/* Copyright (C) 2007 Google, Inc. * Copyright (c) 2007-2017, The Linux Foundation. All rights reserved. * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "clock.h" struct handoff_clk { struct list_head list; struct clk *clk; }; static LIST_HEAD(handoff_list); struct handoff_vdd { struct list_head list; struct clk_vdd_class *vdd_class; }; static LIST_HEAD(handoff_vdd_list); static DEFINE_MUTEX(msm_clock_init_lock); LIST_HEAD(orphan_clk_list); static LIST_HEAD(clk_notifier_list); /* Find the voltage level required for a given rate. */ int find_vdd_level(struct clk *clk, unsigned long rate) { int level; for (level = 0; level < clk->num_fmax; level++) if (rate <= clk->fmax[level]) break; if (level == clk->num_fmax) { pr_err("Rate %lu for %s is greater than highest Fmax\n", rate, clk->dbg_name); return -EINVAL; } return level; } /* Update voltage level given the current votes. */ static int update_vdd(struct clk_vdd_class *vdd_class) { int level, rc = 0, i, ignore; struct regulator **r = vdd_class->regulator; int *uv = vdd_class->vdd_uv; int *ua = vdd_class->vdd_ua; int n_reg = vdd_class->num_regulators; int cur_lvl = vdd_class->cur_level; int max_lvl = vdd_class->num_levels - 1; int cur_base = cur_lvl * n_reg; int new_base; /* aggregate votes */ for (level = max_lvl; level > 0; level--) if (vdd_class->level_votes[level]) break; if (level == cur_lvl) return 0; max_lvl = max_lvl * n_reg; new_base = level * n_reg; for (i = 0; i < vdd_class->num_regulators; i++) { rc = regulator_set_voltage(r[i], uv[new_base + i], vdd_class->use_max_uV ? INT_MAX : uv[max_lvl + i]); if (rc) goto set_voltage_fail; if (ua) { rc = regulator_set_load(r[i], ua[new_base + i]); rc = rc > 0 ? 0 : rc; if (rc) goto set_mode_fail; } if (cur_lvl == 0 || cur_lvl == vdd_class->num_levels) rc = regulator_enable(r[i]); else if (level == 0) rc = regulator_disable(r[i]); if (rc) goto enable_disable_fail; } if (vdd_class->set_vdd && !vdd_class->num_regulators) rc = vdd_class->set_vdd(vdd_class, level); if (!rc) vdd_class->cur_level = level; return rc; enable_disable_fail: /* * set_optimum_mode could use voltage to derive mode. Restore * previous voltage setting for r[i] first. */ if (ua) { regulator_set_voltage(r[i], uv[cur_base + i], vdd_class->use_max_uV ? INT_MAX : uv[max_lvl + i]); regulator_set_load(r[i], ua[cur_base + i]); } set_mode_fail: regulator_set_voltage(r[i], uv[cur_base + i], vdd_class->use_max_uV ? INT_MAX : uv[max_lvl + i]); set_voltage_fail: for (i--; i >= 0; i--) { regulator_set_voltage(r[i], uv[cur_base + i], vdd_class->use_max_uV ? INT_MAX : uv[max_lvl + i]); if (ua) regulator_set_load(r[i], ua[cur_base + i]); if (cur_lvl == 0 || cur_lvl == vdd_class->num_levels) regulator_disable(r[i]); else if (level == 0) ignore = regulator_enable(r[i]); } return rc; } /* Vote for a voltage level. */ int vote_vdd_level(struct clk_vdd_class *vdd_class, int level) { int rc; if (level >= vdd_class->num_levels) return -EINVAL; mutex_lock(&vdd_class->lock); vdd_class->level_votes[level]++; rc = update_vdd(vdd_class); if (rc) vdd_class->level_votes[level]--; mutex_unlock(&vdd_class->lock); return rc; } /* Remove vote for a voltage level. */ int unvote_vdd_level(struct clk_vdd_class *vdd_class, int level) { int rc = 0; if (level >= vdd_class->num_levels) return -EINVAL; mutex_lock(&vdd_class->lock); if (WARN(!vdd_class->level_votes[level], "Reference counts are incorrect for %s level %d\n", vdd_class->class_name, level)) goto out; vdd_class->level_votes[level]--; rc = update_vdd(vdd_class); if (rc) vdd_class->level_votes[level]++; out: mutex_unlock(&vdd_class->lock); return rc; } /* Vote for a voltage level corresponding to a clock's rate. */ static int vote_rate_vdd(struct clk *clk, unsigned long rate) { int level; if (!clk->vdd_class) return 0; level = find_vdd_level(clk, rate); if (level < 0) return level; return vote_vdd_level(clk->vdd_class, level); } /* Remove vote for a voltage level corresponding to a clock's rate. */ static void unvote_rate_vdd(struct clk *clk, unsigned long rate) { int level; if (!clk->vdd_class) return; level = find_vdd_level(clk, rate); if (level < 0) return; unvote_vdd_level(clk->vdd_class, level); } /* Check if the rate is within the voltage limits of the clock. */ bool is_rate_valid(struct clk *clk, unsigned long rate) { int level; if (!clk->vdd_class) return true; level = find_vdd_level(clk, rate); return level >= 0; } /** * __clk_pre_reparent() - Set up the new parent before switching to it and * prevent the enable state of the child clock from changing. * @c: The child clock that's going to switch parents * @new: The new parent that the child clock is going to switch to * @flags: Pointer to scratch space to save spinlock flags * * Cannot be called from atomic context. * * Use this API to set up the @new parent clock to be able to support the * current prepare and enable state of the child clock @c. Once the parent is * set up, the child clock can safely switch to it. * * The caller shall grab the prepare_lock of clock @c before calling this API * and only release it after calling __clk_post_reparent() for clock @c (or * if this API fails). This is necessary to prevent the prepare state of the * child clock @c from changing while the reparenting is in progress. Since * this API takes care of grabbing the enable lock of @c, only atomic * operation are allowed between calls to __clk_pre_reparent and * __clk_post_reparent() * * The scratch space pointed to by @flags should not be altered before * calling __clk_post_reparent() for clock @c. * * See also: __clk_post_reparent() */ int __clk_pre_reparent(struct clk *c, struct clk *new, unsigned long *flags) { int rc; if (c->prepare_count) { rc = clk_prepare(new); if (rc) return rc; } spin_lock_irqsave(&c->lock, *flags); if (c->count) { rc = clk_enable(new); if (rc) { spin_unlock_irqrestore(&c->lock, *flags); clk_unprepare(new); return rc; } } return 0; } /** * __clk_post_reparent() - Release requirements on old parent after switching * away from it and allow changes to the child clock's enable state. * @c: The child clock that switched parents * @old: The old parent that the child clock switched away from or the new * parent of a failed reparent attempt. * @flags: Pointer to scratch space where spinlock flags were saved * * Cannot be called from atomic context. * * This API works in tandem with __clk_pre_reparent. Use this API to * - Remove prepare and enable requirements from the @old parent after * switching away from it * - Or, undo the effects of __clk_pre_reparent() after a failed attempt to * change parents * * The caller shall release the prepare_lock of @c that was grabbed before * calling __clk_pre_reparent() only after this API is called (or if * __clk_pre_reparent() fails). This is necessary to prevent the prepare * state of the child clock @c from changing while the reparenting is in * progress. Since this API releases the enable lock of @c, the limit to * atomic operations set by __clk_pre_reparent() is no longer present. * * The scratch space pointed to by @flags shall not be altered since the call * to __clk_pre_reparent() for clock @c. * * See also: __clk_pre_reparent() */ void __clk_post_reparent(struct clk *c, struct clk *old, unsigned long *flags) { if (c->count) clk_disable(old); spin_unlock_irqrestore(&c->lock, *flags); if (c->prepare_count) clk_unprepare(old); } int clk_prepare(struct clk *clk) { int ret = 0; struct clk *parent; if (!clk) return 0; if (IS_ERR(clk)) return -EINVAL; mutex_lock(&clk->prepare_lock); if (clk->prepare_count == 0) { parent = clk->parent; ret = clk_prepare(parent); if (ret) goto out; ret = clk_prepare(clk->depends); if (ret) goto err_prepare_depends; ret = vote_rate_vdd(clk, clk->rate); if (ret) goto err_vote_vdd; if (clk->ops->prepare) ret = clk->ops->prepare(clk); if (ret) goto err_prepare_clock; } clk->prepare_count++; out: mutex_unlock(&clk->prepare_lock); return ret; err_prepare_clock: unvote_rate_vdd(clk, clk->rate); err_vote_vdd: clk_unprepare(clk->depends); err_prepare_depends: clk_unprepare(parent); goto out; } EXPORT_SYMBOL(clk_prepare); /* * Standard clock functions defined in include/linux/clk.h */ int clk_enable(struct clk *clk) { int ret = 0; unsigned long flags; struct clk *parent; const char *name; if (!clk) return 0; if (IS_ERR(clk)) return -EINVAL; name = clk->dbg_name; spin_lock_irqsave(&clk->lock, flags); WARN(!clk->prepare_count, "%s: Don't call enable on unprepared clocks\n", name); if (clk->count == 0) { parent = clk->parent; ret = clk_enable(parent); if (ret) goto err_enable_parent; ret = clk_enable(clk->depends); if (ret) goto err_enable_depends; trace_clock_enable(name, 1, smp_processor_id()); if (clk->ops->enable) ret = clk->ops->enable(clk); if (ret) goto err_enable_clock; } clk->count++; spin_unlock_irqrestore(&clk->lock, flags); return 0; err_enable_clock: clk_disable(clk->depends); err_enable_depends: clk_disable(parent); err_enable_parent: spin_unlock_irqrestore(&clk->lock, flags); return ret; } EXPORT_SYMBOL(clk_enable); void clk_disable(struct clk *clk) { const char *name; unsigned long flags; if (IS_ERR_OR_NULL(clk)) return; name = clk->dbg_name; spin_lock_irqsave(&clk->lock, flags); WARN(!clk->prepare_count, "%s: Never called prepare or calling disable after unprepare\n", name); if (WARN(clk->count == 0, "%s is unbalanced", name)) goto out; if (clk->count == 1) { struct clk *parent = clk->parent; trace_clock_disable(name, 0, smp_processor_id()); if (clk->ops->disable) clk->ops->disable(clk); clk_disable(clk->depends); clk_disable(parent); } clk->count--; out: spin_unlock_irqrestore(&clk->lock, flags); } EXPORT_SYMBOL(clk_disable); void clk_unprepare(struct clk *clk) { const char *name; if (IS_ERR_OR_NULL(clk)) return; name = clk->dbg_name; mutex_lock(&clk->prepare_lock); if (WARN(!clk->prepare_count, "%s is unbalanced (prepare)", name)) goto out; if (clk->prepare_count == 1) { struct clk *parent = clk->parent; WARN(clk->count, "%s: Don't call unprepare when the clock is enabled\n", name); if (clk->ops->unprepare) clk->ops->unprepare(clk); unvote_rate_vdd(clk, clk->rate); clk_unprepare(clk->depends); clk_unprepare(parent); } clk->prepare_count--; out: mutex_unlock(&clk->prepare_lock); } EXPORT_SYMBOL(clk_unprepare); int clk_reset(struct clk *clk, enum clk_reset_action action) { if (IS_ERR_OR_NULL(clk)) return -EINVAL; if (!clk->ops->reset) return -EINVAL; return clk->ops->reset(clk, action); } EXPORT_SYMBOL(clk_reset); /** * __clk_notify - call clk notifier chain * @clk: struct clk * that is changing rate * @msg: clk notifier type (see include/linux/clk.h) * @old_rate: old clk rate * @new_rate: new clk rate * * Triggers a notifier call chain on the clk rate-change notification * for 'clk'. Passes a pointer to the struct clk and the previous * and current rates to the notifier callback. Intended to be called by * internal clock code only. Returns NOTIFY_DONE from the last driver * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if * a driver returns that. */ static int __clk_notify(struct clk *clk, unsigned long msg, unsigned long old_rate, unsigned long new_rate) { struct msm_clk_notifier *cn; struct msm_clk_notifier_data cnd; int ret = NOTIFY_DONE; cnd.clk = clk; cnd.old_rate = old_rate; cnd.new_rate = new_rate; list_for_each_entry(cn, &clk_notifier_list, node) { if (cn->clk == clk) { ret = srcu_notifier_call_chain(&cn->notifier_head, msg, &cnd); break; } } return ret; } /* * clk rate change notifiers * * Note - The following notifier functionality is a verbatim copy * of the implementation in the common clock framework, copied here * until MSM switches to the common clock framework. */ /** * msm_clk_notif_register - add a clk rate change notifier * @clk: struct clk * to watch * @nb: struct notifier_block * with callback info * * Request notification when clk's rate changes. This uses an SRCU * notifier because we want it to block and notifier unregistrations are * uncommon. The callbacks associated with the notifier must not * re-enter into the clk framework by calling any top-level clk APIs; * this will cause a nested prepare_lock mutex. * * Pre-change notifier callbacks will be passed the current, pre-change * rate of the clk via struct msm_clk_notifier_data.old_rate. The new, * post-change rate of the clk is passed via struct * msm_clk_notifier_data.new_rate. * * Post-change notifiers will pass the now-current, post-change rate of * the clk in both struct msm_clk_notifier_data.old_rate and struct * msm_clk_notifier_data.new_rate. * * Abort-change notifiers are effectively the opposite of pre-change * notifiers: the original pre-change clk rate is passed in via struct * msm_clk_notifier_data.new_rate and the failed post-change rate is passed * in via struct msm_clk_notifier_data.old_rate. * * msm_clk_notif_register() must be called from non-atomic context. * Returns -EINVAL if called with null arguments, -ENOMEM upon * allocation failure; otherwise, passes along the return value of * srcu_notifier_chain_register(). */ int msm_clk_notif_register(struct clk *clk, struct notifier_block *nb) { struct msm_clk_notifier *cn; int ret = -ENOMEM; if (!clk || !nb) return -EINVAL; mutex_lock(&clk->prepare_lock); /* search the list of notifiers for this clk */ list_for_each_entry(cn, &clk_notifier_list, node) if (cn->clk == clk) break; /* if clk wasn't in the notifier list, allocate new clk_notifier */ if (cn->clk != clk) { cn = kzalloc(sizeof(struct msm_clk_notifier), GFP_KERNEL); if (!cn) goto out; cn->clk = clk; srcu_init_notifier_head(&cn->notifier_head); list_add(&cn->node, &clk_notifier_list); } ret = srcu_notifier_chain_register(&cn->notifier_head, nb); clk->notifier_count++; out: mutex_unlock(&clk->prepare_lock); return ret; } /** * msm_clk_notif_unregister - remove a clk rate change notifier * @clk: struct clk * * @nb: struct notifier_block * with callback info * * Request no further notification for changes to 'clk' and frees memory * allocated in msm_clk_notifier_register. * * Returns -EINVAL if called with null arguments; otherwise, passes * along the return value of srcu_notifier_chain_unregister(). */ int msm_clk_notif_unregister(struct clk *clk, struct notifier_block *nb) { struct msm_clk_notifier *cn = NULL; int ret = -EINVAL; if (!clk || !nb) return -EINVAL; mutex_lock(&clk->prepare_lock); list_for_each_entry(cn, &clk_notifier_list, node) if (cn->clk == clk) break; if (cn->clk == clk) { ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); clk->notifier_count--; /* XXX the notifier code should handle this better */ if (!cn->notifier_head.head) { srcu_cleanup_notifier_head(&cn->notifier_head); list_del(&cn->node); kfree(cn); } } else { ret = -ENOENT; } mutex_unlock(&clk->prepare_lock); return ret; } unsigned long clk_get_rate(struct clk *clk) { if (IS_ERR_OR_NULL(clk)) return 0; if (!clk->ops->get_rate) return clk->rate; return clk->ops->get_rate(clk); } EXPORT_SYMBOL(clk_get_rate); int clk_set_rate(struct clk *clk, unsigned long rate) { unsigned long start_rate; int rc = 0; const char *name; if (IS_ERR_OR_NULL(clk)) return -EINVAL; name = clk->dbg_name; if (!is_rate_valid(clk, rate)) return -EINVAL; mutex_lock(&clk->prepare_lock); /* Return early if the rate isn't going to change */ if (clk->rate == rate && !