL_DRV_ERR_RATELIMIT(device, "Per process context limit reached for pid %u", pid_nr(dev_priv->process_priv->pid)); spin_unlock(&proc_priv->ctxt_count_lock); return -ENOSPC; } atomic_inc(&proc_priv->ctxt_count); spin_unlock(&proc_priv->ctxt_count_lock); id = _kgsl_get_context_id(device); if (id == -ENOSPC) { /* * Before declaring that there are no contexts left try * flushing the event workqueue just in case there are * detached contexts waiting to finish */ flush_workqueue(device->events_wq); id = _kgsl_get_context_id(device); } if (id < 0) { if (id == -ENOSPC) KGSL_DRV_INFO(device, "cannot have more than %zu contexts due to memstore limitation\n", KGSL_MEMSTORE_MAX); atomic_dec(&proc_priv->ctxt_count); return id; } context->id = id; kref_init(&context->refcount); /* * Get a refernce to the process private so its not destroyed, until * the context is destroyed. This will also prevent the pagetable * from being destroyed */ if (!kgsl_process_private_get(dev_priv->process_priv)) { ret = -EBADF; goto out; } context->device = dev_priv->device; context->dev_priv = dev_priv; context->proc_priv = dev_priv->process_priv; context->tid = task_pid_nr(current); ret = kgsl_sync_timeline_create(context); if (ret) { kgsl_process_private_put(dev_priv->process_priv); goto out; } snprintf(name, sizeof(name), "context-%d", id); kgsl_add_event_group(&context->events, context, name, kgsl_readtimestamp, context); out: if (ret) { atomic_dec(&proc_priv->ctxt_count); write_lock(&device->context_lock); idr_remove(&dev_priv->device->context_idr, id); write_unlock(&device->context_lock); } return ret; } EXPORT_SYMBOL(kgsl_context_init); /** * kgsl_context_detach() - Release the "master" context reference * @context: The context that will be detached * * This is called when a context becomes unusable, because userspace * has requested for it to be destroyed. The context itself may * exist a bit longer until its reference count goes to zero. * Other code referencing the context can detect that it has been * detached by checking the KGSL_CONTEXT_PRIV_DETACHED bit in * context->priv. */ void kgsl_context_detach(struct kgsl_context *context) { struct kgsl_device *device; if (context == NULL) return; /* * Mark the context as detached to keep others from using * the context before it gets fully removed, and to make sure * we don't try to detach twice. */ if (test_and_set_bit(KGSL_CONTEXT_PRIV_DETACHED, &context->priv)) return; device = context->device; trace_kgsl_context_detach(device, context); context->device->ftbl->drawctxt_detach(context); /* * Cancel all pending events after the device-specific context is * detached, to avoid possibly freeing memory while it is still * in use by the GPU. */ kgsl_cancel_events(device, &context->events); /* Remove the event group from the list */ kgsl_del_event_group(&context->events); kgsl_sync_timeline_put(context->ktimeline); kgsl_context_put(context); } void kgsl_context_destroy(struct kref *kref) { struct kgsl_context *context = container_of(kref, struct kgsl_context, refcount); struct kgsl_device *device = context->device; trace_kgsl_context_destroy(device, context); /* * It's not safe to destroy the context if it's not detached as GPU * may still be executing commands */ BUG_ON(!kgsl_context_detached(context)); write_lock(&device->context_lock); if (context->id != KGSL_CONTEXT_INVALID) { /* Clear the timestamps in the memstore during destroy */ kgsl_sharedmem_writel(device, &device->memstore, KGSL_MEMSTORE_OFFSET(context->id, soptimestamp), 0); kgsl_sharedmem_writel(device, &device->memstore, KGSL_MEMSTORE_OFFSET(context->id, eoptimestamp), 0); /* clear device power constraint */ if (context->id == device->pwrctrl.constraint.owner_id) { trace_kgsl_constraint(device, device->pwrctrl.constraint.type, device->pwrctrl.active_pwrlevel, 0); device->pwrctrl.constraint.type = KGSL_CONSTRAINT_NONE; } atomic_dec(&context->proc_priv->ctxt_count); idr_remove(&device->context_idr, context->id); context->id = KGSL_CONTEXT_INVALID; } write_unlock(&device->context_lock); kgsl_sync_timeline_destroy(context); kgsl_process_private_put(context->proc_priv); device->ftbl->drawctxt_destroy(context); } struct kgsl_device *kgsl_get_device(int dev_idx) { int i; struct kgsl_device *ret = NULL; mutex_lock(&kgsl_driver.devlock); for (i = 0; i < KGSL_DEVICE_MAX; i++) { if (kgsl_driver.devp[i] && kgsl_driver.devp[i]->id == dev_idx) { ret = kgsl_driver.devp[i]; break; } } mutex_unlock(&kgsl_driver.devlock); return ret; } EXPORT_SYMBOL(kgsl_get_device); static struct kgsl_device *kgsl_get_minor(int minor) { struct kgsl_device *ret = NULL; if (minor < 0 || minor >= KGSL_DEVICE_MAX) return NULL; mutex_lock(&kgsl_driver.devlock); ret = kgsl_driver.devp[minor]; mutex_unlock(&kgsl_driver.devlock); return ret; } /** * kgsl_check_timestamp() - return true if the specified timestamp is retired * @device: Pointer to the KGSL device to check * @context: Pointer to the context for the timestamp * @timestamp: The timestamp to compare */ int kgsl_check_timestamp(struct kgsl_device *device, struct kgsl_context *context, unsigned int timestamp) { unsigned int ts_processed; kgsl_readtimestamp(device, context, KGSL_TIMESTAMP_RETIRED, &ts_processed); return (timestamp_cmp(ts_processed, timestamp) >= 0); } EXPORT_SYMBOL(kgsl_check_timestamp); static int kgsl_suspend_device(struct kgsl_device *device, pm_message_t state) { int status = -EINVAL; if (!device) return -EINVAL; KGSL_PWR_WARN(device, "suspend start\n"); mutex_lock(&device->mutex); status = kgsl_pwrctrl_change_state(device, KGSL_STATE_SUSPEND); if (!status) status = device->ftbl->suspend_device(device, state); mutex_unlock(&device->mutex); KGSL_PWR_WARN(device, "suspend end\n"); return status; } static int kgsl_resume_device(struct kgsl_device *device, pm_message_t state) { int ret; if (!device) return -EINVAL; KGSL_PWR_WARN(device, "resume start\n"); mutex_lock(&device->mutex); ret = device->ftbl->resume_device(device, state); if (ret) { mutex_unlock(&device->mutex); return ret; } if (device->state == KGSL_STATE_SUSPEND) { kgsl_pwrctrl_change_state(device, KGSL_STATE_SLUMBER); } else if (device->state != KGSL_STATE_INIT) { /* * This is an error situation,so wait for the device * to idle and then put the device to SLUMBER state. * This will put the device to the right state when * we resume. */ if (device->state == KGSL_STATE_ACTIVE) device->ftbl->idle(device); kgsl_pwrctrl_change_state(device, KGSL_STATE_SLUMBER); KGSL_PWR_ERR(device, "resume invoked without a suspend\n"); } mutex_unlock(&device->mutex); KGSL_PWR_WARN(device, "resume end\n"); return 0; } static int kgsl_suspend(struct device *dev) { struct kgsl_device *device = dev_get_drvdata(dev); return kgsl_suspend_device(device, PMSG_SUSPEND); } static int kgsl_freeze(struct device *dev) { struct kgsl_device *device = dev_get_drvdata(dev); return kgsl_suspend_device(device, PMSG_FREEZE); } static int kgsl_poweroff(struct device *dev) { struct kgsl_device *device = dev_get_drvdata(dev); return kgsl_suspend_device(device, PMSG_HIBERNATE); } static int kgsl_resume(struct device *dev) { struct kgsl_device *device = dev_get_drvdata(dev); return kgsl_resume_device(device, PMSG_RESUME); } static int kgsl_thaw(struct device *dev) { struct kgsl_device *device = dev_get_drvdata(dev); return kgsl_resume_device(device, PMSG_THAW); } static int kgsl_restore(struct device *dev) { struct kgsl_device *device = dev_get_drvdata(dev); return kgsl_resume_device(device, PMSG_RESTORE); } static int kgsl_runtime_suspend(struct device *dev) { return 0; } static int kgsl_runtime_resume(struct device *dev) { return 0; } const struct dev_pm_ops kgsl_pm_ops = { .suspend = kgsl_suspend, .resume = kgsl_resume, .freeze = kgsl_freeze, .thaw = kgsl_thaw, .poweroff = kgsl_poweroff, .restore = kgsl_restore, .runtime_suspend = kgsl_runtime_suspend, .runtime_resume = kgsl_runtime_resume, }; EXPORT_SYMBOL(kgsl_pm_ops); int kgsl_suspend_driver(struct platform_device *pdev, pm_message_t state) { struct kgsl_device *device = dev_get_drvdata(&pdev->dev); return kgsl_suspend_device(device, state); } EXPORT_SYMBOL(kgsl_suspend_driver); int kgsl_resume_driver(struct platform_device *pdev) { struct kgsl_device *device = dev_get_drvdata(&pdev->dev); return kgsl_resume_device(device, PMSG_RESUME); } EXPORT_SYMBOL(kgsl_resume_driver); /** * kgsl_destroy_process_private() - Cleanup function to free process private * @kref: - Pointer to object being destroyed's kref struct * Free struct object and all other resources attached to it. * Since the function can be used when not all resources inside process * private have been allocated, there is a check to (before each resource * cleanup) see if the struct member being cleaned is in fact allocated or not. * If the value is not NULL, resource is freed. */ static void kgsl_destroy_process_private(struct kref *kref) { struct kgsl_process_private *private = container_of(kref, struct kgsl_process_private, refcount); put_pid(private->pid); idr_destroy(&private->mem_idr); idr_destroy(&private->syncsource_idr); /* When using global pagetables, do not detach global pagetable */ if (private->pagetable->name != KGSL_MMU_GLOBAL_PT) kgsl_mmu_putpagetable(private->pagetable); kfree(private); } void kgsl_process_private_put(struct kgsl_process_private *private) { if (private) kref_put(&private->refcount, kgsl_destroy_process_private); } /** * kgsl_process_private_find() - Find the process associated with the specified * name * @name: pid_t of the process to search for * Return the process struct for the given ID. */ struct kgsl_process_private *kgsl_process_private_find(pid_t pid) { struct kgsl_process_private *p, *private = NULL; mutex_lock(&kgsl_driver.process_mutex); list_for_each_entry(p, &kgsl_driver.process_list, list) { if (pid_nr(p->pid) == pid) { if (kgsl_process_private_get(p)) private = p; break; } } mutex_unlock(&kgsl_driver.process_mutex); return private; } #if defined(CONFIG_DISPLAY_SAMSUNG_LEGO) extern void kgsl_svm_addr_hole_log(struct kgsl_device *device, pid_t pid, uint64_t memflags); #define KGSL_PRCO_PATH "/sys/kernel/debug/kgsl/proc" #define KGSL_PROC_PID_MEM_PATH "mem" void kgsl_svm_addr_mapping_check(pid_t pid, unsigned long fault_addr) { struct kgsl_process_private *private = NULL; struct kgsl_mem_entry *entry = NULL; struct kgsl_memdesc *m = NULL; int id = 0; int mapped = 0; private = kgsl_process_private_find(pid); if (IS_ERR_OR_NULL(private)) { pr_err("%s : smmu fault pid killed\n", __func__); return; } spin_lock(&private->mem_lock); for (entry = idr_get_next(&private->mem_idr, &id); entry; id++, entry = idr_get_next(&private->mem_idr, &id)) { m = &entry->memdesc; if ((fault_addr >= m->gpuaddr) && (fault_addr < (m->gpuaddr + m->size))) { #if !defined(CONFIG_SAMSUNG_PRODUCT_SHIP) pr_err("%s pid : %d fault_addr : 0x%lx m->gpuaddr : 0x%llx m->size : 0x%llx\n", __func__, pid, fault_addr, m->gpuaddr, m->size); #endif mapped = 1; break; } } spin_unlock(&private->mem_lock); kgsl_process_private_put(private); #if defined(CONFIG_SAMSUNG_PRODUCT_SHIP) pr_err("%s pid : %d mapped : %d\n", __func__, pid, mapped); #else pr_err("%s pid : %d fault_addr : 0x%lx mapped : %d\n", __func__, pid, fault_addr, mapped); #endif } #if defined(CONFIG_SAMSUNG_PRODUCT_SHIP) void kgsl_svm_addr_mapping_log(struct kgsl_device *device, pid_t pid) { pr_debug("%s : nothing to do\n", __func__); } #else static void kgsl_svm_addr_log_print(struct kgsl_process_private *private) { struct kgsl_mem_entry *entry = NULL; struct kgsl_memdesc *m = NULL; char usage[16]; int id = 0; if(!private) { pr_err("%s private is null\n", __func__); return; } pr_err("%s : %16s %16s %16s %5s %16s\n", __func__, "gpuaddr", "useraddr", "size", "id", "usage"); spin_lock(&private->mem_lock); for (entry = idr_get_next(&private->mem_idr, &id); entry; id++, entry = idr_get_next(&private->mem_idr, &id)) { m = &entry->memdesc; kgsl_get_memory_usage(usage, sizeof(usage), m->flags); pr_err("%s : %p %d %16llu %5d %16s\n", __func__, (uint64_t *)(uintptr_t) m->gpuaddr, 0, m->size, entry->id, usage); } spin_unlock(&private->mem_lock); } void kgsl_svm_addr_mapping_log(struct kgsl_device *device, pid_t pid) { /* ERROR: "vfs_read" [drivers/gpu/msm/msm_kgsl.ko] undefined! */ #if 0 struct file *fp; mm_segment_t old_fs; long nread; long buf_index, start_index, print_size; char *buf = NULL; char *print_buf = NULL; char dir_path[SZ_64] = {0, }; struct kgsl_process_private *private = NULL; static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST); private = kgsl_process_private_find(pid); if (IS_ERR_OR_NULL(private)) { pr_err("%s : smmu fault pid killed\n", __func__); return; } buf = kmalloc(SZ_4K, GFP_KERNEL); if (IS_ERR_OR_NULL(buf)) { kgsl_process_private_put(private); pr_err("%s : buf allocation fail SZ_4K\n", __func__); return; } print_buf = kmalloc(SZ_256, GFP_KERNEL); if (IS_ERR_OR_NULL(print_buf)) { kfree(buf); kgsl_process_private_put(private); pr_err("%s : buf allocation fail SZ_256\n", __func__); return; } old_fs = get_fs(); set_fs(get_ds()); sprintf(dir_path, "%s/%d/%s", KGSL_PRCO_PATH, private->pid, KGSL_PROC_PID_MEM_PATH); fp = filp_open(dir_path, O_RDONLY, 0444); if (IS_ERR(fp)) { if (__ratelimit(&_rs)) { pr_err("%s %s open fail err : %ld\n", __func__, dir_path, PTR_ERR(fp)); kgsl_svm_addr_log_print(private); } goto end; } pr_err("%s : %s \n", __func__, dir_path); nread = vfs_read(fp, (char __user *)buf, SZ_2K + SZ_1K, &fp->f_pos); while (nread > 0) { for (start_index = buf_index = 0; buf_index < nread; buf_index++) { /* 0x0A means LF(line feed) */ if (buf[buf_index] == 0x0A) { print_size = buf_index - start_index; memcpy(print_buf, buf + start_index, print_size); start_index = buf_index + 1; print_buf[print_size] = '\0'; pr_err("%s : %s \n", __func__, print_buf); } } print_size = buf_index - start_index; memcpy(print_buf, buf + start_index, print_size); print_buf[print_size] = '\0'; pr_err("%s : %s \n", __func__, print_buf); nread = vfs_read(fp, (char __user *)buf, SZ_2K + SZ_1K, &fp->f_pos); } filp_close(fp, current->files); end: set_fs(old_fs); kfree(buf); kfree(print_buf); kgsl_process_private_put(private); #else struct kgsl_process_private *private = NULL; kgsl_svm_addr_log_print(private); #endif } #endif #endif static struct kgsl_process_private *kgsl_process_private_new( struct kgsl_device *device) { struct kgsl_process_private *private; struct pid *cur_pid = get_task_pid(current->group_leader, PIDTYPE_PID); /* Search in the process list */ list_for_each_entry(private, &kgsl_driver.process_list, list) { if (private->pid == cur_pid) { if (!kgsl_process_private_get(private)) { private = ERR_PTR(-EINVAL); } /* * We need to hold only one reference to the