/* * Copyright (c) 2012-2020, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #define pr_fmt(fmt) "[drm-dp] %s: " fmt, __func__ #include #include #include "dp_parser.h" static void dp_parser_unmap_io_resources(struct dp_parser *parser) { int i = 0; struct dp_io *io = &parser->io; for (i = 0; i < io->len; i++) msm_dss_iounmap(&io->data[i].io); } static int dp_parser_reg(struct dp_parser *parser) { int rc = 0, i = 0; u32 reg_count; struct platform_device *pdev = parser->pdev; struct dp_io *io = &parser->io; struct device *dev = &pdev->dev; reg_count = of_property_count_strings(dev->of_node, "reg-names"); if (reg_count <= 0) { pr_err("no reg defined\n"); return -EINVAL; } io->len = reg_count; io->data = devm_kzalloc(dev, sizeof(struct dp_io_data) * reg_count, GFP_KERNEL); if (!io->data) return -ENOMEM; for (i = 0; i < reg_count; i++) { of_property_read_string_index(dev->of_node, "reg-names", i, &io->data[i].name); rc = msm_dss_ioremap_byname(pdev, &io->data[i].io, io->data[i].name); if (rc) { pr_err("unable to remap %s resources\n", io->data[i].name); goto err; } } return 0; err: dp_parser_unmap_io_resources(parser); return rc; } static const char *dp_get_phy_aux_config_property(u32 cfg_type) { switch (cfg_type) { case PHY_AUX_CFG0: return "qcom,aux-cfg0-settings"; case PHY_AUX_CFG1: return "qcom,aux-cfg1-settings"; case PHY_AUX_CFG2: return "qcom,aux-cfg2-settings"; case PHY_AUX_CFG3: return "qcom,aux-cfg3-settings"; case PHY_AUX_CFG4: return "qcom,aux-cfg4-settings"; case PHY_AUX_CFG5: return "qcom,aux-cfg5-settings"; case PHY_AUX_CFG6: return "qcom,aux-cfg6-settings"; case PHY_AUX_CFG7: return "qcom,aux-cfg7-settings"; case PHY_AUX_CFG8: return "qcom,aux-cfg8-settings"; case PHY_AUX_CFG9: return "qcom,aux-cfg9-settings"; default: return "unknown"; } } static void dp_parser_phy_aux_cfg_reset(struct dp_parser *parser) { int i = 0; for (i = 0; i < PHY_AUX_CFG_MAX; i++) parser->aux_cfg[i] = (const struct dp_aux_cfg){ 0 }; } static int dp_parser_aux(struct dp_parser *parser) { struct device_node *of_node = parser->pdev->dev.of_node; int len = 0, i = 0, j = 0, config_count = 0; const char *data; int const minimum_config_count = 1; for (i = 0; i < PHY_AUX_CFG_MAX; i++) { const char *property = dp_get_phy_aux_config_property(i); data = of_get_property(of_node, property, &len); if (!data) { pr_err("Unable to read %s\n", property); goto error; } config_count = len - 1; if ((config_count < minimum_config_count) || (config_count > DP_AUX_CFG_MAX_VALUE_CNT)) { pr_err("Invalid config count (%d) configs for %s\n", config_count, property); goto error; } parser->aux_cfg[i].offset = data[0]; parser->aux_cfg[i].cfg_cnt = config_count; pr_debug("%s offset=0x%x, cfg_cnt=%d\n", property, parser->aux_cfg[i].offset, parser->aux_cfg[i].cfg_cnt); for (j = 1; j < len; j++) { parser->aux_cfg[i].lut[j - 1] = data[j]; pr_debug("%s lut[%d]=0x%x\n", property, i, parser->aux_cfg[i].lut[j - 1]); } } return 0; error: dp_parser_phy_aux_cfg_reset(parser); return -EINVAL; } static int dp_parser_misc(struct dp_parser *parser) { int