(clk->flags & CLKFLAG_NO_RATE_CACHE)) goto out; if (!clk->ops->set_rate) { rc = -EINVAL; goto out; } trace_clock_set_rate(name, rate, raw_smp_processor_id()); start_rate = clk->rate; if (clk->notifier_count) __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, rate); if (clk->ops->pre_set_rate) { rc = clk->ops->pre_set_rate(clk, rate); if (rc) goto abort_set_rate; } /* Enforce vdd requirements for target frequency. */ if (clk->prepare_count) { rc = vote_rate_vdd(clk, rate); if (rc) goto err_vote_vdd; } rc = clk->ops->set_rate(clk, rate); if (rc) goto err_set_rate; clk->rate = rate; /* Release vdd requirements for starting frequency. */ if (clk->prepare_count) unvote_rate_vdd(clk, start_rate); if (clk->ops->post_set_rate) clk->ops->post_set_rate(clk, start_rate); if (clk->notifier_count) __clk_notify(clk, POST_RATE_CHANGE, start_rate, clk->rate); trace_clock_set_rate_complete(name, clk->rate, raw_smp_processor_id()); out: mutex_unlock(&clk->prepare_lock); return rc; abort_set_rate: __clk_notify(clk, ABORT_RATE_CHANGE, clk->rate, rate); err_set_rate: if (clk->prepare_count) unvote_rate_vdd(clk, rate); err_vote_vdd: /* clk->rate is still the old rate. So, pass the new rate instead. */ if (clk->ops->post_set_rate) clk->ops->post_set_rate(clk, rate); goto out; } EXPORT_SYMBOL(clk_set_rate); long clk_round_rate(struct clk *clk, unsigned long rate) { long rrate; unsigned long fmax = 0, i; if (IS_ERR_OR_NULL(clk)) return -EINVAL; for (i = 0; i < clk->num_fmax; i++) fmax = max(fmax, clk->fmax[i]); if (!fmax) fmax = ULONG_MAX; rate = min(rate, fmax); if (clk->ops->round_rate) rrate = clk->ops->round_rate(clk, rate); else if (clk->rate) rrate = clk->rate; else return -EINVAL; if (rrate > fmax) return -EINVAL; return rrate; } EXPORT_SYMBOL(clk_round_rate); int clk_set_max_rate(struct clk *clk, unsigned long rate) { if (IS_ERR_OR_NULL(clk)) return -EINVAL; if (!clk->ops->set_max_rate) return -EINVAL; return clk->ops->set_max_rate(clk, rate); } EXPORT_SYMBOL(clk_set_max_rate); int parent_to_src_sel(struct clk_src *parents, int num_parents, struct clk *p) { int i; for (i = 0; i < num_parents; i++) { if (parents[i].src == p) return parents[i].sel; } return -EINVAL; } EXPORT_SYMBOL(parent_to_src_sel); int clk_get_parent_sel(struct clk *c, struct clk *parent) { return parent_to_src_sel(c->parents, c->num_parents, parent); } EXPORT_SYMBOL(clk_get_parent_sel); int clk_set_parent(struct clk *clk, struct clk *parent) { int rc = 0; if (IS_ERR_OR_NULL(clk)) return -EINVAL; if (!clk->ops->set_parent && clk->parent == parent) return 0; if (!clk->ops->set_parent) return -EINVAL; mutex_lock(&clk->prepare_lock); if (clk->parent == parent && !(clk->flags & CLKFLAG_NO_RATE_CACHE)) goto out; rc = clk->ops->set_parent(clk, parent); out: mutex_unlock(&clk->prepare_lock); return rc; } EXPORT_SYMBOL(clk_set_parent); struct clk *clk_get_parent(struct clk *clk) { if (IS_ERR_OR_NULL(clk)) return NULL; return clk->parent; } EXPORT_SYMBOL(clk_get_parent); int clk_set_flags(struct clk *clk, unsigned long flags) { if (IS_ERR_OR_NULL(clk)) return -EINVAL; if (!clk->ops->set_flags) return -EINVAL; return clk->ops->set_flags(clk, flags); } EXPORT_SYMBOL(clk_set_flags); int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den) { if (IS_ERR_OR_NULL(clk)) return -EINVAL; if (num > den) { pr_err("Numerator cannot be > denominator\n"); return -EINVAL; } if (!den) { pr_err("Denominator can not be Zero\n"); return -EINVAL; } if (!clk->ops->set_duty_cycle) return -EINVAL; return clk->ops->set_duty_cycle(clk, num, den); } EXPORT_SYMBOL(clk_set_duty_cycle); static LIST_HEAD(initdata_list); static void init_sibling_lists(struct clk_lookup *clock_tbl, size_t