PID for * each process struct to avoid overflowing the * reference counter which can lead to use-after-free. */ put_pid(cur_pid); return private; } } /* Create a new object */ private = kzalloc(sizeof(struct kgsl_process_private), GFP_KERNEL); if (private == NULL) { put_pid(cur_pid); return ERR_PTR(-ENOMEM); } kref_init(&private->refcount); private->pid = cur_pid; get_task_comm(private->comm, current->group_leader); spin_lock_init(&private->mem_lock); spin_lock_init(&private->syncsource_lock); spin_lock_init(&private->ctxt_count_lock); idr_init(&private->mem_idr); idr_init(&private->syncsource_idr); /* Allocate a pagetable for the new process object */ private->pagetable = kgsl_mmu_getpagetable(&device->mmu, pid_nr(cur_pid)); if (IS_ERR(private->pagetable)) { int err = PTR_ERR(private->pagetable); idr_destroy(&private->mem_idr); idr_destroy(&private->syncsource_idr); put_pid(private->pid); kfree(private); private = ERR_PTR(err); } return private; } static void process_release_memory(struct kgsl_process_private *private) { struct kgsl_mem_entry *entry; int next = 0; while (1) { spin_lock(&private->mem_lock); entry = idr_get_next(&private->mem_idr, &next); if (entry == NULL) { spin_unlock(&private->mem_lock); break; } /* * If the free pending flag is not set it means that user space * did not free it's reference to this entry, in that case * free a reference to this entry, other references are from * within kgsl so they will be freed eventually by kgsl */ if (!entry->pending_free) { entry->pending_free = 1; spin_unlock(&private->mem_lock); kgsl_mem_entry_put(entry); } else { spin_unlock(&private->mem_lock); } next = next + 1; } } static void kgsl_process_private_close(struct kgsl_device_private *dev_priv, struct kgsl_process_private *private) { mutex_lock(&kgsl_driver.process_mutex); if (--private->fd_count > 0) { mutex_unlock(&kgsl_driver.process_mutex); kgsl_process_private_put(private); return; } /* * If this is the last file on the process take down the debug * directories and garbage collect any outstanding resources */ kgsl_process_uninit_sysfs(private); /* Release all syncsource objects from process private */ kgsl_syncsource_process_release_syncsources(private); /* When using global pagetables, do not detach global pagetable */ if (private->pagetable->name != KGSL_MMU_GLOBAL_PT) kgsl_mmu_detach_pagetable(private->pagetable); /* Remove the process struct from the master list */ list_del(&private->list); /* * Unlock the mutex before releasing the memory and the debugfs * nodes - this prevents deadlocks with the IOMMU and debugfs * locks. */ mutex_unlock(&kgsl_driver.process_mutex); process_release_memory(private); debugfs_remove_recursive(private->debug_root); kgsl_process_private_put(private); } static struct kgsl_process_private *kgsl_process_private_open( struct kgsl_device *device) { struct kgsl_process_private *private; mutex_lock(&kgsl_driver.process_mutex); private = kgsl_process_private_new(device); if (IS_ERR(private)) goto done; /* * If this is a new process create the debug directories and add it to * the process list */ if (private->fd_count++ == 0) { kgsl_process_init_sysfs(device, private); kgsl_process_init_debugfs(private); list_add(&private->list, &kgsl_driver.process_list); } done: mutex_unlock(&kgsl_driver.process_mutex); return private; } static int kgsl_close_device(struct kgsl_device *device) { int result = 0; mutex_lock(&device->mutex); device->open_count--; if (device->open_count == 0) { /* Wait for the active count to go to 0 */ kgsl_active_count_wait(device, 0); while (kgsl_active_count_wait(device, 0)) WARN(1, "Waiting for active context count to become 0\n"); result = kgsl_pwrctrl_change_state(device, KGSL_STATE_INIT); } mutex_unlock(&device->mutex); return result; } static void device_release_contexts(struct kgsl_device_private *dev_priv) { struct kgsl_device *device = dev_priv->device; struct kgsl_context *context; int next = 0; int result = 0; while (1) { read_lock(&device->context_lock); context = idr_get_next(&device->context_idr, &next); if (context == NULL) { read_unlock(&device->context_lock); break; } else if (context->dev_priv == dev_priv) { /* * Hold a reference to the context in case somebody * tries to put it while we are detaching */ result = _kgsl_context_get(context); } read_unlock(&device->context_lock); if (result) { kgsl_context_detach(context); kgsl_context_put(context); result = 0; } next = next + 1; } } static int kgsl_release(struct inode *inodep, struct file *filep) { struct kgsl_device_private *dev_priv = filep->private_data; struct kgsl_device *device = dev_priv->device; int result; filep->private_data = NULL; /* Release the contexts for the file */ device_release_contexts(dev_priv); /* Close down the process wide resources for the file */ kgsl_process_private_close(dev_priv, dev_priv->process_priv); /* Destroy the device-specific structure */ device->ftbl->device_private_destroy(dev_priv); result = kgsl_close_device(device); pm_runtime_put(&device->pdev->dev); return result; } static int kgsl_open_device(struct kgsl_device *device) { int result = 0; mutex_lock(&device->mutex); if (device->open_count == 0) { /* * active_cnt special case: we are starting up for the first * time, so use this sequence instead of the kgsl_pwrctrl_wake() * which will be called by kgsl_active_count_get(). */ atomic_inc(&device->active_cnt); kgsl_sharedmem_set(device, &device->memstore, 0, 0, device->memstore.size); result = device->ftbl->init(device); if (result) goto err; result = device->ftbl->start(device, 0); if (result) goto err; /* * Make sure the gates are open, so they don't block until * we start suspend or FT. */ complete_all(&device->hwaccess_gate); kgsl_pwrctrl_change_state(device, KGSL_STATE_ACTIVE); kgsl_active_count_put(device); } device->open_count++; err: if (result) { kgsl_pwrctrl_change_state(device, KGSL_STATE_INIT); atomic_dec(&device->active_cnt); } mutex_unlock(&device->mutex); return result; } static int kgsl_open(struct inode *inodep, struct file *filep) { int result; struct kgsl_device_private *dev_priv; struct kgsl_device *device; unsigned int minor = iminor(inodep); device = kgsl_get_minor(minor); if (device == NULL) { pr_err("No device found\n"); return -ENODEV; } result = pm_runtime_get_sync(&device->pdev->dev); if (result < 0) { KGSL_DRV_ERR(device, "Runtime PM: Unable to wake up the device, rc = %d\n", result); return result; } result = 0; dev_priv = device->ftbl->device_private_create(); if (dev_priv == NULL) { result = -ENOMEM; goto err; } dev_priv->device = device; filep->private_data = dev_priv; result = kgsl_open_device(device); if (result) goto err; /* * Get file (per process) private struct. This must be done * after the first start so that the global pagetable mappings * are set up before we create the per-process pagetable. */ dev_priv->process_priv = kgsl_process_private_open(device); if (IS_ERR(dev_priv->process_priv)) { result = PTR_ERR(dev_priv->process_priv); kgsl_close_device(device); goto err; } err: if (result) { filep->private_data = NULL; kfree(dev_priv); pm_runtime_put(&device->pdev->dev); } return result; } #define GPUADDR_IN_MEMDESC(_val, _memdesc) \ (((_val) >= (_memdesc)->gpuaddr) && \ ((_val) < ((_memdesc)->gpuaddr + (_memdesc)->size))) /** * kgsl_sharedmem_find() - Find a gpu memory allocation * * @private: private data for the process to check. * @gpuaddr: start address of the region * * Find a gpu allocation. Caller must kgsl_mem_entry_put() * the returned entry when finished using it. */ struct kgsl_mem_entry * __must_check kgsl_sharedmem_find(struct kgsl_process_private *private, uint64_t gpuaddr) { int ret = 0, id; struct kgsl_mem_entry *entry = NULL; if (!private) return NULL; if (!kgsl_mmu_gpuaddr_in_range(private->pagetable, gpuaddr, 0)) return NULL; spin_lock(&private->mem_lock); idr_for_each_entry(&private->mem_idr, entry, id) { if (GPUADDR_IN_MEMDESC(gpuaddr, &entry->memdesc)) { if (!entry->pending_free) ret = kgsl_mem_entry_get(entry); break; } } spin_unlock(&private->mem_lock); return (ret == 0) ? NULL : entry; } EXPORT_SYMBOL(kgsl_sharedmem_find); struct kgsl_mem_entry * __must_check kgsl_sharedmem_find_id_flags(struct kgsl_process_private *process, unsigned int id, uint64_t flags) { int count = 0; struct kgsl_mem_entry *entry; spin_lock(&process->mem_lock); entry = idr_find(&process->mem_idr, id); if (entry) if (!entry->pending_free && (flags & entry->memdesc.flags) == flags) count = kgsl_mem_entry_get(entry); spin_unlock(&process->mem_lock); return (count == 0) ? NULL : entry; } /** * kgsl_sharedmem_find_id() - find a memory entry by id * @process: the owning process * @id: id to find * * @returns - the mem_entry or NULL * * Caller must kgsl_mem_entry_put() the returned entry, when finished using * it. */ struct kgsl_mem_entry * __must_check kgsl_sharedmem_find_id(struct kgsl_process_private *process, unsigned int id) { return kgsl_sharedmem_find_id_flags(process, id, 0); } /** * kgsl_mem_entry_unset_pend() - Unset the pending free flag of an entry * @entry - The memory entry */ static inline void kgsl_mem_entry_unset_pend(struct kgsl_mem_entry *entry) { if (entry == NULL) return; spin_lock(&entry->priv->mem_lock); entry->pending_free = 0; spin_unlock(&entry->priv->mem_lock); } /** * kgsl_mem_entry_set_pend() - Set the pending free flag of a memory entry * @entry - The memory entry * * @returns - true if pending flag was 0 else false * * This function will set the pending free flag if it is previously unset. Used * to prevent race condition between ioctls calling free/freememontimestamp * on the same entry. Whichever thread set's the flag first will do the free. */ static inline bool kgsl_mem_entry_set_pend(struct kgsl_mem_entry *entry) { bool ret = false; if (entry == NULL) return false; spin_lock(&entry->priv->mem_lock); if (!entry->pending_free) { entry->pending_free = 1; ret = true; } spin_unlock(&entry->priv->mem_lock); return ret; } static inline int kgsl_get_ctxt_fault_stats(struct kgsl_context *context, struct kgsl_context_property *ctxt_property) { struct kgsl_context_property_fault fault_stats; size_t copy; /* Return the size of the subtype struct */ if (ctxt_property->size == 0) { ctxt_property->size = sizeof(fault_stats); return 0; } memset(&fault_stats, 0, sizeof(fault_stats)); copy = min_t(size_t, ctxt_property->size, sizeof(fault_stats)); fault_stats.faults = context->total_fault_count; fault_stats.timestamp = context->last_faulted_cmd_ts; /* * Copy the context fault stats to data which also serves as * the out parameter. */ if (copy_to_user(u64_to_user_ptr(ctxt_property->data), &fault_stats, copy)) return -EFAULT; return 0; } static inline int kgsl_get_ctxt_properties(struct kgsl_device_private *dev_priv, struct kgsl_device_getproperty *param) { /* Return fault stats of given context */ struct kgsl_context_property ctxt_property; struct kgsl_context *context; size_t copy; int ret = 0; /* * If sizebytes is zero, tell the user how big the * ctxt_property struct should be. */ if (param->sizebytes == 0) { param->sizebytes = sizeof(ctxt_property); return 0; } memset(&ctxt_property, 0, sizeof(ctxt_property)); copy = min_t(size_t, param->sizebytes, sizeof(ctxt_property)); /* We expect the value passed in to contain the context id */ if (copy_from_user(&ctxt_property, param->value, copy)) return -EFAULT; /* ctxt type zero is not valid, as we consider it as uninitialized. */ if (ctxt_property.type == 0) return -EINVAL; context = kgsl_context_get_owner(dev_priv, ctxt_property.contextid); if (!context) return -EINVAL; if (ctxt_property.type == KGSL_CONTEXT_PROP_FAULTS) ret = kgsl_get_ctxt_fault_stats(context, &ctxt_property); else ret = -EOPNOTSUPP; kgsl_context_put(context); return ret; } /*call all ioctl sub functions with driver locked*/ long kgsl_ioctl_device_getproperty(struct kgsl_device_private *dev_priv, unsigned int cmd, void *data) { int result = 0; struct kgsl_device_getproperty *param = data; switch (param->type) { case KGSL_PROP_VERSION: { struct kgsl_version version; if (param->sizebytes != sizeof(version)) { result = -EINVAL; break; } version.drv_major = KGSL_VERSION_MAJOR; version.drv_minor = KGSL_VERSION_MINOR; version.dev_major = dev_priv->device->ver_major; version.dev_minor = dev_priv->device->ver_minor; if (copy_to_user(param->value, &version, sizeof(version))) result = -EFAULT; break; } case KGSL_PROP_GPU_RESET_STAT: { /* Return reset status of given context and clear it */ uint32_t id; struct kgsl_context *context; if (param->sizebytes != sizeof(unsigned int)) { result = -EINVAL; break; } /* We expect the value passed in to contain the context id */ if (copy_from_user(&id, param->value, sizeof(unsigned int))) { result = -EFAULT; break; } context = kgsl_context_get_owner(dev_priv, id); if (!context) { result = -EINVAL; break; } /* * Copy the reset status to value which also serves as * the out parameter */ if (copy_to_user(param->value, &(context->reset_status), sizeof(unsigned int))) result = -EFAULT; else { /* Clear reset status once its been queried */ context->reset_status = KGSL_CTX_STAT_NO_ERROR; } kgsl_context_put(context); break; } case KGSL_PROP_SECURE_BUFFER_ALIGNMENT: { unsigned int align; if (param->sizebytes != sizeof(unsigned int)) { result = -EINVAL; break; } /* * XPUv2 impose the constraint of 1MB memory alignment, * on the other hand Hypervisor does not have such * constraints. So driver should fulfill such * requirements when allocating secure memory. */ align = MMU_FEATURE(&dev_priv->device->mmu, KGSL_MMU_HYP_SECURE_ALLOC) ? PAGE_SIZE : SZ_1M; if (copy_to_user(param->value, &align, sizeof(align))) result = -EFAULT; break; } case KGSL_PROP_SECURE_CTXT_SUPPORT: { unsigned int secure_ctxt; if (param->sizebytes != sizeof(unsigned int)) { result = -EINVAL; break; } secure_ctxt = dev_priv->device->mmu.secured ? 