rc = 0, len = 0, i = 0; const char *data = NULL; struct device_node *of_node = parser->pdev->dev.of_node; data = of_get_property(of_node, "qcom,logical2physical-lane-map", &len); if (data && (len == DP_MAX_PHY_LN)) { for (i = 0; i < len; i++) parser->l_map[i] = data[i]; } else { pr_debug("Incorrect mapping, configure default\n"); parser->l_map[0] = DP_PHY_LN0; parser->l_map[1] = DP_PHY_LN1; parser->l_map[2] = DP_PHY_LN2; parser->l_map[3] = DP_PHY_LN3; } data = of_get_property(of_node, "qcom,pn-swap-lane-map", &len); if (data && (len == DP_MAX_PHY_LN)) { for (i = 0; i < len; i++) parser->l_pnswap |= (data[i] & 0x01) << i; } rc = of_property_read_u32(of_node, "qcom,max-pclk-frequency-khz", &parser->max_pclk_khz); if (rc) parser->max_pclk_khz = DP_MAX_PIXEL_CLK_KHZ; rc = of_property_read_u32(of_node, "qcom,max-lclk-frequency-khz", &parser->max_lclk_khz); if (rc) parser->max_lclk_khz = DP_MAX_LINK_CLK_KHZ; rc = of_property_read_u32(of_node, "qcom,max-hdisplay", &parser->max_hdisplay); rc = of_property_read_u32(of_node, "qcom,max-vdisplay", &parser->max_vdisplay); parser->display_type = of_get_property(of_node, "qcom,display-type", NULL); if (!parser->display_type) parser->display_type = "unknown"; return 0; } static int dp_parser_msm_hdcp_dev(struct dp_parser *parser) { struct device_node *node; struct platform_device *pdev; node = of_find_compatible_node(NULL, NULL, "qcom,msm-hdcp"); if (!node) { // This is a non-fatal error, module initialization can proceed pr_warn("couldn't find msm-hdcp node\n"); return 0; } pdev = of_find_device_by_node(node); if (!pdev) { // This is a non-fatal error, module initialization can proceed pr_warn("couldn't find msm-hdcp pdev\n"); return 0; } parser->msm_hdcp_dev = &pdev->dev; return 0; } static int dp_parser_pinctrl(struct dp_parser *parser) { struct dp_pinctrl *pinctrl = &parser->pinctrl; pinctrl->pin = devm_pinctrl_get(&parser->pdev->dev); if (IS_ERR_OR_NULL(pinctrl->pin)) { pr_debug("failed to get pinctrl\n"); return 0; } if (parser->no_aux_switch && parser->lphw_hpd) { pinctrl->state_hpd_tlmm = pinctrl->state_hpd_ctrl = NULL; pinctrl->state_hpd_tlmm = pinctrl_lookup_state(pinctrl->pin, "mdss_dp_hpd_tlmm"); if (!IS_ERR_OR_NULL(pinctrl->state_hpd_tlmm)) { pinctrl->state_hpd_ctrl = pinctrl_lookup_state( pinctrl->pin, "mdss_dp_hpd_ctrl"); } if (IS_ERR_OR_NULL(pinctrl->state_hpd_tlmm) || IS_ERR_OR_NULL(pinctrl->state_hpd_ctrl)) { pinctrl->state_hpd_tlmm = NULL; pinctrl->state_hpd_ctrl = NULL; pr_debug("tlmm or ctrl pinctrl state does not exist\n"); } } pinctrl->state_active = pinctrl_lookup_state(pinctrl->pin, "mdss_dp_active"); if (IS_ERR_OR_NULL(pinctrl->state_active)) { pinctrl->state_active = NULL; pr_debug("failed to get pinctrl active state\n"); } pinctrl->state_suspend = pinctrl_lookup_state(pinctrl->pin, "mdss_dp_sleep"); if (IS_ERR_OR_NULL(pinctrl->state_suspend)) { pinctrl->state_suspend = NULL; pr_debug("failed to get pinctrl suspend state\n"); } return 0; } static int dp_parser_gpio(struct dp_parser *parser) { int i = 0; struct device *dev = &parser->pdev->dev; struct device_node *of_node = dev->of_node; struct dss_module_power *mp = &parser->mp[DP_CORE_PM]; static const char * const dp_gpios[] = { "qcom,aux-en-gpio", "qcom,aux-sel-gpio", "qcom,usbplug-cc-gpio", }; if (of_find_property(of_node, "qcom,dp-hpd-gpio", NULL)) { parser->no_aux_switch = true; parser->lphw_hpd = of_find_property(of_node, "qcom,dp-low-power-hw-hpd", NULL); return 0; } if (of_find_property(of_node, "qcom,dp-gpio-aux-switch", NULL)) parser->gpio_aux_switch = true; mp->gpio_config = devm_kzalloc(dev, sizeof(struct dss_gpio) * ARRAY_SIZE(dp_gpios), GFP_KERNEL); if (!mp->gpio_config) return -ENOMEM; mp->num_gpio = ARRAY_SIZE(dp_gpios); for (i = 0; i < ARRAY_SIZE(dp_gpios); i++) { mp->gpio_config[i].gpio = of_get_named_gpio(of_node, dp_gpios[i], 0); if (!gpio_is_valid(mp->gpio_config[i].gpio)) { pr_debug("%s gpio not specified\n", dp_gpios[i]); /* In case any gpio was not specified, we think gpio * aux switch also was not specified. */ parser->gpio_aux_switch = false; continue; } strlcpy(mp->gpio_config[i].gpio_name, dp_gpios[i], sizeof(mp->gpio_config[i].gpio_name)); mp->gpio_config[i].value = 0; } return 0; } static const char *dp_parser_supply_node_name(enum dp_pm_type module) { switch (module) { case DP_CORE_PM: return "qcom,core-supply-entries"; case DP_CTRL_PM: return "qcom,ctrl-supply-entries"; case DP_PHY_PM: return "qcom,phy-supply-entries"; default: return "???"; } } static int dp_parser_get_vreg(struct dp_parser *parser, enum dp_pm_type module) { int i = 0, rc = 0; u32 tmp = 0; const char *pm_supply_name = NULL; struct device_node *supply_node = NULL; struct device_node *of_node = parser->pdev->dev.of_node; struct device_node *supply_root_node = NULL; struct dss_module_power *mp = &parser->mp[module]; mp->num_vreg = 0; pm_supply_name = dp_parser_supply_node_name(module); supply_root_node = of_get_child_by_name(of_node, pm_supply_name); if (!supply_root_node) { pr_err("no supply entry present: %s\n", pm_supply_name); goto novreg; } mp->num_vreg = of_get_available_child_count(supply_root_node); if (mp->num_vreg == 0) { pr_debug("no vreg\n"); goto novreg; } else { pr_debug("vreg found. count=%d\n", mp->num_vreg); } mp->vreg_config = devm_kzalloc(&parser->pdev->dev, sizeof(struct dss_vreg) * mp->num_vreg, GFP_KERNEL); if (!mp->vreg_config) { rc = -ENOMEM; goto error; } for_each_child_of_node(supply_root_node, supply_node) { const char *st = NULL; /* vreg-name */ rc = of_property_read_string(supply_node, "qcom,supply-name", &st); if (rc) { pr_err("error reading name. rc=%d\n", rc); goto error; } snprintf(mp->vreg_config[i].vreg_name, ARRAY_SIZE((mp->vreg_config[i].vreg_name)), "%s", st); /* vreg-min-voltage */ rc = of_property_read_u32(supply_node, "qcom,supply-min-voltage", &tmp); if (rc) { pr_err("error reading min volt. rc=%d\n", rc); goto error; } mp->vreg_config[i].min_voltage = tmp; /* vreg-max-voltage */ rc = of_property_read_u32(supply_node, "qcom,supply-max-voltage", &tmp); if (rc) { pr_err("error reading max volt. rc=%d\n", rc); goto