num_clocks) { struct clk *clk, *parent; unsigned long n; for (n = 0; n < num_clocks; n++) { clk = clock_tbl[n].clk; parent = clk->parent; if (parent && list_empty(&clk->siblings)) list_add(&clk->siblings, &parent->children); } } static void vdd_class_init(struct clk_vdd_class *vdd) { struct handoff_vdd *v; if (!vdd) return; if (vdd->skip_handoff) return; list_for_each_entry(v, &handoff_vdd_list, list) { if (v->vdd_class == vdd) return; } pr_debug("voting for vdd_class %s\n", vdd->class_name); if (vote_vdd_level(vdd, vdd->num_levels - 1)) pr_err("failed to vote for %s\n", vdd->class_name); v = kmalloc(sizeof(*v), GFP_KERNEL); if (!v) return; v->vdd_class = vdd; list_add_tail(&v->list, &handoff_vdd_list); } static int __handoff_clk(struct clk *clk) { enum handoff state = HANDOFF_DISABLED_CLK; struct handoff_clk *h = NULL; int rc, i; if (clk == NULL || clk->flags & CLKFLAG_INIT_DONE || clk->flags & CLKFLAG_SKIP_HANDOFF) return 0; if (clk->flags & CLKFLAG_INIT_ERR) return -ENXIO; if (clk->flags & CLKFLAG_EPROBE_DEFER) return -EPROBE_DEFER; /* Handoff any 'depends' clock first. */ rc = __handoff_clk(clk->depends); if (rc) goto err; /* * Handoff functions for the parent must be called before the * children can be handed off. Without handing off the parents and * knowing their rate and state (on/off), it's impossible to figure * out the rate and state of the children. */ if (clk->ops->get_parent) clk->parent = clk->ops->get_parent(clk); if (IS_ERR(clk->parent)) { rc = PTR_ERR(clk->parent); goto err; } rc = __handoff_clk(clk->parent); if (rc) goto err; for (i = 0; i < clk->num_parents; i++) { rc = __handoff_clk(clk->parents[i].src); if (rc) goto err; } if (clk->ops->handoff) state = clk->ops->handoff(clk); if (state == HANDOFF_ENABLED_CLK) { h = kmalloc(sizeof(*h), GFP_KERNEL); if (!h) { rc = -ENOMEM; goto err; } rc = clk_prepare_enable(clk->parent); if (rc) goto err; rc = clk_prepare_enable(clk->depends); if (rc) goto err_depends; rc = vote_rate_vdd(clk, clk->rate); WARN(rc, "%s unable to vote for voltage!\n", clk->dbg_name); clk->count = 1; clk->prepare_count = 1; h->clk = clk; list_add_tail(&h->list, &handoff_list); pr_debug("Handed off %s rate=%lu\n", clk->dbg_name, clk->rate); } if (clk->init_rate && clk_set_rate(clk, clk->init_rate)) pr_err("failed to set an init rate of %lu on %s\n", clk->init_rate, clk->dbg_name); if (clk->always_on && clk_prepare_enable(clk)) pr_err("failed to enable always-on clock %s\n", clk->dbg_name); clk->flags |= CLKFLAG_INIT_DONE; /* if the clk is on orphan list, remove it */ list_del_init(&clk->list); clock_debug_register(clk); return 0; err_depends: clk_disable_unprepare(clk->parent); err: kfree(h); if (rc == -EPROBE_DEFER) { clk->flags |= CLKFLAG_EPROBE_DEFER; if (list_empty(&clk->list)) list_add_tail(&clk->list, &orphan_clk_list); } else { pr_err("%s handoff failed (%d)\n", clk->dbg_name, rc); clk->flags |= CLKFLAG_INIT_ERR; } return rc; } /** * msm_clock_register() - Register additional clock tables * @table: Table of clocks * @size: Size of @table * * Upon return, clock APIs may be used to control clocks registered using this * function. */ int msm_clock_register(struct clk_lookup *table, size_t size) { int n = 0, rc; struct clk *c, *safe; bool found_more_clks; mutex_lock(&msm_clock_init_lock); init_sibling_lists(table, size); /* * Enable regulators and temporarily set them up at maximum voltage. * Once all the clocks have made their respective vote, remove this * temporary vote. The removing of the temporary vote is done at * late_init, by which time we assume all the clocks would have been * handed off. */ for (n = 0; n < size; n++) vdd_class_init(table[n].clk->vdd_class); /* * Detect and preserve initial clock state until clock_late_init() or * a driver explicitly changes