1 : 0; if (copy_to_user(param->value, &secure_ctxt, sizeof(secure_ctxt))) result = -EFAULT; break; } case KGSL_PROP_CONTEXT_PROPERTY: result = kgsl_get_ctxt_properties(dev_priv, param); break; default: if (is_compat_task()) result = dev_priv->device->ftbl->getproperty_compat( dev_priv->device, param->type, param->value, param->sizebytes); else result = dev_priv->device->ftbl->getproperty( dev_priv->device, param->type, param->value, param->sizebytes); } return result; } long kgsl_ioctl_device_setproperty(struct kgsl_device_private *dev_priv, unsigned int cmd, void *data) { int result = 0; /* The getproperty struct is reused for setproperty too */ struct kgsl_device_getproperty *param = data; /* Reroute to compat version if coming from compat_ioctl */ if (is_compat_task()) result = dev_priv->device->ftbl->setproperty_compat( dev_priv, param->type, param->value, param->sizebytes); else if (dev_priv->device->ftbl->setproperty) result = dev_priv->device->ftbl->setproperty( dev_priv, param->type, param->value, param->sizebytes); return result; } long kgsl_ioctl_device_waittimestamp_ctxtid( struct kgsl_device_private *dev_priv, unsigned int cmd, void *data) { struct kgsl_device_waittimestamp_ctxtid *param = data; struct kgsl_device *device = dev_priv->device; long result = -EINVAL; unsigned int temp_cur_ts = 0; struct kgsl_context *context; context = kgsl_context_get_owner(dev_priv, param->context_id); if (context == NULL) return result; kgsl_readtimestamp(device, context, KGSL_TIMESTAMP_RETIRED, &temp_cur_ts); trace_kgsl_waittimestamp_entry(device, context->id, temp_cur_ts, param->timestamp, param->timeout); result = device->ftbl->waittimestamp(device, context, param->timestamp, param->timeout); kgsl_readtimestamp(device, context, KGSL_TIMESTAMP_RETIRED, &temp_cur_ts); trace_kgsl_waittimestamp_exit(device, temp_cur_ts, result); kgsl_context_put(context); return result; } static inline bool _check_context_is_sparse(struct kgsl_context *context, uint64_t flags) { if ((context->flags & KGSL_CONTEXT_SPARSE) || (flags & KGSL_DRAWOBJ_SPARSE)) return true; return false; } long kgsl_ioctl_rb_issueibcmds(struct kgsl_device_private *dev_priv, unsigned int cmd, void *data) { struct kgsl_ringbuffer_issueibcmds *param = data; struct kgsl_device *device = dev_priv->device; struct kgsl_context *context; struct kgsl_drawobj *drawobj; struct kgsl_drawobj_cmd *cmdobj; long result = -EINVAL; /* The legacy functions don't support synchronization commands */ if ((param->flags & (KGSL_DRAWOBJ_SYNC | KGSL_DRAWOBJ_MARKER))) return -EINVAL; /* Sanity check the number of IBs */ if (param->flags & KGSL_DRAWOBJ_SUBMIT_IB_LIST && (param->numibs == 0 || param->numibs > KGSL_MAX_NUMIBS)) return -EINVAL; /* Get the context */ context = kgsl_context_get_owner(dev_priv, param->drawctxt_id); if (context == NULL) return -EINVAL; if (_check_context_is_sparse(context, param->flags)) { kgsl_context_put(context); return -EINVAL; } cmdobj = kgsl_drawobj_cmd_create(device, context, param->flags, CMDOBJ_TYPE); if (IS_ERR(cmdobj)) { kgsl_context_put(context); return PTR_ERR(cmdobj); } drawobj = DRAWOBJ(cmdobj); if (param->flags & KGSL_DRAWOBJ_SUBMIT_IB_LIST) result = kgsl_drawobj_cmd_add_ibdesc_list(device, cmdobj, (void __user *) param->ibdesc_addr, param->numibs); else { struct kgsl_ibdesc ibdesc; /* Ultra legacy path */ ibdesc.gpuaddr = param->ibdesc_addr; ibdesc.sizedwords = param->numibs; ibdesc.ctrl = 0; result = kgsl_drawobj_cmd_add_ibdesc(device, cmdobj, &ibdesc); } if (result == 0) result = dev_priv->device->ftbl->queue_cmds(dev_priv, context, &drawobj, 1, ¶m->timestamp); /* * -EPROTO is a "success" error - it just tells the user that the * context had previously faulted */ if (result && result != -EPROTO) kgsl_drawobj_destroy(drawobj); kgsl_context_put(context); return result; } /* Returns 0 on failure. Returns command type(s) on success */ static unsigned int _process_command_input(struct kgsl_device *device, unsigned int flags, unsigned int numcmds, unsigned int numobjs, unsigned int numsyncs) { if (numcmds > KGSL_MAX_NUMIBS || numobjs > KGSL_MAX_NUMIBS || numsyncs > KGSL_MAX_SYNCPOINTS) return 0; /* * The SYNC bit is supposed to identify a dummy sync object * so warn the user if they specified any IBs with it. * A MARKER command can either have IBs or not but if the * command has 0 IBs it is automatically assumed to be a marker. */ /* If they specify the flag, go with what they say */ if (flags & KGSL_DRAWOBJ_MARKER) return MARKEROBJ_TYPE; else if (flags & KGSL_DRAWOBJ_SYNC) return SYNCOBJ_TYPE; /* If not, deduce what they meant */ if (numsyncs && numcmds) return SYNCOBJ_TYPE | CMDOBJ_TYPE; else if (numsyncs) return SYNCOBJ_TYPE; else if (numcmds) return CMDOBJ_TYPE; else if (numcmds == 0) return MARKEROBJ_TYPE; return 0; } long kgsl_ioctl_submit_commands(struct kgsl_device_private *dev_priv, unsigned int cmd, void *data) { struct kgsl_submit_commands *param = data; struct kgsl_device *device = dev_priv->device; struct kgsl_context *context; struct kgsl_drawobj *drawobj[2]; unsigned int type; long result; unsigned int i = 0; type = _process_command_input(device, param->flags, param->numcmds, 0, param->numsyncs); if (!type) return -EINVAL; context = kgsl_context_get_owner(dev_priv, param->context_id); if (context == NULL) return -EINVAL; if (_check_context_is_sparse(context, param->flags)) { kgsl_context_put(context); return -EINVAL; } if (type & SYNCOBJ_TYPE) { struct kgsl_drawobj_sync *syncobj = kgsl_drawobj_sync_create(device, context); if (IS_ERR(syncobj)) { result = PTR_ERR(syncobj); goto done; } drawobj[i++] = DRAWOBJ(syncobj); result = kgsl_drawobj_sync_add_syncpoints(device, syncobj, param->synclist, param->numsyncs); if (result) goto done; } if (type & (CMDOBJ_TYPE | MARKEROBJ_TYPE)) { struct kgsl_drawobj_cmd *cmdobj = kgsl_drawobj_cmd_create(device, context, param->flags, type); if (IS_ERR(cmdobj)) { result = PTR_ERR(cmdobj); goto done; } drawobj[i++] = DRAWOBJ(cmdobj); result = kgsl_drawobj_cmd_add_ibdesc_list(device, cmdobj, param->cmdlist, param->numcmds); if (result) goto done; /* If no profiling buffer was specified, clear the flag */ if (cmdobj->profiling_buf_entry == NULL) DRAWOBJ(cmdobj)->flags &= ~(unsigned long)KGSL_DRAWOBJ_PROFILING; } result = device->ftbl->queue_cmds(dev_priv, context, drawobj, i, ¶m->timestamp); done: /* * -EPROTO is a "success" error - it just tells the user that the * context had previously faulted */ if (result && result != -EPROTO) while (i--) kgsl_drawobj_destroy(drawobj[i]); kgsl_context_put(context); return result; } long kgsl_ioctl_gpu_command(struct kgsl_device_private *dev_priv, unsigned int cmd, void *data) { struct kgsl_gpu_command *param = data; struct kgsl_device *device = dev_priv->device; struct kgsl_context *context; struct kgsl_drawobj *drawobj[2]; unsigned int type; long result; unsigned int i = 0; type = _process_command_input(device, param->flags, param->numcmds, param->numobjs, param->numsyncs); if (!type) return -EINVAL; context = kgsl_context_get_owner(dev_priv, param->context_id); if (context == NULL) return -EINVAL; if (_check_context_is_sparse(context, param->flags)) { kgsl_context_put(context); return -EINVAL; } if (type & SYNCOBJ_TYPE) { struct kgsl_drawobj_sync *syncobj = kgsl_drawobj_sync_create(device, context); if (IS_ERR(syncobj)) { result = PTR_ERR(syncobj); goto done; } drawobj[i++] = DRAWOBJ(syncobj); result = kgsl_drawobj_sync_add_synclist(device, syncobj, to_user_ptr(param->synclist), param->syncsize, param->numsyncs); if (result) goto done; } if (type & (CMDOBJ_TYPE | MARKEROBJ_TYPE)) { struct kgsl_drawobj_cmd *cmdobj = kgsl_drawobj_cmd_create(device, context, param->flags, type); if (IS_ERR(cmdobj)) { result = PTR_ERR(cmdobj); goto done; } drawobj[i++] = DRAWOBJ(cmdobj); result = kgsl_drawobj_cmd_add_cmdlist(device, cmdobj, to_user_ptr(param->cmdlist), param->cmdsize, param->numcmds); if (result) goto done; result = kgsl_drawobj_cmd_add_memlist(device, cmdobj, to_user_ptr(param->objlist), param->objsize, param->numobjs); if (result) goto done; /* If no profiling buffer was specified, clear the flag */ if (cmdobj->profiling_buf_entry == NULL) DRAWOBJ(cmdobj)->flags &= ~(unsigned long)KGSL_DRAWOBJ_PROFILING; } result = device->ftbl->queue_cmds(dev_priv, context, drawobj, i, ¶m->timestamp); done: /* * -EPROTO is a "success" error - it just tells the user that the * context had previously faulted */ if (result && result != -EPROTO) while (i--) kgsl_drawobj_destroy(drawobj[i]); kgsl_context_put(context); return result; } long kgsl_ioctl_cmdstream_readtimestamp_ctxtid(struct kgsl_device_private *dev_priv, unsigned int cmd, void *data) { struct kgsl_cmdstream_readtimestamp_ctxtid *param = data; struct kgsl_device *device = dev_priv->device; struct kgsl_context *context; long result = -EINVAL; mutex_lock(&device->mutex); context = kgsl_context_get_owner(dev_priv, param->context_id); if (context) { result = kgsl_readtimestamp(device, context, param->type, ¶m->timestamp); trace_kgsl_readtimestamp(device, context->id, param->type, param->timestamp); } kgsl_context_put(context); mutex_unlock(&device->mutex); return result; } long kgsl_ioctl_drawctxt_create(struct kgsl_device_private *dev_priv, unsigned int cmd, void *data) { int result = 0; struct kgsl_drawctxt_create *param = data; struct kgsl_context *context = NULL; struct kgsl_device *device = dev_priv->device; context = device->ftbl->drawctxt_create(dev_priv, ¶m->flags); if (IS_ERR(context)) { result = PTR_ERR(context); goto done; } trace_kgsl_context_create(dev_priv->device, context, param->flags); /* Commit the pointer to the context in context_idr */ write_lock(&device->context_lock); idr_replace(&device->context_idr, context, context->id); param->drawctxt_id = context->id; write_unlock(&device->context_lock); done: return result; } long kgsl_ioctl_drawctxt_destroy(struct kgsl_device_private *dev_priv, unsigned int cmd, void *data) { struct kgsl_drawctxt_destroy *param = data; struct kgsl_context *context; context = kgsl_context_get_owner(dev_priv, param->drawctxt_id); if (context == NULL) return -EINVAL; kgsl_context_detach(context); kgsl_context_put(context); return 0; } long gpumem_free_entry(struct kgsl_mem_entry *entry) { if (!kgsl_mem_entry_set_pend(entry)) return -EBUSY; trace_kgsl_mem_free(entry); kgsl_memfree_add(pid_nr(entry->priv->pid), entry->memdesc.pagetable ? entry->memdesc.pagetable->name : 0, entry->memdesc.gpuaddr, entry->memdesc.size, entry->memdesc.flags); kgsl_mem_entry_put(entry); return 0; } static void gpumem_free_func(struct kgsl_device *device, struct kgsl_event_group *group, void *priv, int ret) { struct kgsl_context *context = group->context; struct kgsl_mem_entry *entry = priv; unsigned int timestamp; kgsl_readtimestamp(device, context, KGSL_TIMESTAMP_RETIRED, ×tamp); /* Free the memory for all event types */ trace_kgsl_mem_timestamp_free(device, entry, KGSL_CONTEXT_ID(context), timestamp, 0); kgsl_memfree_add(pid_nr(entry->priv->pid), entry->memdesc.pagetable ? entry->memdesc.pagetable->name : 0, entry->memdesc.gpuaddr, entry->memdesc.size, entry->memdesc.flags); kgsl_mem_entry_put(entry); } static long gpumem_free_entry_on_timestamp(struct kgsl_device *device, struct kgsl_mem_entry *entry, struct kgsl_context *context, unsigned int timestamp) { int ret; unsigned int temp; if (!kgsl_mem_entry_set_pend(entry)) return -EBUSY; kgsl_readtimestamp(device, context, KGSL_TIMESTAMP_RETIRED, &temp); trace_kgsl_mem_timestamp_queue(device, entry, context->id, temp, timestamp); ret = kgsl_add_event(device, &context->events, timestamp, gpumem_free_func, entry); if (ret) kgsl_mem_entry_unset_pend(entry); return ret; } long kgsl_ioctl_sharedmem_free(struct kgsl_device_private *dev_priv, unsigned int cmd, void *data) { struct kgsl_sharedmem_free *param = data; struct kgsl_process_private *private = dev_priv->process_priv; struct kgsl_mem_entry *entry; long ret; entry = kgsl_sharedmem_find(private, (uint64_t) param->gpuaddr); if (entry == NULL) return -EINVAL; ret = gpumem_free_entry(entry); kgsl_mem_entry_put(entry); return ret; } long kgsl_ioctl_gpumem_free_id(struct kgsl_device_private *dev_priv, unsigned int cmd, void *data) { struct kgsl_gpumem_free_id *param = data; struct kgsl_process_private *private = dev_priv->process_priv; struct kgsl_mem_entry *entry; long ret; entry = kgsl_sharedmem_find_id(private, param->id); if (entry == NULL) return -EINVAL; ret = gpumem_free_entry(entry); kgsl_mem_entry_put(entry); return ret; } static long gpuobj_free_on_timestamp(struct kgsl_device_private *dev_priv, struct kgsl_mem_entry *entry, struct kgsl_gpuobj_free *param) { struct kgsl_gpu_event_timestamp event; struct kgsl_context *context; long ret; memset(&event, 0, sizeof(event)); ret = kgsl_copy_from_user(&event, to_user_ptr(param->priv), sizeof(event), param->len); if (ret) return ret; if (event.context_id == 0) return -EINVAL; context = kgsl_context_get_owner(dev_priv, event.context_id); if (context == NULL) return -EINVAL; ret = gpumem_free_entry_on_timestamp(dev_priv->device, entry, context, event.timestamp); kgsl_context_put(context); return ret; } static bool gpuobj_free_fence_func(void *priv) { struct kgsl_mem_entry *entry = priv; trace_kgsl_mem_free(entry); kgsl_memfree_add(pid_nr(entry->priv->pid), entry->memdesc.pagetable ? entry->memdesc.pagetable->name : 0, entry->memdesc.gpuaddr, entry->memdesc.size, entry->memdesc.flags); INIT_WORK(&entry->work, _deferred_put); queue_work(kgsl_driver.mem_workqueue, &entry->work); return true; } static long gpuobj_free_on_fence(struct kgsl_device_private *dev_priv, struct kgsl_mem_entry *entry, struct kgsl_gpuobj_free *param) { struct kgsl_sync_fence_cb *handle; struct kgsl_gpu_event_fence event; long ret; if (!kgsl_mem_entry_set_pend(entry)) return -EBUSY; memset(&event, 0, sizeof(event)); ret = kgsl_copy_from_user(&event, to_user_ptr(param->priv), sizeof(event), param->len); if (ret) { kgsl_mem_entry_unset_pend(entry); return ret; } if (event.fd < 0) { kgsl_mem_entry_unset_pend(entry); return -EINVAL; } handle = kgsl_sync_fence_async_wait(event.fd, gpuobj_free_fence_func, entry); if (IS_ERR(handle)) { kgsl_mem_entry_unset_pend(entry); return PTR_ERR(handle); } /* if handle is NULL the fence has already signaled */ if (handle == NULL) gpuobj_free_fence_func(entry); return 0; } long kgsl_ioctl_gpuobj_free(struct kgsl_device_private *dev_priv, unsigned int cmd, void *data) { struct kgsl_gpuobj_free *param = data; struct kgsl_process_private *private = dev_priv->process_priv; struct kgsl_mem_entry *entry; long ret; entry = kgsl_sharedmem_find_id(private, param->id); if (entry == NULL) return -EINVAL; /* If no event is specified then free immediately */ if (!