error; } mp->vreg_config[i].max_voltage = tmp; /* enable-load */ rc = of_property_read_u32(supply_node, "qcom,supply-enable-load", &tmp); if (rc) { pr_err("error reading enable load. rc=%d\n", rc); goto error; } mp->vreg_config[i].enable_load = tmp; /* disable-load */ rc = of_property_read_u32(supply_node, "qcom,supply-disable-load", &tmp); if (rc) { pr_err("error reading disable load. rc=%d\n", rc); goto error; } mp->vreg_config[i].disable_load = tmp; pr_debug("%s min=%d, max=%d, enable=%d, disable=%d\n", mp->vreg_config[i].vreg_name, mp->vreg_config[i].min_voltage, mp->vreg_config[i].max_voltage, mp->vreg_config[i].enable_load, mp->vreg_config[i].disable_load ); ++i; } return rc; error: if (mp->vreg_config) { devm_kfree(&parser->pdev->dev, mp->vreg_config); mp->vreg_config = NULL; } novreg: mp->num_vreg = 0; return rc; } static void dp_parser_put_vreg_data(struct device *dev, struct dss_module_power *mp) { if (!mp) { DEV_ERR("invalid input\n"); return; } if (mp->vreg_config) { devm_kfree(dev, mp->vreg_config); mp->vreg_config = NULL; } mp->num_vreg = 0; } static int dp_parser_regulator(struct dp_parser *parser) { int i, rc = 0; struct platform_device *pdev = parser->pdev; /* Parse the regulator information */ for (i = DP_CORE_PM; i <= DP_PHY_PM; i++) { rc = dp_parser_get_vreg(parser, i); if (rc) { pr_err("get_dt_vreg_data failed for %s. rc=%d\n", dp_parser_pm_name(i), rc); i--; for (; i >= DP_CORE_PM; i--) dp_parser_put_vreg_data(&pdev->dev, &parser->mp[i]); break; } } return rc; } static bool dp_parser_check_prefix(const char *clk_prefix, const char *clk_name) { return !!strnstr(clk_name, clk_prefix, strlen(clk_name)); } static void dp_parser_put_clk_data(struct device *dev, struct dss_module_power *mp) { if (!mp) { DEV_ERR("%s: invalid input\n", __func__); return; } if (mp->clk_config) { devm_kfree(dev, mp->clk_config); mp->clk_config = NULL; } mp->num_clk = 0; } static void dp_parser_put_gpio_data(struct device *dev, struct dss_module_power *mp) { if (!mp) { DEV_ERR("%s: invalid input\n", __func__); return; } if (mp->gpio_config) { devm_kfree(dev, mp->gpio_config); mp->gpio_config = NULL; } mp->num_gpio = 0; } static int dp_parser_init_clk_data(struct dp_parser *parser) { int num_clk = 0, i = 0, rc = 0; int core_clk_count = 0, link_clk_count = 0; int strm0_clk_count = 0, strm1_clk_count = 0; const char *core_clk = "core"; const char *strm0_clk = "strm0"; const char *strm1_clk = "strm1"; const char *link_clk = "link"; const char *clk_name; struct device *dev = &parser->pdev->dev; struct dss_module_power *core_power = &parser->mp[DP_CORE_PM]; struct dss_module_power *strm0_power = &parser->mp[DP_STREAM0_PM]; struct dss_module_power *strm1_power = &parser->mp[DP_STREAM1_PM]; struct dss_module_power *link_power = &parser->mp[DP_LINK_PM]; num_clk = of_property_count_strings(dev->of_node, "clock-names"); if (num_clk <= 0) { pr_err("no clocks are defined\n"); rc = -EINVAL; goto exit; } for (i = 0; i < num_clk; i++) { of_property_read_string_index(dev->of_node, "clock-names", i, &clk_name); if (dp_parser_check_prefix(core_clk, clk_name)) core_clk_count++; if (dp_parser_check_prefix(strm0_clk, clk_name)) strm0_clk_count++; if (dp_parser_check_prefix(strm1_clk, clk_name)) strm1_clk_count++; if (dp_parser_check_prefix(link_clk, clk_name)) link_clk_count++; } /* Initialize the CORE power module */ if (core_clk_count <= 0) { pr_err("no core clocks are defined\n"); rc = -EINVAL; goto exit; } core_power->num_clk = core_clk_count; core_power->clk_config = devm_kzalloc(dev, sizeof(struct dss_clk) * core_power->num_clk, GFP_KERNEL); if (!core_power->clk_config) { rc = -EINVAL; goto exit; } /* Initialize the STREAM0 power module */ if (strm0_clk_count <= 0) { pr_debug("no strm0 clocks are defined\n"); } else { strm0_power->num_clk = strm0_clk_count; strm0_power->clk_config = devm_kzalloc(dev, sizeof(struct dss_clk) * strm0_power->num_clk, GFP_KERNEL); if (!strm0_power->clk_config) { strm0_power->num_clk = 0; rc = -EINVAL; goto strm0_clock_error; } } /* Initialize the STREAM1 power module */ if (strm1_clk_count <= 0) { pr_debug("no strm1 clocks are defined\n"); } else { strm1_power->num_clk = strm1_clk_count; strm1_power->clk_config = devm_kzalloc(dev, sizeof(struct dss_clk) * strm1_power->num_clk, GFP_KERNEL); if (!strm1_power->clk_config) { strm1_power->num_clk = 0; rc = -EINVAL; goto strm1_clock_error; } } /* Initialize the link power module */ if (link_clk_count <= 0) { pr_err("no link clocks are defined\n"); rc = -EINVAL; goto link_clock_error; } link_power->num_clk = link_clk_count; link_power->clk_config = devm_kzalloc(dev, sizeof(struct dss_clk) * link_power->num_clk, GFP_KERNEL); if (!link_power->clk_config) { link_power->num_clk = 0; rc = -EINVAL; goto link_clock_error; } return rc; link_clock_error: dp_parser_put_clk_data(dev, strm1_power); strm1_clock_error: dp_parser_put_clk_data(dev, strm0_power); strm0_clock_error: dp_parser_put_clk_data(dev, core_power); exit: return rc; } static int dp_parser_clock(struct dp_parser *parser) { int rc = 0, i = 0; int num_clk = 0; int core_clk_index = 0, link_clk_index = 0; int core_clk_count = 0, link_clk_count = 0; int strm0_clk_index = 0, strm1_clk_index = 0; int strm0_clk_count = 0, strm1_clk_count = 0; const char *clk_name; const char *core_clk = "core"; const char *strm0_clk = "strm0"; const char *strm1_clk = "strm1"; const char *link_clk = "link"; struct device *dev = &parser->pdev->dev; struct dss_module_power *core_power; struct dss_module_power *strm0_power; struct dss_module_power *strm1_power; struct dss_module_power *link_power; core_power = &parser->mp[DP_CORE_PM]; strm0_power = &parser->mp[DP_STREAM0_PM]; strm1_power = &parser->mp[DP_STREAM1_PM]; link_power = &parser->mp[DP_LINK_PM]; rc = dp_parser_init_clk_data(parser); if (rc) { pr_err("failed to initialize power data\n"); rc = -EINVAL; goto exit; } core_clk_count = core_power->num_clk; link_clk_count = link_power->num_clk; strm0_clk_count = strm0_power->num_clk; strm1_clk_count = strm1_power->num_clk; num_clk = of_property_count_strings(dev->of_node, "clock-names"); for (i = 0; i < num_clk; i++) { of_property_read_string_index(dev->of_node, "clock-names", i, &clk_name); if (dp_parser_check_prefix(core_clk, clk_name) && core_clk_index < core_clk_count) { struct dss_clk *clk = &core_power->clk_config[core_clk_index]; strlcpy(clk->clk_name, clk_name, sizeof(clk->clk_name)); clk->type = DSS_CLK_AHB; core_clk_index++; } else if (dp_parser_check_prefix(link_clk, clk_name) && link_clk_index < link_clk_count) { struct dss_clk *clk = &link_power->clk_config[link_clk_index]; strlcpy(clk->clk_name, clk_name, sizeof(clk->clk_name)); link_clk_index++; if (!strcmp(clk_name, "link_clk")) clk->type = DSS_CLK_PCLK; else clk->type = DSS_CLK_AHB; } else if (dp_parser_check_prefix(strm0_clk, clk_name) && strm0_clk_index < strm0_clk_count) { struct dss_clk *clk = &strm0_power->clk_config[strm0_clk_index]; strlcpy(clk->clk_name, clk_name, sizeof(clk->clk_name)); strm0_clk_index++; clk->type = DSS_CLK_PCLK; } else if (dp_parser_check_prefix(strm1_clk, clk_name) && strm1_clk_index < strm1_clk_count) { struct dss_clk *clk = &strm1_power->clk_config[strm1_clk_index]; strlcpy(clk->clk_name, clk_name, sizeof(clk->clk_name)); strm1_clk_index++; clk->type = DSS_CLK_PCLK; } } pr_debug("clock parsing successful\n"); exit: return rc; } static int dp_parser_catalog(struct dp_parser *parser) { int rc; u32 version; struct device *dev = &parser->pdev->dev; rc = of_property_read_u32(dev->of_node, "qcom,phy-version", &version); if (!rc) parser->hw_cfg.phy_version = version; return 0; } static int dp_parser_mst(struct dp_parser *parser) { struct device *dev = &parser->pdev->dev; int i; parser->has_mst = of_property_read_bool(dev->of_node, "qcom,mst-enable"); parser->no_mst_encoder = of_property_read_bool(dev->of_node, "qcom,no-mst-encoder"); parser->has_mst_sideband = parser->has_mst; pr_debug("mst parsing successful. mst:%d\n", parser->has_mst); for (i = 0; i < MAX_DP_MST_STREAMS; i++) { of_property_read_u32_index(dev->of_node, "qcom,mst-fixed-topology-ports", i, &parser->mst_fixed_port[i]); of_property_read_string_index( dev->of_node, "qcom,mst-fixed-topology-display-types", i, &parser->mst_fixed_display_type[i]); if (!parser->mst_fixed_display_type[i]) parser->mst_fixed_display_type[i] = "unknown"; } return 0; } static void dp_parser_dsc(struct dp_parser *parser) { int rc; struct device *dev = &parser->pdev->dev; parser->dsc_feature_enable = of_property_read_bool(dev->of_node, "qcom,dsc-feature-enable"); rc = of_property_read_u32(dev->of_node, "qcom,max-dp-dsc-blks", &parser->max_dp_dsc_blks); if (rc || !parser->max_dp_dsc_blks) parser->dsc_feature_enable = false; rc = of_property_read_u32(dev->of_node, "qcom,max-dp-dsc-input-width-pixs", &parser->max_dp_dsc_input_width_pixs); if (rc || !parser->max_dp_dsc_input_width_pixs) parser->dsc_feature_enable = false; pr_debug("dsc parsing successful. dsc:%d, blks:%d, width:%d\n", parser->dsc_feature_enable, parser->max_dp_dsc_blks, parser->max_dp_dsc_input_width_pixs); } static void dp_parser_fec(struct dp_parser *parser) { struct device *dev = &parser->pdev->dev; parser->fec_feature_enable = of_property_read_bool(dev->of_node, "qcom,fec-feature-enable"); pr_debug("fec parsing successful. fec:%d\n", parser->fec_feature_enable); } static void dp_parser_widebus(struct dp_parser *parser) { struct device *dev = &parser->pdev->dev; parser->has_widebus = of_property_read_bool(dev->of_node, "qcom,widebus-enable"); pr_debug("widebus parsing successful. widebus:%d\n", parser->has_widebus); } static int dp_parser_parse(struct dp_parser *parser) { int rc = 0; if (!parser) { pr_err("invalid input\n"); rc = -EINVAL; goto err; } rc = dp_parser_reg(parser); if (rc) goto err; rc = dp_parser_aux(parser); if (rc) goto err; rc = dp_parser_misc(parser); if (rc) goto err; rc = dp_parser_clock(parser); if (rc) goto err; rc = dp_parser_regulator(parser); if (rc) goto err; rc = dp_parser_gpio(parser); if (rc) goto err; rc = dp_parser_catalog(parser); if (rc) goto err; rc = dp_parser_pinctrl(parser); if (rc) goto err; rc = dp_parser_msm_hdcp_dev(parser); if (rc) goto err; rc = dp_parser_mst(parser); if (rc) goto err; dp_parser_dsc(parser); dp_parser_fec(parser); dp_parser_widebus(parser); err: return rc; } static struct dp_io_data *dp_parser_get_io(struct dp_parser *dp_parser, char *name) { int i = 0; struct dp_io *io; if (!dp_parser) { pr_err("invalid input\n"); goto err; } io = &dp_parser->io; for (i = 0; i < io->len; i++) { struct dp_io_data *data = &io->data[i]; if (!strcmp(data->name, name)) return data; } err: return NULL; } static void dp_parser_get_io_buf(struct dp_parser *dp_parser, char *name) { int i = 0; struct dp_io *io; if (!dp_parser) { pr_err("invalid input\n"); return; } io = &dp_parser->io; for (i = 0; i < io->len; i++) { struct dp_io_data *data = &io->data[i]; if (!strcmp(data->name, name)) { if (!data->buf) data->buf = devm_kzalloc(&dp_parser->pdev->dev, data->io.len, GFP_KERNEL); } } } static void dp_parser_clear_io_buf(struct dp_parser *dp_parser) { int i = 0; struct dp_io *io; if (!dp_parser) { pr_err("invalid input\n"); return; } io = &dp_parser->io; for (i = 0; i < io->len; i++) { struct dp_io_data *data = &io->data[i]; if (data->buf) devm_kfree(&dp_parser->pdev->dev, data->buf); data->buf = NULL; } } struct dp_parser *dp_parser_get(struct platform_device *pdev) { struct dp_parser *parser; parser = devm_kzalloc(&pdev->dev, sizeof(*parser), GFP_KERNEL); if (!parser) return ERR_PTR(-ENOMEM); parser->parse = dp_parser_parse; parser->get_io = dp_parser_get_io; parser->get_io_buf = dp_parser_get_io_buf; parser->clear_io_buf = dp_parser_clear_io_buf; parser->pdev = pdev; return parser; } void dp_parser_put(struct dp_parser *parser) { int i = 0; struct dss_module_power *power = NULL; if (!parser) { pr_err("invalid parser module\n"); return; } power = parser->mp; for (i = 0; i < DP_MAX_PM; i++) { dp_parser_put_clk_data(&parser->pdev->dev, &power[i]); dp_parser_put_vreg_data(&parser->pdev->dev, &power[i]); dp_parser_put_gpio_data(&parser->pdev->dev, &power[i]); } dp_parser_clear_io_buf(parser); devm_kfree(&parser->pdev->dev, parser->io.data); devm_kfree(&parser->pdev->dev, parser); }