(param->flags & KGSL_GPUOBJ_FREE_ON_EVENT)) ret = gpumem_free_entry(entry); else if (param->type == KGSL_GPU_EVENT_TIMESTAMP) ret = gpuobj_free_on_timestamp(dev_priv, entry, param); else if (param->type == KGSL_GPU_EVENT_FENCE) ret = gpuobj_free_on_fence(dev_priv, entry, param); else ret = -EINVAL; kgsl_mem_entry_put(entry); return ret; } long kgsl_ioctl_cmdstream_freememontimestamp_ctxtid( struct kgsl_device_private *dev_priv, unsigned int cmd, void *data) { struct kgsl_cmdstream_freememontimestamp_ctxtid *param = data; struct kgsl_context *context = NULL; struct kgsl_mem_entry *entry; long ret = -EINVAL; if (param->type != KGSL_TIMESTAMP_RETIRED) return -EINVAL; context = kgsl_context_get_owner(dev_priv, param->context_id); if (context == NULL) return -EINVAL; entry = kgsl_sharedmem_find(dev_priv->process_priv, (uint64_t) param->gpuaddr); if (entry == NULL) { kgsl_context_put(context); return -EINVAL; } ret = gpumem_free_entry_on_timestamp(dev_priv->device, entry, context, param->timestamp); kgsl_mem_entry_put(entry); kgsl_context_put(context); return ret; } static int check_vma_flags(struct vm_area_struct *vma, unsigned int flags) { unsigned long flags_requested = (VM_READ | VM_WRITE); if (flags & KGSL_MEMFLAGS_GPUREADONLY) flags_requested &= ~(unsigned long)VM_WRITE; if ((vma->vm_flags & flags_requested) == flags_requested) return 0; return -EFAULT; } static int check_vma(unsigned long hostptr, u64 size) { struct vm_area_struct *vma; unsigned long cur = hostptr; while (cur < (hostptr + size)) { vma = find_vma(current->mm, cur); if (!vma) return false; /* Don't remap memory that we already own */ if (vma->vm_file && vma->vm_file->f_op == &kgsl_fops) return false; cur = vma->vm_end; } return true; } static int memdesc_sg_virt(struct kgsl_memdesc *memdesc, unsigned long useraddr) { int ret = 0; long npages = 0, i; size_t sglen = (size_t) (memdesc->size / PAGE_SIZE); struct page **pages = NULL; int write = ((memdesc->flags & KGSL_MEMFLAGS_GPUREADONLY) ? 0 : FOLL_WRITE); if (sglen == 0 || sglen >= LONG_MAX) return -EINVAL; pages = kgsl_malloc(sglen * sizeof(struct page *)); if (pages == NULL) return -ENOMEM; memdesc->sgt = kmalloc(sizeof(struct sg_table), GFP_KERNEL); if (memdesc->sgt == NULL) { ret = -ENOMEM; goto out; } down_read(¤t->mm->mmap_sem); if (!check_vma(useraddr, memdesc->size)) { up_read(¤t->mm->mmap_sem); ret = -EFAULT; goto out; } npages = get_user_pages(useraddr, sglen, write, pages, NULL); up_read(¤t->mm->mmap_sem); ret = (npages < 0) ? (int)npages : 0; if (ret) goto out; if ((unsigned long) npages != sglen) { ret = -EINVAL; goto out; } ret = sg_alloc_table_from_pages(memdesc->sgt, pages, npages, 0, memdesc->size, GFP_KERNEL); if (ret) goto out; ret = kgsl_cache_range_op(memdesc, 0, memdesc->size, KGSL_CACHE_OP_FLUSH); if (ret) sg_free_table(memdesc->sgt); out: if (ret) { for (i = 0; i < npages; i++) put_page(pages[i]); kfree(memdesc->sgt); memdesc->sgt = NULL; } kgsl_free(pages); return ret; } static int kgsl_setup_anon_useraddr(struct kgsl_pagetable *pagetable, struct kgsl_mem_entry *entry, unsigned long hostptr, size_t offset, size_t size) { /* Map an anonymous memory chunk */ int ret; if (size == 0 || offset != 0 || !IS_ALIGNED(size, PAGE_SIZE)) return -EINVAL; entry->memdesc.pagetable = pagetable; entry->memdesc.size = (uint64_t) size; entry->memdesc.flags |= (uint64_t)KGSL_MEMFLAGS_USERMEM_ADDR; if (kgsl_memdesc_use_cpu_map(&entry->memdesc)) { /* Register the address in the database */ ret = kgsl_mmu_set_svm_region(pagetable, (uint64_t) hostptr, (uint64_t) size); if (ret) return ret; entry->memdesc.gpuaddr = (uint64_t) hostptr; } ret = memdesc_sg_virt(&entry->memdesc, hostptr); if (ret && kgsl_memdesc_use_cpu_map(&entry->memdesc)) kgsl_mmu_put_gpuaddr(&entry->memdesc); return ret; } #ifdef CONFIG_DMA_SHARED_BUFFER static int match_file(const void *p, struct file *file, unsigned int fd) { /* * We must return fd + 1 because iterate_fd stops searching on * non-zero return, but 0 is a valid fd. */ return (p == file) ? (fd + 1) : 0; } static void _setup_cache_mode(struct kgsl_mem_entry *entry, struct vm_area_struct *vma) { uint64_t mode; pgprot_t pgprot = vma->vm_page_prot; if (pgprot_val(pgprot) == pgprot_val(pgprot_noncached(pgprot))) mode = KGSL_CACHEMODE_UNCACHED; else if (pgprot_val(pgprot) == pgprot_val(pgprot_writecombine(pgprot))) mode = KGSL_CACHEMODE_WRITECOMBINE; else mode = KGSL_CACHEMODE_WRITEBACK; entry->memdesc.flags |= (mode << KGSL_CACHEMODE_SHIFT); } static int kgsl_setup_dma_buf(struct kgsl_device *device, struct kgsl_pagetable *pagetable, struct kgsl_mem_entry *entry, struct dma_buf *dmabuf); static int kgsl_setup_dmabuf_useraddr(struct kgsl_device *device, struct kgsl_pagetable *pagetable, struct kgsl_mem_entry *entry, unsigned long hostptr) { struct vm_area_struct *vma; struct dma_buf *dmabuf = NULL; int ret; /* * Find the VMA containing this pointer and figure out if it * is a dma-buf. */ down_read(¤t->mm->mmap_sem); vma = find_vma(current->mm, hostptr); if (vma && vma->vm_file) { int fd; ret = check_vma_flags(vma, entry->memdesc.flags); if (ret) { up_read(¤t->mm->mmap_sem); return ret; } /* * Check to see that this isn't our own memory that we have * already mapped */ if (vma->vm_file->f_op == &kgsl_fops) { up_read(¤t->mm->mmap_sem); return -EFAULT; } /* Look for the fd that matches this vma file */ fd = iterate_fd(current->files, 0, match_file, vma->vm_file); if (fd) { dmabuf = dma_buf_get(fd - 1); if (IS_ERR(dmabuf)) { up_read(¤t->mm->mmap_sem); return PTR_ERR(dmabuf); } /* * It is possible that the fd obtained from iterate_fd * was closed before passing the fd to dma_buf_get(). * Hence dmabuf returned by dma_buf_get() could be * different from vma->vm_file->private_data. Return * failure if this happens. */ if (dmabuf != vma->vm_file->private_data) { dma_buf_put(dmabuf); up_read(¤t->mm->mmap_sem); return -EBADF; } } } if (IS_ERR_OR_NULL(dmabuf)) { up_read(¤t->mm->mmap_sem); return dmabuf ? PTR_ERR(dmabuf) : -ENODEV; } ret = kgsl_setup_dma_buf(device, pagetable, entry, dmabuf); if (ret) { dma_buf_put(dmabuf); up_read(¤t->mm->mmap_sem); return ret; } /* Setup the cache mode for cache operations */ _setup_cache_mode(entry, vma); up_read(¤t->mm->mmap_sem); return 0; } #else static int kgsl_setup_dmabuf_useraddr(struct kgsl_device *device, struct kgsl_pagetable *pagetable, struct kgsl_mem_entry *entry, unsigned long hostptr) { return -ENODEV; } #endif static int kgsl_setup_useraddr(struct kgsl_device *device, struct kgsl_pagetable *pagetable, struct kgsl_mem_entry *entry, unsigned long hostptr, size_t offset, size_t size) { int ret; if (hostptr == 0 || !IS_ALIGNED(hostptr, PAGE_SIZE)) return -EINVAL; /* Try to set up a dmabuf - if it returns -ENODEV assume anonymous */ ret = kgsl_setup_dmabuf_useraddr(device, pagetable, entry, hostptr); if (ret != -ENODEV) return ret; /* Okay - lets go legacy */ return kgsl_setup_anon_useraddr(pagetable, entry, hostptr, offset, size); } static long _gpuobj_map_useraddr(struct kgsl_device *device, struct kgsl_pagetable *pagetable, struct kgsl_mem_entry *entry, struct kgsl_gpuobj_import *param) { struct kgsl_gpuobj_import_useraddr useraddr = {0}; int ret; param->flags &= KGSL_MEMFLAGS_GPUREADONLY | KGSL_CACHEMODE_MASK | KGSL_MEMTYPE_MASK | KGSL_MEMFLAGS_FORCE_32BIT | KGSL_MEMFLAGS_IOCOHERENT; /* Specifying SECURE is an explicit error */ if (param->flags & KGSL_MEMFLAGS_SECURE) return -ENOTSUPP; ret = kgsl_copy_from_user(&useraddr, to_user_ptr(param->priv), sizeof(useraddr), param->priv_len); if (ret) return ret; /* Verify that the virtaddr and len are within bounds */ if (useraddr.virtaddr > ULONG_MAX) return -EINVAL; return kgsl_setup_useraddr(device, pagetable, entry, (unsigned long) useraddr.virtaddr, 0, param->priv_len); } #ifdef CONFIG_DMA_SHARED_BUFFER static long _gpuobj_map_dma_buf(struct kgsl_device *device, struct kgsl_pagetable *pagetable, struct kgsl_mem_entry *entry, struct kgsl_gpuobj_import *param, int *fd) { struct kgsl_gpuobj_import_dma_buf buf; struct dma_buf *dmabuf; unsigned long flags = 0; int ret; /* * If content protection is not enabled and secure buffer * is requested to be mapped return error. */ if (entry->memdesc.flags & KGSL_MEMFLAGS_SECURE) { if (!kgsl_mmu_is_secured(&device->mmu)) { dev_WARN_ONCE(device->dev, 1, "Secure buffer not supported"); return -ENOTSUPP; } entry->memdesc.priv |= KGSL_MEMDESC_SECURE; } ret = kgsl_copy_from_user(&buf, to_user_ptr(param->priv), sizeof(buf), param->priv_len); if (ret) return ret; if (buf.fd < 0) return -EINVAL; *fd = buf.fd; dmabuf = dma_buf_get(buf.fd); if (IS_ERR_OR_NULL(dmabuf)) return (dmabuf == NULL) ? -EINVAL : PTR_ERR(dmabuf); /* * ION cache ops are routed through kgsl, so record if the dmabuf is * cached or not in the memdesc. Assume uncached if dma_buf_get_flags * fails. */ dma_buf_get_flags(dmabuf, &flags); if (flags & ION_FLAG_CACHED) entry->memdesc.flags |= KGSL_CACHEMODE_WRITEBACK << KGSL_CACHEMODE_SHIFT; ret = kgsl_setup_dma_buf(device, pagetable, entry, dmabuf); if (ret) dma_buf_put(dmabuf); return ret; } #else static long _gpuobj_map_dma_buf(struct kgsl_device *device, struct kgsl_pagetable *pagetable, struct kgsl_mem_entry *entry, struct kgsl_gpuobj_import *param, int *fd) { return -EINVAL; } #endif long kgsl_ioctl_gpuobj_import(struct kgsl_device_private *dev_priv, unsigned int cmd, void *data) { struct kgsl_process_private *private = dev_priv->process_priv; struct kgsl_gpuobj_import *param = data; struct kgsl_mem_entry *entry; int ret, fd = -1; entry = kgsl_mem_entry_create(); if (entry == NULL) return -ENOMEM; param->flags &= KGSL_MEMFLAGS_GPUREADONLY | KGSL_MEMTYPE_MASK | KGSL_MEMALIGN_MASK | KGSL_MEMFLAGS_USE_CPU_MAP | KGSL_MEMFLAGS_SECURE | KGSL_MEMFLAGS_FORCE_32BIT | KGSL_MEMFLAGS_IOCOHERENT; kgsl_memdesc_init(dev_priv->device, &entry->memdesc, param->flags); if (param->type == KGSL_USER_MEM_TYPE_ADDR) ret = _gpuobj_map_useraddr(dev_priv->device, private->pagetable, entry, param); else if (param->type == KGSL_USER_MEM_TYPE_DMABUF) ret = _gpuobj_map_dma_buf(dev_priv->device, private->pagetable, entry, param, &fd); else ret = -ENOTSUPP; if (ret) goto out; if (entry->memdesc.size >= SZ_1M) kgsl_memdesc_set_align(&entry->memdesc, ilog2(SZ_1M)); else if (entry->memdesc.size >= SZ_64K) kgsl_memdesc_set_align(&entry->memdesc, ilog2(SZ_64K)); param->flags = entry->memdesc.flags; ret = kgsl_mem_entry_attach_process(dev_priv->device, private, entry); if (ret) goto unmap; param->id = entry->id; KGSL_STATS_ADD(entry->memdesc.size, &kgsl_driver.stats.mapped, &kgsl_driver.stats.mapped_max); kgsl_process_add_stats(private, kgsl_memdesc_usermem_type(&entry->memdesc), entry->memdesc.size); trace_kgsl_mem_map(entry, fd); kgsl_mem_entry_commit_process(entry); /* Put the extra ref from kgsl_mem_entry_create() */ kgsl_mem_entry_put(entry); return 0; unmap: if (kgsl_memdesc_usermem_type(&entry->memdesc) == KGSL_MEM_ENTRY_ION) { kgsl_destroy_ion(entry->priv_data); entry->memdesc.sgt = NULL; } kgsl_sharedmem_free(&entry->memdesc); out: kfree(entry); return ret; } static long _map_usermem_addr(struct kgsl_device *device, struct kgsl_pagetable *pagetable, struct kgsl_mem_entry *entry, unsigned long hostptr, size_t offset, size_t size) { if (!MMU_FEATURE(&device->mmu, KGSL_MMU_PAGED)) return -EINVAL; /* No CPU mapped buffer could ever be secure */ if (entry->memdesc.flags & KGSL_MEMFLAGS_SECURE) return -EINVAL; return kgsl_setup_useraddr(device, pagetable, entry, hostptr, offset, size); } #ifdef CONFIG_DMA_SHARED_BUFFER static int _map_usermem_dma_buf(struct kgsl_device *device, struct kgsl_pagetable *pagetable, struct kgsl_mem_entry *entry, unsigned int fd) { int ret; struct dma_buf *dmabuf; /* * If content protection is not enabled and secure buffer * is requested to be mapped return error. */ if (entry->memdesc.flags & KGSL_MEMFLAGS_SECURE) { if (!kgsl_mmu_is_secured(&device->mmu)) { dev_WARN_ONCE(device->dev, 1, "Secure buffer not supported"); return -EINVAL; } entry->memdesc.priv |= KGSL_MEMDESC_SECURE; } dmabuf = dma_buf_get(fd); if (IS_ERR_OR_NULL(dmabuf)) { ret = PTR_ERR(dmabuf); return ret ? ret : -EINVAL; } ret = kgsl_setup_dma_buf(device, pagetable, entry, dmabuf); if (ret) dma_buf_put(dmabuf); return ret; } #else static int _map_usermem_dma_buf(struct kgsl_device *device, struct kgsl_pagetable *pagetable, struct kgsl_mem_entry *entry, unsigned int fd) { return -EINVAL; } #endif #ifdef CONFIG_DMA_SHARED_BUFFER static int kgsl_setup_dma_buf(struct kgsl_device *device, struct kgsl_pagetable *pagetable, struct kgsl_mem_entry *entry, struct dma_buf *dmabuf) { int ret = 0; struct scatterlist *s; struct sg_table *sg_table; struct dma_buf_attachment *attach = NULL; struct kgsl_dma_buf_meta *meta; meta = kzalloc(sizeof(*meta), GFP_KERNEL); if (!meta) return -ENOMEM; attach = dma_buf_attach(dmabuf, device->dev); if (IS_ERR(attach)) { ret = PTR_ERR(attach); goto out; } /* * If dma buffer is marked IO coherent, skip sync at attach, * which involves flushing the buffer on CPU. * HW manages coherency for IO coherent buffers. */ if (entry->memdesc.flags & KGSL_MEMFLAGS_IOCOHERENT) attach->dma_map_attrs |= DMA_ATTR_SKIP_CPU_SYNC; meta->dmabuf = dmabuf; meta->attach = attach; meta->entry = entry; entry->priv_data = meta; entry->memdesc.pagetable = pagetable; entry->memdesc.size = 0; /* USE_CPU_MAP is not impemented for ION. */ entry->memdesc.flags &= ~((uint64_t) KGSL_MEMFLAGS_USE_CPU_MAP); entry->memdesc.flags |= (uint64_t)KGSL_MEMFLAGS_USERMEM_ION; sg_table = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); if (IS_ERR_OR_NULL(sg_table)) { ret = PTR_ERR(sg_table); goto out; } meta->table = sg_table; entry->priv_data = meta; entry->memdesc.sgt = sg_table; /* Calculate the size of the memdesc from the sglist */ for (s = entry->memdesc.sgt->sgl; s != NULL; s = sg_next(s)) { int priv = (entry->memdesc.priv & KGSL_MEMDESC_SECURE) ? 1 : 0; /* * Check that each chunk of of the sg table matches the secure * flag. */ if (PagePrivate(sg_page(s)) != priv) { ret = -EPERM; goto out; } entry->memdesc.size += (uint64_t) s->length; } if (!entry->memdesc.size) { ret = -EINVAL; goto out; } add_dmabuf_list(meta); entry->memdesc.size = PAGE_ALIGN(entry->memdesc.size); out: if (ret) { if (!IS_ERR_OR_NULL(attach)) dma_buf_detach(dmabuf, attach); kfree(meta); } return ret; } #endif #ifdef CONFIG_DMA_SHARED_BUFFER void kgsl_get_egl_counts(struct kgsl_mem_entry *entry, int *egl_surface_count, int *egl_image_count) { struct kgsl_dma_buf_meta *meta = entry->priv_data; struct dmabuf_list_entry *dle = meta->dle; struct kgsl_dma_buf_meta *scan_meta; struct kgsl_mem_entry *scan_mem_entry; if (!dle) return; spin_lock(&kgsl_dmabuf_lock); list_for_each_entry(scan_meta, &dle->dmabuf_list, node) { scan_mem_entry = scan_meta->entry; switch (kgsl_memdesc_get_memtype(&scan_mem_entry->memdesc)) { case KGSL_MEMTYPE_EGL_SURFACE: (*egl_surface_count)++; break; case KGSL_MEMTYPE_EGL_IMAGE: (*egl_image_count)++; break; } } spin_unlock(&kgsl_dmabuf_lock); } #else void kgsl_get_egl_counts(struct kgsl_mem_entry *entry, int *egl_surface_count, int *egl_image_count) { } #endif long kgsl_ioctl_map_user_mem(struct kgsl_device_private *dev_priv, unsigned int cmd, void *data) { int result = -EINVAL; struct kgsl_map_user_mem *param = data; struct kgsl_mem_entry *entry = NULL; struct kgsl_process_private *private = dev_priv->process_priv; struct kgsl_mmu *mmu = &dev_priv->device->mmu; unsigned int memtype; uint64_t flags; /* * If content protection is not enabled and secure buffer * is requested to be mapped return error. */ if (param->flags & KGSL_MEMFLAGS_SECURE) { /* Log message and return if context protection isn't enabled */ if (!kgsl_mmu_is_secured(mmu)) { dev_WARN_ONCE(dev_priv->device->dev, 1, "Secure buffer not supported"); return -EOPNOTSUPP; } /* Can't use CPU map with secure buffers */ if (param->flags & KGSL_MEMFLAGS_USE_CPU_MAP) return -EINVAL; } entry = kgsl_mem_entry_create(); if (entry == NULL) return -ENOMEM; /* * Convert from enum value to KGSL_MEM_ENTRY value, so that * we can use the latter consistently everywhere. */ memtype = param->memtype + 1; /* * Mask off unknown flags from userspace. This way the caller can * check if a flag is supported by looking at the returned flags. * Note: CACHEMODE is ignored for this call. Caching should be * determined by type of allocation being mapped. */ flags = param->flags & (KGSL_MEMFLAGS_GPUREADONLY | KGSL_MEMTYPE_MASK | KGSL_MEMALIGN_MASK | KGSL_MEMFLAGS_USE_CPU_MAP | KGSL_MEMFLAGS_SECURE | KGSL_MEMFLAGS_IOCOHERENT); if (kgsl_is_compat_task()) flags |= KGSL_MEMFLAGS_FORCE_32BIT; kgsl_memdesc_init(dev_priv->device, &entry->memdesc, flags); switch (memtype) { case KGSL_MEM_ENTRY_USER: result = _map_usermem_addr(dev_priv->device, private->pagetable, entry, param->hostptr, param->offset, param->len); break; case KGSL_MEM_ENTRY_ION: if (param->offset != 0) result = -EINVAL; else result = _map_usermem_dma_buf(dev_priv->device, private->pagetable, entry, param->fd); break; default: result = -EOPNOTSUPP; break; } if (result) goto error; if ((param->flags & KGSL_MEMFLAGS_SECURE) && (entry->memdesc.size & mmu->secure_align_mask)) { result = -EINVAL; goto error_attach; } if (entry->memdesc.size >= SZ_2M) kgsl_memdesc_set_align(&entry->memdesc, ilog2(SZ_2M)); else if (entry->memdesc.size >= SZ_1M) kgsl_memdesc_set_align(&entry->memdesc, ilog2(SZ_1M)); else if (entry->memdesc.size >= SZ_64K) kgsl_memdesc_set_align(&entry->memdesc, ilog2(SZ_64)); /* echo back flags */ param->flags = (unsigned int) entry->memdesc.flags; result = kgsl_mem_entry_attach_process(dev_priv->device, private, entry); if (result) goto error_attach; /* Adjust the returned value for a non 4k aligned offset */ param->gpuaddr = (unsigned long) entry->memdesc.gpuaddr + (param->offset & PAGE_MASK); KGSL_STATS_ADD(param->len, &kgsl_driver.stats.mapped, &kgsl_driver.stats.mapped_max); kgsl_process_add_stats(private, kgsl_memdesc_usermem_type(&entry->memdesc), param->len); trace_kgsl_mem_map(entry, param->fd); kgsl_mem_entry_commit_process(entry); /* Put the extra ref from kgsl_mem_entry_create() */ kgsl_mem_entry_put(entry); return result; error_attach: switch (kgsl_memdesc_usermem_type(&entry->memdesc)) { case KGSL_MEM_ENTRY_ION: kgsl_destroy_ion(entry->priv_data); entry->memdesc.sgt = NULL; break; default: break; } kgsl_sharedmem_free(&entry->memdesc); error: /* Clear gpuaddr here so userspace doesn't get any wrong ideas */ param->gpuaddr = 0; kfree(entry); return result; } static int _kgsl_gpumem_sync_cache(struct kgsl_mem_entry *entry, uint64_t offset, uint64_t length, unsigned int op) { int ret = 0; int cacheop; int mode; /* Cache ops are not allowed on secure memory */ if (entry->memdesc.flags & KGSL_MEMFLAGS_SECURE) return 0; /* * Flush is defined as (clean | invalidate). If both bits are set, then * do a flush, otherwise check for the individual bits and clean or inv * as requested */ if ((op & KGSL_GPUMEM_CACHE_FLUSH) == KGSL_GPUMEM_CACHE_FLUSH) cacheop = KGSL_CACHE_OP_FLUSH; else if (op & KGSL_GPUMEM_CACHE_CLEAN) cacheop = KGSL_CACHE_OP_CLEAN; else if (op & KGSL_GPUMEM_CACHE_INV) cacheop = KGSL_CACHE_OP_INV; else { ret = -EINVAL; goto done; } if (!(op & KGSL_GPUMEM_CACHE_RANGE)) { offset = 0; length = entry->memdesc.size; } mode = kgsl_memdesc_get_cachemode(&entry->memdesc); if (mode != KGSL_CACHEMODE_UNCACHED && mode != KGSL_CACHEMODE_WRITECOMBINE) { trace_kgsl_mem_sync_cache(entry, offset, length, op); ret = kgsl_cache_range_op(&entry->memdesc, offset, length, cacheop); } done: return ret; } /* New cache sync function - supports both directions (clean and invalidate) */ long kgsl_ioctl_gpumem_sync_cache(struct kgsl_device_private *dev_priv, unsigned int cmd, void *data) { struct kgsl_gpumem_sync_cache *param = data; struct kgsl_process_private *private = dev_priv->process_priv; struct kgsl_mem_entry *entry = NULL; long ret; if (param->id != 0) entry = kgsl_sharedmem_find_id(private, param->id); else if (param->gpuaddr != 0) entry = kgsl_sharedmem_find(private, (uint64_t) param->gpuaddr); if (entry == NULL) return -EINVAL; ret = _kgsl_gpumem_sync_cache(entry, (uint64_t) param->offset, (uint64_t) param->length, param->op); kgsl_mem_entry_put(entry); return ret; } static int mem_id_cmp(const void *_a, const void *_b) { const unsigned int *a = _a, *b = _b; if (*a == *b) return 0; return (*a > *b) ? 1 : -1; } #ifdef CONFIG_ARM64 /* Do not support full flush on ARM64 targets */ static inline bool check_full_flush(size_t size, int op) { return false; } #else /* Support full flush if the size is bigger than the threshold */ static inline bool check_full_flush(size_t size, int op) { /* If we exceed the breakeven point, flush the entire cache */ bool ret = (kgsl_driver.full_cache_threshold != 0) && (size >= kgsl_driver.full_cache_threshold) && (op == KGSL_GPUMEM_CACHE_FLUSH); if (ret) flush_cache_all(); return ret; } #endif long kgsl_ioctl_gpumem_sync_cache_bulk(struct kgsl_device_private *dev_priv, unsigned int cmd, void *data) { int i; struct kgsl_gpumem_sync_cache_bulk *param = data; struct kgsl_process_private *private = dev_priv->process_priv; unsigned int id, last_id = 0, *id_list = NULL, actual_count = 0; struct kgsl_mem_entry **entries = NULL; long ret = 0; uint64_t op_size = 0; bool full_flush = false; if (param->id_list == NULL || param->count == 0 || param->count > (PAGE_SIZE / sizeof(unsigned int))) return -EINVAL; id_list = kcalloc(param->count, sizeof(unsigned int), GFP_KERNEL); if (id_list == NULL) return -ENOMEM; entries = kcalloc(param->count, sizeof(*entries), GFP_KERNEL); if (entries == NULL) { ret = -ENOMEM; goto end; } if (copy_from_user(id_list, param->id_list, param->count * sizeof(unsigned int))) { ret = -EFAULT; goto end; } /* sort the ids so we can weed out duplicates */ sort(id_list, param->count, sizeof(*id_list), mem_id_cmp, NULL); for (i = 0; i < param->count; i++) { unsigned int cachemode; struct kgsl_mem_entry *entry = NULL; id = id_list[i]; /* skip 0 ids or duplicates */ if (id == last_id) continue; entry = kgsl_sharedmem_find_id(private, id); if (entry == NULL) continue; /* skip uncached memory */ cachemode = kgsl_memdesc_get_cachemode(&entry->memdesc); if (cachemode != KGSL_CACHEMODE_WRITETHROUGH && cachemode != KGSL_CACHEMODE_WRITEBACK) { kgsl_mem_entry_put(entry); continue; } op_size += entry->memdesc.size; entries[actual_count++] = entry; full_flush = check_full_flush(op_size, param->op); if (full_flush) { trace_kgsl_mem_sync_full_cache(actual_count, op_size); break; } last_id = id; } param->op &= ~KGSL_GPUMEM_CACHE_RANGE; for (i = 0; i < actual_count; i++) { if (!full_flush) _kgsl_gpumem_sync_cache(entries[i], 0, entries[i]->memdesc.size, param->op); kgsl_mem_entry_put(entries[i]); } end: kfree(entries); kfree(id_list); return ret; } /* Legacy cache function, does a flush (clean + invalidate) */ long kgsl_ioctl_sharedmem_flush_cache(struct kgsl_device_private *dev_priv, unsigned int cmd, void *data) { struct kgsl_sharedmem_free *param = data; struct kgsl_process_private *private = dev_priv->process_priv; struct kgsl_mem_entry *entry = NULL; long ret; entry = kgsl_sharedmem_find(private, (uint64_t) param->gpuaddr); if (entry == NULL) return -EINVAL; ret = _kgsl_gpumem_sync_cache(entry, 0, entry->memdesc.size, KGSL_GPUMEM_CACHE_FLUSH); kgsl_mem_entry_put(entry); return ret; } long kgsl_ioctl_gpuobj_sync(struct kgsl_device_private *dev_priv, unsigned int cmd, void *data) { struct kgsl_process_private *private = dev_priv->process_priv; struct kgsl_gpuobj_sync *param = data; struct kgsl_gpuobj_sync_obj *objs; struct kgsl_mem_entry **entries; long ret = 0; bool full_flush = false; uint64_t size = 0; int i; void __user *ptr; if (param->count == 0 || param->count > 128) return -EINVAL; objs = kcalloc(param->count, sizeof(*objs), GFP_KERNEL); if (objs == NULL) return -ENOMEM; entries = kcalloc(param->count, sizeof(*entries), GFP_KERNEL); if (entries == NULL) { kfree(objs); return -ENOMEM; } ptr = to_user_ptr(param->objs); for (i = 0; i < param->count; i++) { ret = kgsl_copy_from_user(&objs[i], ptr, sizeof(*objs), param->obj_len); if (ret) goto out; entries[i] = kgsl_sharedmem_find_id(private, objs[i].id); /* Not finding the ID is not a fatal failure - just skip it */ if (entries[i] == NULL) continue; if (!(objs[i].op & KGSL_GPUMEM_CACHE_RANGE)) size += entries[i]->memdesc.size; else if (objs[i].offset < entries[i]->memdesc.size) size += (entries[i]->memdesc.size - objs[i].offset); full_flush = check_full_flush(size, objs[i].op); if (full_flush) { trace_kgsl_mem_sync_full_cache(i, size); goto out; } ptr += sizeof(*objs); } for (i = 0; !ret && i < param->count; i++) if (entries[i]) ret = _kgsl_gpumem_sync_cache(entries[i], objs[i].offset, objs[i].length, objs[i].op); out: for (i = 0; i < param->count; i++) if (entries[i]) kgsl_mem_entry_put(entries[i]); kfree(entries); kfree(objs); return ret; } #ifdef CONFIG_ARM64 static uint64_t kgsl_filter_cachemode(uint64_t flags) { /* * WRITETHROUGH is not supported in arm64, so we tell the user that we * use WRITEBACK which is the default caching policy. */ if ((flags & KGSL_CACHEMODE_MASK) >> KGSL_CACHEMODE_SHIFT == KGSL_CACHEMODE_WRITETHROUGH) { flags &= ~((uint64_t) KGSL_CACHEMODE_MASK); flags |= (uint64_t)((KGSL_CACHEMODE_WRITEBACK << KGSL_CACHEMODE_SHIFT) & KGSL_CACHEMODE_MASK); } return flags; } #else static uint64_t kgsl_filter_cachemode(uint64_t flags) { return flags; } #endif /* The largest allowable alignment for a GPU object is 32MB */ #define KGSL_MAX_ALIGN (32 * SZ_1M) struct kgsl_mem_entry *gpumem_alloc_entry( struct kgsl_device_private *dev_priv, uint64_t size, uint64_t flags) { int ret; struct kgsl_process_private *private = dev_priv->process_priv; struct kgsl_mem_entry *entry; struct kgsl_mmu *mmu = &dev_priv->device->mmu; unsigned int align; flags &= KGSL_MEMFLAGS_GPUREADONLY | KGSL_CACHEMODE_MASK | KGSL_MEMTYPE_MASK | KGSL_MEMALIGN_MASK | KGSL_MEMFLAGS_USE_CPU_MAP | KGSL_MEMFLAGS_SECURE | KGSL_MEMFLAGS_FORCE_32BIT | KGSL_MEMFLAGS_IOCOHERENT; /* Return not supported error if secure memory isn't enabled */ if (!kgsl_mmu_is_secured(mmu) && (flags & KGSL_MEMFLAGS_SECURE)) { dev_WARN_ONCE(dev_priv->device->dev, 1, "Secure memory not supported"); return ERR_PTR(-EOPNOTSUPP); } /* Cap the alignment bits to the highest number we can handle */ align = MEMFLAGS(flags, KGSL_MEMALIGN_MASK, KGSL_MEMALIGN_SHIFT); if (align >= ilog2(KGSL_MAX_ALIGN)) { KGSL_CORE_ERR("Alignment too large; restricting to %dK\n", KGSL_MAX_ALIGN >> 10); flags &= ~((uint64_t) KGSL_MEMALIGN_MASK); flags |= (uint64_t)((ilog2(KGSL_MAX_ALIGN) << KGSL_MEMALIGN_SHIFT) & KGSL_MEMALIGN_MASK); } /* For now only allow allocations up to 4G */ if (size == 0 || size > UINT_MAX) return ERR_PTR(-EINVAL); flags = kgsl_filter_cachemode(flags); entry = kgsl_mem_entry_create(); if (entry == NULL) return ERR_PTR(-ENOMEM); ret = kgsl_allocate_user(dev_priv->device, &entry->memdesc, size, flags); if (ret != 0) goto err; ret = kgsl_mem_entry_attach_process(dev_priv->device, private, entry); if (ret != 0) { kgsl_sharedmem_free(&entry->memdesc); goto err; } kgsl_process_add_stats(private, kgsl_memdesc_usermem_type(&entry->memdesc), entry->memdesc.size); trace_kgsl_mem_alloc(entry); kgsl_mem_entry_commit_process(entry); return entry; err: kfree(entry); return ERR_PTR(ret); } static void copy_metadata(struct kgsl_mem_entry *entry, uint64_t metadata, unsigned int len) { unsigned int i, size; if (len == 0) return; size = min_t(unsigned int, len, sizeof(entry->metadata) - 1); if (copy_from_user(entry->metadata, to_user_ptr(metadata), size)) { memset(entry->metadata, 0, sizeof(entry->metadata)); return; } /* Clean up non printable characters in the string */ for (i = 0; i < size && entry->metadata[i] != 0; i++) { if (!isprint(entry->metadata[i])) entry->metadata[i] = '?'; } } long kgsl_ioctl_gpuobj_alloc(struct kgsl_device_private *dev_priv, unsigned int cmd, void *data) { struct kgsl_gpuobj_alloc *param = data; struct kgsl_mem_entry *entry; #if defined(CONFIG_DISPLAY_SAMSUNG) || defined(CONFIG_DISPLAY_SAMSUNG_LEGO) struct kgsl_process_private *private = dev_priv->process_priv; uint64_t debug_size; debug_size = param->size >> 10; if(debug_size > 200000) { pr_err("kgsl: huge memory %lldKB is requested from pid = %d comm = %s\n", debug_size, private->pid, private->comm); } #endif entry = gpumem_alloc_entry(dev_priv, param->size, param->flags); if (IS_ERR(entry)) return PTR_ERR(entry); copy_metadata(entry, param->metadata, param->metadata_len); param->size = entry->memdesc.size; param->flags = entry->memdesc.flags; param->mmapsize = kgsl_memdesc_footprint(&entry->memdesc); param->id = entry->id; /* Put the extra ref from kgsl_mem_entry_create() */ kgsl_mem_entry_put(entry); return 0; } long kgsl_ioctl_gpumem_alloc(struct kgsl_device_private *dev_priv, unsigned int cmd, void *data) { struct kgsl_gpumem_alloc *param = data; struct kgsl_mem_entry *entry; uint64_t flags = param->flags; /* Legacy functions doesn't support these advanced features */ flags &= ~((uint64_t) KGSL_MEMFLAGS_USE_CPU_MAP); if (kgsl_is_compat_task()) flags |= KGSL_MEMFLAGS_FORCE_32BIT; entry = gpumem_alloc_entry(dev_priv, (uint64_t) param->size, flags); if (IS_ERR(entry)) return PTR_ERR(entry); param->gpuaddr = (unsigned long) entry->memdesc.gpuaddr; param->size = (size_t) entry->memdesc.size; param->flags = (unsigned int) entry->memdesc.flags; /* Put the extra ref from kgsl_mem_entry_create() */ kgsl_mem_entry_put(entry); return 0; } long kgsl_ioctl_gpumem_alloc_id(struct kgsl_device_private *dev_priv, unsigned int cmd, void *data) { struct kgsl_gpumem_alloc_id *param = data; struct kgsl_mem_entry *entry; uint64_t flags = param->flags; if (kgsl_is_compat_task()) flags |= KGSL_MEMFLAGS_FORCE_32BIT; entry = gpumem_alloc_entry(dev_priv, (uint64_t) param->size, flags); if (IS_ERR(entry)) return PTR_ERR(entry); param->id = entry->id; param->flags = (unsigned int) entry->memdesc.flags; param->size = (size_t) entry->memdesc.size; param->mmapsize = (size_t) kgsl_memdesc_footprint(&entry->memdesc); param->gpuaddr = (unsigned long) entry->memdesc.gpuaddr; /* Put the extra ref from kgsl_mem_entry_create() */ kgsl_mem_entry_put(entry); return 0; } long kgsl_ioctl_gpumem_get_info(struct kgsl_device_private *dev_priv, unsigned int cmd, void *data) { struct kgsl_process_private *private = dev_priv->process_priv; struct kgsl_gpumem_get_info *param = data; struct kgsl_mem_entry *entry = NULL; int result = 0; if (param->id != 0) entry = kgsl_sharedmem_find_id(private, param->id); else if (param->gpuaddr != 0) entry = kgsl_sharedmem_find(private, (uint64_t) param->gpuaddr); if (entry == NULL) return -EINVAL; /* * If any of the 64 bit address / sizes would end up being * truncated, return -ERANGE. That will signal the user that they * should use a more modern API */ if (entry->memdesc.gpuaddr > ULONG_MAX) result = -ERANGE; param->gpuaddr = (unsigned long) entry->memdesc.gpuaddr; param->id = entry->id; param->flags = (unsigned int) entry->memdesc.flags; param->size = (size_t) entry->memdesc.size; param->mmapsize = (size_t) kgsl_memdesc_footprint(&entry->memdesc); /* * Entries can have multiple user mappings so thre isn't any one address * we can report. Plus, the user should already know their mappings, so * there isn't any value in reporting it back to them. */ param->useraddr = 0; kgsl_mem_entry_put(entry); return result; } static inline int _sparse_alloc_param_sanity_check(uint64_t size, uint64_t pagesize) { if (size == 0 || pagesize == 0) return -EINVAL; if (pagesize != PAGE_SIZE && pagesize != SZ_64K) return -EINVAL; if (pagesize > size || !IS_ALIGNED(size, pagesize)) return -EINVAL; return 0; } long kgsl_ioctl_sparse_phys_alloc(struct kgsl_device_private *dev_priv, unsigned int cmd, void *data) { struct kgsl_process_private *process = dev_priv->process_priv; struct kgsl_device *device = dev_priv->device; struct kgsl_sparse_phys_alloc *param = data; struct kgsl_mem_entry *entry; uint64_t flags; int ret; int id; if (!(device->flags & KGSL_FLAG_SPARSE)) return -ENOTSUPP; ret = _sparse_alloc_param_sanity_check(param->size, param->pagesize); if (ret) return ret; entry = kgsl_mem_entry_create(); if (entry == NULL) return -ENOMEM; ret = kgsl_process_private_get(process); if (!ret) { ret = -EBADF; goto err_free_entry; } idr_preload(GFP_KERNEL); spin_lock(&process->mem_lock); /* Allocate the ID but don't attach the pointer just yet */ id = idr_alloc(&process->mem_idr, NULL, 1, 0, GFP_NOWAIT); spin_unlock(&process->mem_lock); idr_preload_end(); if (id < 0) { ret = id; goto err_put_proc_priv; } entry->id = id; entry->priv = process; flags = KGSL_MEMFLAGS_SPARSE_PHYS | ((ilog2(param->pagesize) << KGSL_MEMALIGN_SHIFT) & KGSL_MEMALIGN_MASK); ret = kgsl_allocate_user(dev_priv->device, &entry->memdesc, param->size, flags); if (ret) goto err_remove_idr; /* Sanity check to verify we got correct pagesize */ if (param->pagesize != PAGE_SIZE && entry->memdesc.sgt != NULL) { struct scatterlist *s; int i; for_each_sg(entry->memdesc.sgt->sgl, s, entry->memdesc.sgt->nents, i) { if (!IS_ALIGNED(s->length, param->pagesize)) goto err_invalid_pages; } } param->id = entry->id; param->flags = entry->memdesc.flags; kgsl_process_add_stats(process, kgsl_memdesc_usermem_type(&entry->memdesc), entry->memdesc.size); trace_sparse_phys_alloc(entry->id, param->size, param->pagesize); kgsl_mem_entry_commit_process(entry); /* Put the extra ref from kgsl_mem_entry_create() */ kgsl_mem_entry_put(entry); return 0; err_invalid_pages: kgsl_sharedmem_free(&entry->memdesc); err_remove_idr: spin_lock(&process->mem_lock); idr_remove(&process->mem_idr, entry->id); spin_unlock(&process->mem_lock); err_put_proc_priv: kgsl_process_private_put(process); err_free_entry: kfree(entry); return ret; } long kgsl_ioctl_sparse_phys_free(struct kgsl_device_private *dev_priv, unsigned int cmd, void *data) { struct kgsl_process_private *process = dev_priv->process_priv; struct kgsl_device *device = dev_priv->device; struct kgsl_sparse_phys_free *param = data; struct kgsl_mem_entry *entry; if (!(device->flags & KGSL_FLAG_SPARSE)) return -ENOTSUPP; entry = kgsl_sharedmem_find_id_flags(process, param->id, KGSL_MEMFLAGS_SPARSE_PHYS); if (entry == NULL) return -EINVAL; if (!kgsl_mem_entry_set_pend(entry)) { kgsl_mem_entry_put(entry); return -EBUSY; } if (entry->memdesc.cur_bindings != 0) { kgsl_mem_entry_unset_pend(entry); kgsl_mem_entry_put(entry); return -EINVAL; } trace_sparse_phys_free(entry->id); /* One put for find_id(), one put for the kgsl_mem_entry_create() */ kgsl_mem_entry_put(entry); kgsl_mem_entry_put(entry); return 0; } long kgsl_ioctl_sparse_virt_alloc(struct kgsl_device_private *dev_priv, unsigned int cmd, void *data) { struct kgsl_process_private *private = dev_priv->process_priv; struct kgsl_device *device = dev_priv->device; struct kgsl_sparse_virt_alloc *param = data; struct kgsl_mem_entry *entry; int ret; if (!(device->flags & KGSL_FLAG_SPARSE)) return -ENOTSUPP; ret = _sparse_alloc_param_sanity_check(param->size, param->pagesize); if (ret) return ret; entry = kgsl_mem_entry_create(); if (entry == NULL) return -ENOMEM; kgsl_memdesc_init(dev_priv->device, &entry->memdesc, KGSL_MEMFLAGS_SPARSE_VIRT); entry->memdesc.size = param->size; entry->memdesc.cur_bindings = 0; kgsl_memdesc_set_align(&entry->memdesc, ilog2(param->pagesize)); spin_lock_init(&entry->bind_lock); entry->bind_tree = RB_ROOT; ret = kgsl_mem_entry_attach_process(dev_priv->device, private, entry); if (ret) { kfree(entry); return ret; } param->id = entry->id; param->gpuaddr = entry->memdesc.gpuaddr; param->flags = entry->memdesc.flags; trace_sparse_virt_alloc(entry->id, param->size, param->pagesize); kgsl_mem_entry_commit_process(entry); /* Put the extra ref from kgsl_mem_entry_create() */ kgsl_mem_entry_put(entry); return 0; } long kgsl_ioctl_sparse_virt_free(struct kgsl_device_private *dev_priv, unsigned int cmd, void *data) { struct kgsl_process_private *process = dev_priv->process_priv; struct kgsl_device *device = dev_priv->device; struct kgsl_sparse_virt_free *param = data; struct kgsl_mem_entry *entry = NULL; if (!(device->flags & KGSL_FLAG_SPARSE)) return -ENOTSUPP; entry = kgsl_sharedmem_find_id_flags(process, param->id, KGSL_MEMFLAGS_SPARSE_VIRT); if (entry == NULL) return -EINVAL; if (!kgsl_mem_entry_set_pend(entry)) { kgsl_mem_entry_put(entry); return -EBUSY; } if (entry->bind_tree.rb_node != NULL) { kgsl_mem_entry_unset_pend(entry); kgsl_mem_entry_put(entry); return -EINVAL; } trace_sparse_virt_free(entry->id); /* One put for find_id(), one put for the kgsl_mem_entry_create() */ kgsl_mem_entry_put(entry); kgsl_mem_entry_put(entry); return 0; } /* entry->bind_lock must be held by the caller */ static int _sparse_add_to_bind_tree(struct kgsl_mem_entry *entry, uint64_t v_offset, struct kgsl_memdesc *memdesc, uint64_t p_offset, uint64_t size, uint64_t flags) { struct sparse_bind_object *new; struct rb_node **node, *parent = NULL; new = kzalloc(sizeof(*new), GFP_ATOMIC); if (new == NULL) return -ENOMEM; new->v_off = v_offset; new->p_off = p_offset; new->p_memdesc = memdesc; new->size = size; new->flags = flags; node = &entry->bind_tree.rb_node; while (*node != NULL) { struct sparse_bind_object *this; parent = *node; this = rb_entry(parent, struct sparse_bind_object, node); if ((new->v_off < this->v_off) && ((new->v_off + new->size) <= this->v_off)) node = &parent->rb_left; else if ((new->v_off > this->v_off) && (new->v_off >= (this->v_off + this->size))) node = &parent->rb_right; else { kfree(new); return -EADDRINUSE; } } rb_link_node(&new->node, parent, node); rb_insert_color(&new->node, &entry->bind_tree); return 0; } static int _sparse_rm_from_bind_tree(struct kgsl_mem_entry *entry, struct sparse_bind_object *obj, uint64_t v_offset, uint64_t size) { if (v_offset == obj->v_off && size >= obj->size) { /* * We are all encompassing, remove the entry and free * things up */ rb_erase(&obj->node, &entry->bind_tree); kfree(obj); } else if (v_offset == obj->v_off) { /* * We are the front of the node, adjust the front of * the node */ obj->v_off += size; obj->p_off += size; obj->size -= size; } else if ((v_offset + size) == (obj->v_off + obj->size)) { /* * We are at the end of the obj, adjust the beginning * points */ obj->size -= size; } else { /* * We are in the middle of a node, split it up and * create a new mini node. Adjust this node's bounds * and add the new node to the list. */ uint64_t tmp_size = obj->size; int ret; obj->size = v_offset - obj->v_off; ret = _sparse_add_to_bind_tree(entry, v_offset + size, obj->p_memdesc, obj->p_off + (v_offset - obj->v_off) + size, tmp_size - (v_offset - obj->v_off) - size, obj->flags); return ret; } return 0; } /* entry->bind_lock must be held by the caller */ static struct sparse_bind_object *_find_containing_bind_obj( struct kgsl_mem_entry *entry, uint64_t offset, uint64_t size) { struct sparse_bind_object *obj = NULL; struct rb_node *node = entry->bind_tree.rb_node; while (node != NULL) { obj = rb_entry(node, struct sparse_bind_object, node); if (offset == obj->v_off) { break; } else if (offset < obj->v_off) { if (offset + size > obj->v_off) break; node = node->rb_left; obj = NULL; } else if (offset > obj->v_off) { if (offset < obj->v_off + obj->size) break; node = node->rb_right; obj = NULL; } } return obj; } /* entry->bind_lock must be held by the caller */ static int _sparse_unbind(struct kgsl_mem_entry *entry, struct sparse_bind_object *bind_obj, uint64_t offset, uint64_t size) { int ret; ret = _sparse_rm_from_bind_tree(entry, bind_obj, offset, size); if (ret == 0) { atomic_long_sub(size, &kgsl_driver.stats.mapped); trace_sparse_unbind(entry->id, offset, size); } return ret; } static long sparse_unbind_range(struct kgsl_sparse_binding_object *obj, struct kgsl_mem_entry *virt_entry) { struct sparse_bind_object *bind_obj; struct kgsl_memdesc *memdesc; struct kgsl_pagetable *pt; int ret = 0; uint64_t size = obj->size; uint64_t tmp_size = obj->size; uint64_t offset = obj->virtoffset; while (size > 0 && ret == 0) { tmp_size = size; spin_lock(&virt_entry->bind_lock); bind_obj = _find_containing_bind_obj(virt_entry, offset, size); if (bind_obj == NULL) { spin_unlock(&virt_entry->bind_lock); return 0; } if (bind_obj->v_off > offset) { tmp_size = size - bind_obj->v_off - offset; if (tmp_size > bind_obj->size) tmp_size = bind_obj->size; offset = bind_obj->v_off; } else if (bind_obj->v_off < offset) { uint64_t diff = offset - bind_obj->v_off; if (diff + size > bind_obj->size) tmp_size = bind_obj->size - diff; } else { if (tmp_size > bind_obj->size) tmp_size = bind_obj->size; } memdesc = bind_obj->p_memdesc; pt = memdesc->pagetable; if (memdesc->cur_bindings < (tmp_size / PAGE_SIZE)) { spin_unlock(&virt_entry->bind_lock); return -EINVAL; } memdesc->cur_bindings -= tmp_size / PAGE_SIZE; ret = _sparse_unbind(virt_entry, bind_obj, offset, tmp_size); spin_unlock(&virt_entry->bind_lock); ret = kgsl_mmu_unmap_offset(pt, memdesc, virt_entry->memdesc.gpuaddr, offset, tmp_size); if (ret) return ret; ret = kgsl_mmu_sparse_dummy_map(pt, memdesc, offset, tmp_size); if (ret) return ret; if (ret == 0) { offset += tmp_size; size -= tmp_size; } } return ret; } static inline bool _is_phys_bindable(struct kgsl_mem_entry *phys_entry, uint64_t offset, uint64_t size, uint64_t flags) { struct kgsl_memdesc *memdesc = &phys_entry->memdesc; if (!IS_ALIGNED(offset | size, kgsl_memdesc_get_pagesize(memdesc))) return false; if (offset + size < offset) return false; if (!(flags & KGSL_SPARSE_BIND_MULTIPLE_TO_PHYS) && offset + size > memdesc->size) return false; return true; } static int _sparse_bind(struct kgsl_process_private *process, struct kgsl_mem_entry *virt_entry, uint64_t v_offset, struct kgsl_mem_entry *phys_entry, uint64_t p_offset, uint64_t size, uint64_t flags) { int ret; struct kgsl_pagetable *pagetable; struct kgsl_memdesc *memdesc = &phys_entry->memdesc; /* map the memory after unlocking if gpuaddr has been assigned */ if (memdesc->gpuaddr) return -EINVAL; pagetable = memdesc->pagetable; /* Clear out any mappings */ ret = kgsl_mmu_unmap_offset(pagetable, &virt_entry->memdesc, virt_entry->memdesc.gpuaddr, v_offset, size); if (ret) return ret; ret = kgsl_mmu_map_offset(pagetable, virt_entry->memdesc.gpuaddr, v_offset, memdesc, p_offset, size, flags); if (ret) { /* Try to clean up, but not the end of the world */ kgsl_mmu_sparse_dummy_map(pagetable, &virt_entry->memdesc, v_offset, size); return ret; } spin_lock(&virt_entry->bind_lock); ret = _sparse_add_to_bind_tree(virt_entry, v_offset, memdesc, p_offset, size, flags); spin_unlock(&virt_entry->bind_lock); if (ret == 0) memdesc->cur_bindings += size / PAGE_SIZE; return ret; } static long sparse_bind_range(struct kgsl_process_private *private, struct kgsl_sparse_binding_object *obj, struct kgsl_mem_entry *virt_entry) { struct kgsl_mem_entry *phys_entry; int ret; phys_entry = kgsl_sharedmem_find_id_flags(private, obj->id, KGSL_MEMFLAGS_SPARSE_PHYS); if (phys_entry == NULL) return -EINVAL; if (!_is_phys_bindable(phys_entry, obj->physoffset, obj->size, obj->flags)) { kgsl_mem_entry_put(phys_entry); return -EINVAL; } if (kgsl_memdesc_get_align(&virt_entry->memdesc) != kgsl_memdesc_get_align(&phys_entry->memdesc)) { kgsl_mem_entry_put(phys_entry); return -EINVAL; } ret = sparse_unbind_range(obj, virt_entry); if (ret) { kgsl_mem_entry_put(phys_entry); return -EINVAL; } ret = _sparse_bind(private, virt_entry, obj->virtoffset, phys_entry, obj->physoffset, obj->size, obj->flags & KGSL_SPARSE_BIND_MULTIPLE_TO_PHYS); if (ret == 0) { KGSL_STATS_ADD(obj->size, &kgsl_driver.stats.mapped, &kgsl_driver.stats.mapped_max); trace_sparse_bind(virt_entry->id, obj->virtoffset, phys_entry->id, obj->physoffset, obj->size, obj->flags); } kgsl_mem_entry_put(phys_entry); return ret; } long kgsl_ioctl_sparse_bind(struct kgsl_device_private *dev_priv, unsigned int cmd, void *data) { struct kgsl_process_private *private = dev_priv->process_priv; struct kgsl_device *device = dev_priv->device; struct kgsl_sparse_bind *param = data; struct kgsl_sparse_binding_object obj; struct kgsl_mem_entry *virt_entry; int pg_sz; void __user *ptr; int ret = 0; int i = 0; if (!(device->flags & KGSL_FLAG_SPARSE)) return -ENOTSUPP; ptr = (void __user *) (uintptr_t) param->list; if (param->size > sizeof(struct kgsl_sparse_binding_object) || param->count == 0 || ptr == NULL) return -EINVAL; virt_entry = kgsl_sharedmem_find_id_flags(private, param->id, KGSL_MEMFLAGS_SPARSE_VIRT); if (virt_entry == NULL) return -EINVAL; pg_sz = kgsl_memdesc_get_pagesize(&virt_entry->memdesc); for (i = 0; i < param->count; i++) { memset(&obj, 0, sizeof(obj)); ret = kgsl_copy_from_user(&obj, ptr, sizeof(obj), param->size); if (ret) break; /* Sanity check initial range */ if (obj.size == 0 || obj.virtoffset + obj.size < obj.size || obj.virtoffset + obj.size > virt_entry->memdesc.size || !(IS_ALIGNED(obj.virtoffset | obj.size, pg_sz))) { ret = -EINVAL; break; } if (obj.flags & KGSL_SPARSE_BIND) ret = sparse_bind_range(private, &obj, virt_entry); else if (obj.flags & KGSL_SPARSE_UNBIND) ret = sparse_unbind_range(&obj, virt_entry); else ret = -EINVAL; if (ret) break; ptr += sizeof(obj); } kgsl_mem_entry_put(virt_entry); return ret; } long kgsl_ioctl_gpu_sparse_command(struct kgsl_device_private *dev_priv, unsigned int cmd, void *data) { struct kgsl_gpu_sparse_command *param = data; struct kgsl_device *device = dev_priv->device; struct kgsl_context *context; struct kgsl_drawobj *drawobj[2]; struct kgsl_drawobj_sparse *sparseobj; long result; unsigned int i = 0; if (!(device->flags & KGSL_FLAG_SPARSE)) return -ENOTSUPP; /* Make sure sparse and syncpoint count isn't too big */ if (param->numsparse > KGSL_MAX_SPARSE || param->numsyncs > KGSL_MAX_SYNCPOINTS) return -EINVAL; /* Make sure there is atleast one sparse or sync */ if (param->numsparse == 0 && param->numsyncs == 0) return -EINVAL; /* Only Sparse commands are supported in this ioctl */ if (!(param->flags & KGSL_DRAWOBJ_SPARSE) || (param->flags & (KGSL_DRAWOBJ_SUBMIT_IB_LIST | KGSL_DRAWOBJ_MARKER | KGSL_DRAWOBJ_SYNC))) return -EINVAL; context = kgsl_context_get_owner(dev_priv, param->context_id); if (context == NULL) return -EINVAL; /* Restrict bind commands to bind context */ if (!(context->flags & KGSL_CONTEXT_SPARSE)) { kgsl_context_put(context); return -EINVAL; } if (param->numsyncs) { struct kgsl_drawobj_sync *syncobj = kgsl_drawobj_sync_create( device, context); if (IS_ERR(syncobj)) { result = PTR_ERR(syncobj); goto done; } drawobj[i++] = DRAWOBJ(syncobj); result = kgsl_drawobj_sync_add_synclist(device, syncobj, to_user_ptr(param->synclist), param->syncsize, param->numsyncs); if (result) goto done; } if (param->numsparse) { sparseobj = kgsl_drawobj_sparse_create(device, context, param->flags); if (IS_ERR(sparseobj)) { result = PTR_ERR(sparseobj); goto done; } sparseobj->id = param->id; drawobj[i++] = DRAWOBJ(sparseobj); result = kgsl_drawobj_sparse_add_sparselist(device, sparseobj, param->id, to_user_ptr(param->sparselist), param->sparsesize, param->numsparse); if (result) goto done; } result = dev_priv->device->ftbl->queue_cmds(dev_priv, context, drawobj, i, ¶m->timestamp); done: /* * -EPROTO is a "success" error - it just tells the user that the * context had previously faulted */ if (result && result != -EPROTO) while (i--) kgsl_drawobj_destroy(drawobj[i]); kgsl_context_put(context); return result; } void kgsl_sparse_bind(struct kgsl_process_private *private, struct kgsl_drawobj_sparse *sparseobj) { struct kgsl_sparseobj_node *sparse_node; struct kgsl_mem_entry *virt_entry = NULL; long ret = 0; char *name; virt_entry = kgsl_sharedmem_find_id_flags(private, sparseobj->id, KGSL_MEMFLAGS_SPARSE_VIRT); if (virt_entry == NULL) return; list_for_each_entry(sparse_node, &sparseobj->sparselist, node) { if (sparse_node->obj.flags & KGSL_SPARSE_BIND) { ret = sparse_bind_range(private, &sparse_node->obj, virt_entry); name = "bind"; } else { ret = sparse_unbind_range(&sparse_node->obj, virt_entry); name = "unbind"; } if (ret) KGSL_CORE_ERR("kgsl: Unable to '%s' ret %ld virt_id %d,phys_id %d, virt_offset %16.16llX,phys_offset %16.16llX, size %16.16llX,flags %16.16llX\n", name, ret, sparse_node->virt_id, sparse_node->obj.id, sparse_node->obj.virtoffset, sparse_node->obj.physoffset, sparse_node->obj.size, sparse_node->obj.flags); } kgsl_mem_entry_put(virt_entry); } EXPORT_SYMBOL(kgsl_sparse_bind); long kgsl_ioctl_gpuobj_info(struct kgsl_device_private *dev_priv, unsigned int cmd, void *data) { struct kgsl_process_private *private = dev_priv->process_priv; struct kgsl_gpuobj_info *param = data; struct kgsl_mem_entry *entry; if (param->id == 0) return -EINVAL; entry = kgsl_sharedmem_find_id(private, param->id); if (entry == NULL) return -EINVAL; param->id = entry->id; param->gpuaddr = entry->memdesc.gpuaddr; param->flags = entry->memdesc.flags; param->size = entry->memdesc.size; param->va_len = kgsl_memdesc_footprint(&entry->memdesc); /* * Entries can have multiple user mappings so thre isn't any one address * we can report. Plus, the user should already know their mappings, so * there isn't any value in reporting it back to them. */ param->va_addr = 0; kgsl_mem_entry_put(entry); return 0; } long kgsl_ioctl_gpuobj_set_info(struct kgsl_device_private *dev_priv, unsigned int cmd, void *data) { struct kgsl_process_private *private = dev_priv->process_priv; struct kgsl_gpuobj_set_info *param = data; struct kgsl_mem_entry *entry; int ret = 0; if (param->id == 0) return -EINVAL; entry = kgsl_sharedmem_find_id(private, param->id); if (entry == NULL) return -EINVAL; if (param->flags & KGSL_GPUOBJ_SET_INFO_METADATA) copy_metadata(entry, param->metadata, param->metadata_len); if (param->flags & KGSL_GPUOBJ_SET_INFO_TYPE) { if (param->type <= (KGSL_MEMTYPE_MASK >> KGSL_MEMTYPE_SHIFT)) { entry->memdesc.flags &= ~((uint64_t) KGSL_MEMTYPE_MASK); entry->memdesc.flags |= (uint64_t)((param->type << KGSL_MEMTYPE_SHIFT) & KGSL_MEMTYPE_MASK); } else ret = -EINVAL; } kgsl_mem_entry_put(entry); return ret; } /** * kgsl_ioctl_timestamp_event - Register a new timestamp event from userspace * @dev_priv - pointer to the private device structure * @cmd - the ioctl cmd passed from kgsl_ioctl * @data - the user data buffer from kgsl_ioctl * @returns 0 on success or error code on failure */ long kgsl_ioctl_timestamp_event(struct kgsl_device_private *dev_priv, unsigned int cmd, void *data) { struct kgsl_timestamp_event *param = data; int ret; switch (param->type) { case KGSL_TIMESTAMP_EVENT_FENCE: ret = kgsl_add_fence_event(dev_priv->device, param->context_id, param->timestamp, param->priv, param->len, dev_priv); break; default: ret = -EINVAL; } return ret; } static int kgsl_mmap_memstore(struct kgsl_device *device, struct vm_area_struct *vma) { struct kgsl_memdesc *memdesc = &device->memstore; int result; unsigned int vma_size = vma->vm_end - vma->vm_start; /* The memstore can only be mapped as read only */ if (vma->vm_flags & VM_WRITE) return -EPERM; vma->vm_flags &= ~VM_MAYWRITE; if (memdesc->size != vma_size) { KGSL_MEM_ERR(device, "memstore bad size: %d should be %llu\n", vma_size, memdesc->size); return -EINVAL; } vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); result = remap_pfn_range(vma, vma->vm_start, device->memstore.physaddr >> PAGE_SHIFT, vma_size, vma->vm_page_prot); if (result != 0) KGSL_MEM_ERR(device, "remap_pfn_range failed: %d\n", result); return result; } /* * kgsl_gpumem_vm_open is called whenever a vma region is copied or split. * Increase the refcount to make sure that the accounting stays correct */ static void kgsl_gpumem_vm_open(struct vm_area_struct *vma) { struct kgsl_mem_entry *entry = vma->vm_private_data; if (kgsl_mem_entry_get(entry) == 0) vma->vm_private_data = NULL; atomic_inc(&entry->map_count); } static int kgsl_gpumem_vm_fault(struct vm_fault *vmf) { struct kgsl_mem_entry *entry = vmf->vma->vm_private_data; if (!entry) return VM_FAULT_SIGBUS; if (!entry->memdesc.ops || !entry->memdesc.ops->vmfault) return VM_FAULT_SIGBUS; return entry->memdesc.ops->vmfault(&entry->memdesc, vmf->vma, vmf); } static void kgsl_gpumem_vm_close(struct vm_area_struct *vma) { struct kgsl_mem_entry *entry = vma->vm_private_data; if (!entry) return; /* * Remove the memdesc from the mapped stat once all the mappings have * gone away */ if (!atomic_dec_return(&entry->map_count)) atomic64_sub(entry->memdesc.size, &entry->priv->gpumem_mapped); kgsl_mem_entry_put(entry); } static const struct vm_operations_struct kgsl_gpumem_vm_ops = { .open = kgsl_gpumem_vm_open, .fault = kgsl_gpumem_vm_fault, .close = kgsl_gpumem_vm_close, }; static int get_mmap_entry(struct kgsl_process_private *private, struct kgsl_mem_entry **out_entry, unsigned long pgoff, unsigned long len) { int ret = 0; struct kgsl_mem_entry *entry; entry = kgsl_sharedmem_find_id(private, pgoff); if (entry == NULL) entry = kgsl_sharedmem_find(private, pgoff << PAGE_SHIFT); if (!entry) return -EINVAL; if (!entry->memdesc.ops || !entry->memdesc.ops->vmflags || !entry->memdesc.ops->vmfault) { ret = -EINVAL; goto err_put; } if (entry->memdesc.flags & KGSL_MEMFLAGS_SPARSE_PHYS) { if (len != entry->memdesc.size) { ret = -EINVAL; goto err_put; } } /* Don't allow ourselves to remap user memory */ if (entry->memdesc.flags & KGSL_MEMFLAGS_USERMEM_ADDR) { ret = -EBUSY; goto err_put; } if (kgsl_memdesc_use_cpu_map(&entry->memdesc)) { if (len != kgsl_memdesc_footprint(&entry->memdesc)) { ret = -ERANGE; goto err_put; } } else if (len != kgsl_memdesc_footprint(&entry->memdesc) && len != entry->memdesc.size) { /* * If cpu_map != gpumap then user can map either the * footprint or the entry size */ ret = -ERANGE; goto err_put; } *out_entry = entry; return 0; err_put: kgsl_mem_entry_put(entry); return ret; } static unsigned long _gpu_set_svm_region(struct kgsl_process_private *private, struct kgsl_mem_entry *entry, unsigned long addr, unsigned long size) { int ret; /* * Protect access to the gpuaddr here to prevent multiple vmas from * trying to map a SVM region at the same time */ spin_lock(&entry->memdesc.lock); if (entry->memdesc.gpuaddr) { spin_unlock(&entry->memdesc.lock); return (unsigned long) -EBUSY; } ret = kgsl_mmu_set_svm_region(private->pagetable, (uint64_t) addr, (uint64_t) size); if (ret != 0) { spin_unlock(&entry->memdesc.lock); return (unsigned long) ret; } entry->memdesc.gpuaddr = (uint64_t) addr; spin_unlock(&entry->memdesc.lock); entry->memdesc.pagetable = private->pagetable; ret = kgsl_mmu_map(private->pagetable, &entry->memdesc); if (ret) { kgsl_mmu_put_gpuaddr(&entry->memdesc); return (unsigned long) ret; } kgsl_memfree_purge(private->pagetable, entry->memdesc.gpuaddr, entry->memdesc.size); return addr; } static unsigned long _gpu_find_svm(struct kgsl_process_private *private, unsigned long start, unsigned long end, unsigned long len, unsigned int align) { uint64_t addr = kgsl_mmu_find_svm_region(private->pagetable, (uint64_t) start, (uint64_t)end, (uint64_t) len, align); if (!IS_ERR_VALUE((unsigned long)addr) && (addr > ULONG_MAX)) WARN(1, "Couldn't find range\n"); return (unsigned long) addr; } /* Search top down in the CPU VM region for a free address */ static unsigned long _cpu_get_unmapped_area(unsigned long bottom, unsigned long top, unsigned long len, unsigned long align) { struct vm_unmapped_area_info info; unsigned long addr, err; info.flags = VM_UNMAPPED_AREA_TOPDOWN; info.low_limit = bottom; info.high_limit = top; info.length = len; info.align_offset = 0; info.align_mask = align - 1; addr = vm_unmapped_area(&info); if (IS_ERR_VALUE(addr)) return addr; err = security_mmap_addr(addr); return err ? err : addr; } static unsigned long _search_range(struct kgsl_process_private *private, struct kgsl_mem_entry *entry, unsigned long start, unsigned long end, unsigned long len, uint64_t align) { unsigned long cpu, gpu = end, result = -ENOMEM; while (gpu > start) { /* find a new empty spot on the CPU below the last one */ cpu = _cpu_get_unmapped_area(start, gpu, len, (unsigned long) align); if (IS_ERR_VALUE(cpu)) { result = cpu; break; } /* try to map it on the GPU */ result = _gpu_set_svm_region(private, entry, cpu, len); if (!IS_ERR_VALUE(result)) break; /* * _gpu_set_svm_region will return -EBUSY if we tried to set up * SVM on an object that already has a GPU address. If * that happens don't bother walking the rest of the * region */ if ((long) result == -EBUSY) return -EBUSY; trace_kgsl_mem_unmapped_area_collision(entry, cpu, len); if (cpu <= start) { result = -ENOMEM; break; } /* move downward to the next empty spot on the GPU */ gpu = _gpu_find_svm(private, start, cpu, len, align); if (IS_ERR_VALUE(gpu)) { result = gpu; break; } /* Check that_gpu_find_svm doesn't put us in a loop */ if (gpu >= cpu) { result = -ENOMEM; break; } /* Break if the recommended GPU address is out of range */ if (gpu < start) { result = -ENOMEM; break; } /* * Add the length of the chunk to the GPU address to yield the * upper bound for the CPU search */ gpu += len; } return result; } static unsigned long _get_svm_area(struct kgsl_process_private *private, struct kgsl_mem_entry *entry, unsigned long hint, unsigned long len, unsigned long flags) { uint64_t start, end; int align_shift = kgsl_memdesc_get_align(&entry->memdesc); uint64_t align; unsigned long result; unsigned long addr; if (align_shift >= ilog2(SZ_2M)) align = SZ_2M; else if (align_shift >= ilog2(SZ_1M)) align = SZ_1M; else if (align_shift >= ilog2(SZ_64K)) align = SZ_64K; else align = SZ_4K; align = max_t(uint64_t, align, entry->memdesc.pad_to); /* get the GPU pagetable's SVM range */ if (kgsl_mmu_svm_range(private->pagetable, &start, &end, entry->memdesc.flags)) return -ERANGE; /* now clamp the range based on the CPU's requirements */ start = max_t(uint64_t, start, mmap_min_addr); end = min_t(uint64_t, end, current->mm->mmap_base); if (start >= end) return -ERANGE; if (flags & MAP_FIXED) { /* We must honor alignment requirements */ if (!IS_ALIGNED(hint, align)) return -EINVAL; /* we must use addr 'hint' or fail */ return _gpu_set_svm_region(private, entry, hint, len); } else if (hint != 0) { struct vm_area_struct *vma; /* * See if the hint is usable, if not we will use * it as the start point for searching. */ addr = clamp_t(unsigned long, hint & ~(align - 1), start, (end - len) & ~(align - 1)); vma = find_vma(current->mm, addr); if (vma == NULL || ((addr + len) <= vma->vm_start)) { result = _gpu_set_svm_region(private, entry, addr, len); /* On failure drop down to keep searching */ if (!IS_ERR_VALUE(result)) return result; } } else { /* no hint, start search at the top and work down */ addr = end & ~(align - 1); } /* * Search downwards from the hint first. If that fails we * must try to search above it. */ result = _search_range(private, entry, start, addr, len, align); if (IS_ERR_VALUE(result) && hint != 0) result = _search_range(private, entry, addr, end, len, align); return result; } static unsigned long kgsl_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { unsigned long val; unsigned long vma_offset = pgoff << PAGE_SHIFT; struct kgsl_device_private *dev_priv = file->private_data; struct kgsl_process_private *private = dev_priv->process_priv; struct kgsl_device *device = dev_priv->device; struct kgsl_mem_entry *entry = NULL; if (vma_offset == (unsigned long) device->memstore.gpuaddr) return get_unmapped_area(NULL, addr, len, pgoff, flags); val = get_mmap_entry(private, &entry, pgoff, len); if (val) return val; /* Do not allow CPU mappings for secure buffers */ if (kgsl_memdesc_is_secured(&entry->memdesc)) { val = -EPERM; goto put; } if (!kgsl_memdesc_use_cpu_map(&entry->memdesc)) { val = get_unmapped_area(NULL, addr, len, 0, flags); if (IS_ERR_VALUE(val)) KGSL_DRV_ERR_RATELIMIT(device, "get_unmapped_area: pid %d addr %lx pgoff %lx len %ld failed error %d\n", pid_nr(private->pid), addr, pgoff, len, (int) val); } else { val = _get_svm_area(private, entry, addr, len, flags); if (IS_ERR_VALUE(val)) KGSL_DRV_ERR_RATELIMIT(device, "_get_svm_area: pid %d mmap_base %lx addr %lx pgoff %lx len %ld failed error %d\n", pid_nr(private->pid), current->mm->mmap_base, addr, pgoff, len, (int) val); #if defined(CONFIG_DISPLAY_SAMSUNG_LEGO) if (IS_ERR_VALUE(val)) { kgsl_svm_addr_mapping_log(device, pid_nr(private->pid)); kgsl_svm_addr_hole_log(device, pid_nr(private->pid), entry->memdesc.flags); } #endif } put: kgsl_mem_entry_put(entry); return val; } static int kgsl_mmap(struct file *file, struct vm_area_struct *vma) { unsigned int ret, cache; unsigned long vma_offset = vma->vm_pgoff << PAGE_SHIFT; struct kgsl_device_private *dev_priv = file->private_data; struct kgsl_process_private *private = dev_priv->process_priv; struct kgsl_mem_entry *entry = NULL; struct kgsl_device *device = dev_priv->device; /* Handle leagacy behavior for memstore */ if (vma_offset == (unsigned long) device->memstore.gpuaddr) return kgsl_mmap_memstore(device, vma); /* * The reference count on the entry that we get from * get_mmap_entry() will be held until kgsl_gpumem_vm_close(). */ ret = get_mmap_entry(private, &entry, vma->vm_pgoff, vma->vm_end - vma->vm_start); if (ret) return ret; vma->vm_flags |= entry->memdesc.ops->vmflags; vma->vm_private_data = entry; /* Determine user-side caching policy */ cache = kgsl_memdesc_get_cachemode(&entry->memdesc); switch (cache) { case KGSL_CACHEMODE_UNCACHED: vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); break; case KGSL_CACHEMODE_WRITETHROUGH: vma->vm_page_prot = pgprot_writethroughcache(vma->vm_page_prot); if (pgprot_val(vma->vm_page_prot) == pgprot_val(pgprot_writebackcache(vma->vm_page_prot))) WARN_ONCE(1, "WRITETHROUGH is deprecated for arm64"); break; case KGSL_CACHEMODE_WRITEBACK: vma->vm_page_prot = pgprot_writebackcache(vma->vm_page_prot); break; case KGSL_CACHEMODE_WRITECOMBINE: default: vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); break; } vma->vm_ops = &kgsl_gpumem_vm_ops; if (cache == KGSL_CACHEMODE_WRITEBACK || cache == KGSL_CACHEMODE_WRITETHROUGH) { int i; unsigned long addr = vma->vm_start; struct kgsl_memdesc *m = &entry->memdesc; for (i = 0; i < m->page_count; i++) { struct page *page = m->pages[i]; vm_insert_page(vma, addr, page); addr += PAGE_SIZE; } } vma->vm_file = file; if (atomic_inc_return(&entry->map_count) == 1) atomic64_add(entry->memdesc.size, &entry->priv->gpumem_mapped); trace_kgsl_mem_mmap(entry, vma->vm_start); return 0; } static irqreturn_t kgsl_irq_handler(int irq, void *data) { struct kgsl_device *device = data; return device->ftbl->irq_handler(device); } #define KGSL_READ_MESSAGE "OH HAI GPU\n" static ssize_t kgsl_read(struct file *filep, char __user *buf, size_t count, loff_t *pos) { return simple_read_from_buffer(buf, count, pos, KGSL_READ_MESSAGE, strlen(KGSL_READ_MESSAGE) + 1); } static const struct file_operations kgsl_fops = { .owner = THIS_MODULE, .release = kgsl_release, .open = kgsl_open, .mmap = kgsl_mmap, .read = kgsl_read, .get_unmapped_area = kgsl_get_unmapped_area, .unlocked_ioctl = kgsl_ioctl, .compat_ioctl = kgsl_compat_ioctl, }; struct kgsl_driver kgsl_driver = { .process_mutex = __MUTEX_INITIALIZER(kgsl_driver.process_mutex), .ptlock = __SPIN_LOCK_UNLOCKED(kgsl_driver.ptlock), .devlock = __MUTEX_INITIALIZER(kgsl_driver.devlock), /* * Full cache flushes are faster than line by line on at least * 8064 and 8974 once the region to be flushed is > 16mb. */ .full_cache_threshold = SZ_16M, .stats.vmalloc = ATOMIC_LONG_INIT(0), .stats.vmalloc_max = ATOMIC_LONG_INIT(0), .stats.page_alloc = ATOMIC_LONG_INIT(0), .stats.page_alloc_max = ATOMIC_LONG_INIT(0), .stats.coherent = ATOMIC_LONG_INIT(0), .stats.coherent_max = ATOMIC_LONG_INIT(0), .stats.secure = ATOMIC_LONG_INIT(0), .stats.secure_max = ATOMIC_LONG_INIT(0), .stats.mapped = ATOMIC_LONG_INIT(0), .stats.mapped_max = ATOMIC_LONG_INIT(0), .stats.page_free_pending = ATOMIC_LONG_INIT(0), .stats.page_alloc_pending = ATOMIC_LONG_INIT(0), }; EXPORT_SYMBOL(kgsl_driver); static void _unregister_device(struct kgsl_device *device) { int minor; mutex_lock(&kgsl_driver.devlock); for (minor = 0; minor < KGSL_DEVICE_MAX; minor++) { if (device == kgsl_driver.devp[minor]) break; } if (minor != KGSL_DEVICE_MAX) { device_destroy(kgsl_driver.class, MKDEV(MAJOR(kgsl_driver.major), minor)); kgsl_driver.devp[minor] = NULL; } mutex_unlock(&kgsl_driver.devlock); } static int _register_device(struct kgsl_device *device) { static u64 dma_mask = DMA_BIT_MASK(64); int minor, ret; dev_t dev; /* Find a minor for the device */ mutex_lock(&kgsl_driver.devlock); for (minor = 0; minor < KGSL_DEVICE_MAX; minor++) { if (kgsl_driver.devp[minor] == NULL) { kgsl_driver.devp[minor] = device; break; } } mutex_unlock(&kgsl_driver.devlock); if (minor == KGSL_DEVICE_MAX) { KGSL_CORE_ERR("minor devices exhausted\n"); return -ENODEV; } /* Create the device */ dev = MKDEV(MAJOR(kgsl_driver.major), minor); device->dev = device_create(kgsl_driver.class, &device->pdev->dev, dev, device, device->name); if (IS_ERR(device->dev)) { mutex_lock(&kgsl_driver.devlock); kgsl_driver.devp[minor] = NULL; mutex_unlock(&kgsl_driver.devlock); ret = PTR_ERR(device->dev); KGSL_CORE_ERR("device_create(%s): %d\n", device->name, ret); return ret; } device->dev->dma_mask = &dma_mask; arch_setup_dma_ops(device->dev, 0, 0, NULL, false); dev_set_drvdata(&device->pdev->dev, device); return 0; } int kgsl_device_platform_probe(struct kgsl_device *device) { int status = -EINVAL; struct resource *res; int cpu; status = _register_device(device); if (status) return status; /* Initialize logging first, so that failures below actually print. */ kgsl_device_debugfs_init(device); /* Disable the sparse ioctl invocation as they are not used */ device->flags &= ~KGSL_FLAG_SPARSE; status = kgsl_pwrctrl_init(device); if (status) goto error; /* * Check if a shadermemname is defined, and then get shader memory * details including shader memory starting physical address * and shader memory length */ if (device->shadermemname != NULL) { res = platform_get_resource_byname(device->pdev, IORESOURCE_MEM, device->shadermemname); if (res == NULL) { KGSL_DRV_WARN(device, "Shader memory: platform_get_resource_byname failed\n"); } else { device->shader_mem_phys = res->start; device->shader_mem_len = resource_size(res); } if (!devm_request_mem_region(device->dev, device->shader_mem_phys, device->shader_mem_len, device->name)) { KGSL_DRV_WARN(device, "request_mem_region_failed\n"); } } if (!devm_request_mem_region(device->dev, device->reg_phys, device->reg_len, device->name)) { KGSL_DRV_ERR(device, "request_mem_region failed\n"); status = -ENODEV; goto error_pwrctrl_close; } device->reg_virt = devm_ioremap(device->dev, device->reg_phys, device->reg_len); if (device->reg_virt == NULL) { KGSL_DRV_ERR(device, "ioremap failed\n"); status = -ENODEV; goto error_pwrctrl_close; } /*acquire interrupt */ device->pwrctrl.interrupt_num = platform_get_irq_byname(device->pdev, device->pwrctrl.irq_name); if (device->pwrctrl.interrupt_num <= 0) { KGSL_DRV_ERR(device, "platform_get_irq_byname failed: %d\n", device->pwrctrl.interrupt_num); status = -EINVAL; goto error_pwrctrl_close; } status = devm_request_irq(device->dev, device->pwrctrl.interrupt_num, kgsl_irq_handler, IRQF_TRIGGER_HIGH, device->name, device); if (status) { KGSL_DRV_ERR(device, "request_irq(%d) failed: %d\n", device->pwrctrl.interrupt_num, status); goto error_pwrctrl_close; } disable_irq(device->pwrctrl.interrupt_num); KGSL_DRV_INFO(device, "dev_id %d regs phys 0x%08lx size 0x%08x\n", device->id, device->reg_phys, device->reg_len); rwlock_init(&device->context_lock); spin_lock_init(&device->submit_lock); setup_timer(&device->idle_timer, kgsl_timer, (unsigned long) device); status = kgsl_mmu_probe(device, kgsl_mmu_type); if (status != 0) goto error_pwrctrl_close; /* Check to see if our device can perform DMA correctly */ status = dma_set_coherent_mask(&device->pdev->dev, KGSL_DMA_BIT_MASK); if (status) goto error_close_mmu; /* Allocate memory for dma_parms and set the max_seg_size */ device->dev->dma_parms = kzalloc(sizeof(*device->dev->dma_parms), GFP_KERNEL); dma_set_max_seg_size(device->dev, KGSL_DMA_BIT_MASK); /* Initialize the memory pools */ kgsl_init_page_pools(device->pdev); status = kgsl_allocate_global(device, &device->memstore, KGSL_MEMSTORE_SIZE, 0, KGSL_MEMDESC_CONTIG, "memstore"); if (status != 0) goto error_close_mmu; /* * The default request type PM_QOS_REQ_ALL_CORES is * applicable to all CPU cores that are online and * would have a power impact when there are more * number of CPUs. PM_QOS_REQ_AFFINE_IRQ request * type shall update/apply the vote only to that CPU to * which IRQ's affinity is set to. */ #ifdef CONFIG_SMP #ifdef CONFIG_DISPLAY_SAMSUNG_LEGO device->pwrctrl.pm_qos_req_dma.type = PM_QOS_REQ_AFFINE_CORES; cpumask_empty(&device->pwrctrl.pm_qos_req_dma.cpus_affine); for_each_possible_cpu(cpu) { if ((1 << cpu) & 0xf) cpumask_set_cpu(cpu, &device->pwrctrl.pm_qos_req_dma.cpus_affine); } #else device->pwrctrl.pm_qos_req_dma.type = PM_QOS_REQ_AFFINE_IRQ; device->pwrctrl.pm_qos_req_dma.irq = device->pwrctrl.interrupt_num; #endif #endif pm_qos_add_request(&device->pwrctrl.pm_qos_req_dma, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE); if (device->pwrctrl.l2pc_cpus_mask) { struct pm_qos_request *qos = &device->pwrctrl.l2pc_cpus_qos; qos->type = PM_QOS_REQ_AFFINE_CORES; cpumask_empty(&qos->cpus_affine); for_each_possible_cpu(cpu) { if ((1 << cpu) & device->pwrctrl.l2pc_cpus_mask) cpumask_set_cpu(cpu, &qos->cpus_affine); } pm_qos_add_request(&device->pwrctrl.l2pc_cpus_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE); } device->events_wq = alloc_workqueue("kgsl-events", WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); /* Initialize the snapshot engine */ kgsl_device_snapshot_init(device); /* Initialize common sysfs entries */ kgsl_pwrctrl_init_sysfs(device); return 0; error_close_mmu: kgsl_mmu_close(device); error_pwrctrl_close: kgsl_pwrctrl_close(device); error: kgsl_device_debugfs_close(device); _unregister_device(device); return status; } EXPORT_SYMBOL(kgsl_device_platform_probe); void kgsl_device_platform_remove(struct kgsl_device *device) { destroy_workqueue(device->events_wq); kfree(device->dev->dma_parms); device->dev->dma_parms = NULL; kgsl_device_snapshot_close(device); kgsl_exit_page_pools(); kgsl_pwrctrl_uninit_sysfs(device); pm_qos_remove_request(&device->pwrctrl.pm_qos_req_dma); if (device->pwrctrl.l2pc_cpus_mask) pm_qos_remove_request(&device->pwrctrl.l2pc_cpus_qos); idr_destroy(&device->context_idr); kgsl_free_global(device, &device->memstore); kgsl_mmu_close(device); kgsl_pwrctrl_close(device); kgsl_device_debugfs_close(device); _unregister_device(device); } EXPORT_SYMBOL(kgsl_device_platform_remove); static int kgsl_sharedmem_size_notifier(struct notifier_block *nb, unsigned long action, void *data) { struct seq_file *s; s = (struct seq_file *)data; if (s != NULL) seq_printf(s, "KgslSharedmem: %8lu kB\n", atomic_long_read(&kgsl_driver.stats.page_alloc) >> 10); else pr_cont("KgslSharedmem:%lukB ", atomic_long_read(&kgsl_driver.stats.page_alloc) >> 10); return 0; } static struct notifier_block kgsl_sharedmem_size_nb = { .notifier_call = kgsl_sharedmem_size_notifier, }; static void kgsl_core_exit(void) { kgsl_events_exit(); kgsl_core_debugfs_close(); /* * We call kgsl_sharedmem_uninit_sysfs() and device_unregister() * only if kgsl_driver.virtdev has been populated. * We check at least one member of kgsl_driver.virtdev to * see if it is not NULL (and thus, has been populated). */ if (kgsl_driver.virtdev.class) { kgsl_sharedmem_uninit_sysfs(); device_unregister(&kgsl_driver.virtdev); } if (kgsl_driver.class) { class_destroy(kgsl_driver.class); kgsl_driver.class = NULL; } kgsl_drawobjs_cache_exit(); kgsl_memfree_exit(); unregister_chrdev_region(kgsl_driver.major, KGSL_DEVICE_MAX); show_mem_extra_notifier_unregister(&kgsl_sharedmem_size_nb); } static int __init kgsl_core_init(void) { int result = 0; struct sched_param param = { .sched_priority = 16 }; place_marker("M - DRIVER KGSL Init"); /* alloc major and minor device numbers */ result = alloc_chrdev_region(&kgsl_driver.major, 0, KGSL_DEVICE_MAX, "kgsl"); if (result < 0) { KGSL_CORE_ERR("alloc_chrdev_region failed err = %d\n", result); goto err; } cdev_init(&kgsl_driver.cdev, &kgsl_fops); kgsl_driver.cdev.owner = THIS_MODULE; kgsl_driver.cdev.ops = &kgsl_fops; result = cdev_add(&kgsl_driver.cdev, MKDEV(MAJOR(kgsl_driver.major), 0), KGSL_DEVICE_MAX); if (result) { KGSL_CORE_ERR("kgsl: cdev_add() failed, dev_num= %d,result= %d\n", kgsl_driver.major, result); goto err; } kgsl_driver.class = class_create(THIS_MODULE, "kgsl"); if (IS_ERR(kgsl_driver.class)) { result = PTR_ERR(kgsl_driver.class); KGSL_CORE_ERR("failed to create class for kgsl"); goto err; } /* * Make a virtual device for managing core related things * in sysfs */ kgsl_driver.virtdev.class = kgsl_driver.class; dev_set_name(&kgsl_driver.virtdev, "kgsl"); result = device_register(&kgsl_driver.virtdev); if (result) { KGSL_CORE_ERR("driver_register failed\n"); goto err; } /* Make kobjects in the virtual device for storing statistics */ kgsl_driver.ptkobj = kobject_create_and_add("pagetables", &kgsl_driver.virtdev.kobj); kgsl_driver.prockobj = kobject_create_and_add("proc", &kgsl_driver.virtdev.kobj); kgsl_core_debugfs_init(); kgsl_sharedmem_init_sysfs(); INIT_LIST_HEAD(&kgsl_driver.process_list); INIT_LIST_HEAD(&kgsl_driver.pagetable_list); kgsl_driver.workqueue = alloc_workqueue("kgsl-workqueue", WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); kgsl_driver.mem_workqueue = alloc_workqueue("kgsl-mementry", WQ_UNBOUND | WQ_MEM_RECLAIM, 0); kthread_init_worker(&kgsl_driver.worker); kgsl_driver.worker_thread = kthread_run(kthread_worker_fn, &kgsl_driver.worker, "kgsl_worker_thread"); if (IS_ERR(kgsl_driver.worker_thread)) { pr_err("unable to start kgsl thread\n"); goto err; } sched_setscheduler(kgsl_driver.worker_thread, SCHED_FIFO, ¶m); kgsl_events_init(); result = kgsl_drawobjs_cache_init(); if (result) goto err; kgsl_memfree_init(); place_marker("M - DRIVER KGSL Ready"); show_mem_extra_notifier_register(&kgsl_sharedmem_size_nb); return 0; err: kgsl_core_exit(); return result; } module_init(kgsl_core_init); module_exit(kgsl_core_exit); MODULE_DESCRIPTION("MSM GPU driver"); MODULE_LICENSE("GPL v2");