it, whichever is first. */ for (n = 0; n < size; n++) __handoff_clk(table[n].clk); /* maintain backwards compatibility */ if (table[0].con_id || table[0].dev_id) clkdev_add_table(table, size); do { found_more_clks = false; /* clear cached __handoff_clk return values */ list_for_each_entry_safe(c, safe, &orphan_clk_list, list) c->flags &= ~CLKFLAG_EPROBE_DEFER; list_for_each_entry_safe(c, safe, &orphan_clk_list, list) { rc = __handoff_clk(c); if (!rc) found_more_clks = true; } } while (found_more_clks); mutex_unlock(&msm_clock_init_lock); return 0; } EXPORT_SYMBOL(msm_clock_register); struct of_msm_provider_data { struct clk_lookup *table; size_t size; }; static struct clk *of_clk_src_get(struct of_phandle_args *clkspec, void *data) { struct of_msm_provider_data *ofdata = data; int n; for (n = 0; n < ofdata->size; n++) { if (clkspec->args[0] == ofdata->table[n].of_idx) return ofdata->table[n].clk; } return ERR_PTR(-ENOENT); } #define MAX_LEN_OPP_HANDLE 50 #define LEN_OPP_HANDLE 16 #define LEN_OPP_VCORNER_HANDLE 22 static struct device **derive_device_list(struct clk *clk, struct device_node *np, char *clk_handle_name, int len) { int j, count, cpu; struct platform_device *pdev; struct device_node *dev_node; struct device **device_list; count = len/sizeof(u32); device_list = kmalloc_array(count, sizeof(struct device *), GFP_KERNEL); if (!device_list) return ERR_PTR(-ENOMEM); for (j = 0; j < count; j++) { device_list[j] = NULL; dev_node = of_parse_phandle(np, clk_handle_name, j); if (!dev_node) { pr_err("Unable to get device_node pointer for %s opp-handle (%s)\n", clk->dbg_name, clk_handle_name); goto err_parse_phandle; } for_each_possible_cpu(cpu) { if (of_get_cpu_node(cpu, NULL) == dev_node) device_list[j] = get_cpu_device(cpu); } if (device_list[j]) continue; pdev = of_find_device_by_node(dev_node); if (!pdev) { pr_err("Unable to find platform_device node for %s opp-handle\n", clk->dbg_name); goto err_parse_phandle; } device_list[j] = &pdev->dev; } return device_list; err_parse_phandle: kfree(device_list); return ERR_PTR(-EINVAL); } static int get_voltage(struct clk *clk, unsigned long rate, int store_vcorner, int n) { struct clk_vdd_class *vdd; int uv, level, corner; /* * Use the first regulator in the vdd class * for the OPP table. */ vdd = clk->vdd_class; if (vdd->num_regulators > 1) { corner = vdd->vdd_uv[vdd->num_regulators * n]; } else { level = find_vdd_level(clk, rate); if (level < 0) { pr_err("Could not find vdd level\n"); return -EINVAL; } corner = vdd->vdd_uv[level]; } if (!corner) { pr_err("%s: Unable to find vdd level for rate %lu\n", clk->dbg_name, rate); return -EINVAL; } if (store_vcorner) { uv = corner; return uv; } uv = regulator_list_corner_voltage(vdd->regulator[0], corner); if (uv < 0) { pr_err("%s: no uv for corner %d - err: %d\n", clk->dbg_name, corner, uv); return uv; } return uv; } static int add_and_print_opp(struct clk *clk, struct device **device_list, int count, unsigned long rate, int uv, int n) { int j, ret = 0; for (j = 0; j < count; j++) { ret = dev_pm_opp_add(device_list[j], rate, uv); if (ret) { pr_err("%s: couldn't add OPP for %lu - err: %d\n", clk->dbg_name, rate, ret); return ret; } if (n == 1 || n == clk->num_fmax - 1 || rate == clk_round_rate(clk, INT_MAX)) pr_info("%s: set OPP pair(%lu Hz: %u uV) on %s\n", clk->dbg_name, rate, uv, dev_name(device_list[j])); } return ret; } static void populate_clock_opp_table(struct device_node *np, struct clk_lookup *table, size_t size) { struct device **device_list; struct clk *clk; char clk_handle_name[MAX_LEN_OPP_HANDLE]; char clk_store_volt_corner[MAX_LEN_OPP_HANDLE]; size_t i; int n, len, count, uv = 0; unsigned long rate, ret = 0; bool store_vcorner; /* Iterate across all clocks in the clock controller */ for (i = 0; i < size; i++) { n = 1; rate = 0; store_vcorner = false; clk = table[i].clk; if (!clk || !clk->num_fmax || clk->opp_table_populated) continue; if (strlen(clk->dbg_name) + LEN_OPP_HANDLE < MAX_LEN_OPP_HANDLE) { ret = snprintf(clk_handle_name, ARRAY_SIZE(clk_handle_name), "qcom,%s-opp-handle", clk->dbg_name); if (ret < strlen(clk->dbg_name) + LEN_OPP_HANDLE) { pr_err("Failed to hold clk_handle_name\n"); continue; } } else { pr_err("clk name (%s) too large to fit in clk_handle_name\n", clk->dbg_name); continue; } if (strlen(clk->dbg_name) + LEN_OPP_VCORNER_HANDLE < MAX_LEN_OPP_HANDLE) { ret = snprintf(clk_store_volt_corner, ARRAY_SIZE(clk_store_volt_corner), "qcom,%s-opp-store-vcorner", clk->dbg_name); if (ret < strlen(clk->dbg_name) + LEN_OPP_VCORNER_HANDLE) { pr_err("Failed to hold clk_store_volt_corner\n"); continue; } } else { pr_err("clk name (%s) too large to fit in clk_store_volt_corner\n", clk->dbg_name); continue; } if (!of_find_property(np, clk_handle_name, &len)) { pr_debug("Unable to find %s\n", clk_handle_name); if (!of_find_property(np, clk_store_volt_corner, &len)) { pr_debug("Unable to find %s\n", clk_store_volt_corner); continue; } else { store_vcorner = true; device_list = derive_device_list(clk, np, clk_store_volt_corner, len); } } else device_list = derive_device_list(clk, np, clk_handle_name, len); if (IS_ERR_OR_NULL(device_list)) { pr_err("Failed to fill device_list\n"); continue; } count = len/sizeof(u32); while (1) { /* * Calling clk_round_rate will not work for all clocks * (eg. mux_div). Use their fmax values instead to get * list of all available frequencies. */ if (clk->ops->list_rate) { ret = clk_round_rate(clk, rate + 1); if (ret < 0) { pr_err("clk_round_rate failed for %s\n", clk->dbg_name); goto err_round_rate; } /* * If clk_round_rate give the same value on * consecutive iterations, exit loop since * we're at the maximum clock frequency. */ if (rate == ret) break; rate = ret; } else { if (n < clk->num_fmax) rate = clk->fmax[n]; else break; } uv = get_voltage(clk, rate, store_vcorner, n); if (uv < 0) goto err_round_rate; ret = add_and_print_opp(clk, device_list, count, rate, uv, n); if (ret) goto err_round_rate; n++; } err_round_rate: /* If OPP table population was successful, set the flag */ if (uv >= 0 && ret >= 0) clk->opp_table_populated = true; kfree(device_list); } } /** * of_msm_clock_register() - Register clock tables with clkdev and with the * clock DT framework * @table: Table of clocks * @size: Size of @table * @np: Device pointer corresponding to the clock-provider device * * Upon return, clock APIs may be used to control clocks registered using this * function. */ int of_msm_clock_register(struct device_node *np, struct clk_lookup *table, size_t size) { int ret = 0; struct of_msm_provider_data *data; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; data->table = table; data->size = size; ret = of_clk_add_provider(np, of_clk_src_get, data); if (ret) { kfree(data); return -ENOMEM; } populate_clock_opp_table(np, table, size); return msm_clock_register(table, size); } EXPORT_SYMBOL(of_msm_clock_register); /** * msm_clock_init() - Register and initialize a clock driver * @data: Driver-specific clock initialization data * * Upon return from this call, clock APIs may be used to control * clocks registered with this API. */ int __init msm_clock_init(struct clock_init_data *data) { if (!data) return -EINVAL; if (data->pre_init) data->pre_init(); mutex_lock(&msm_clock_init_lock); if (data->late_init) list_add(&data->list, &initdata_list); mutex_unlock(&msm_clock_init_lock); msm_clock_register(data->table, data->size); if (data->post_init) data->post_init(); return 0; } static int __init clock_late_init(void) { struct handoff_clk *h, *h_temp; struct handoff_vdd *v, *v_temp; struct clock_init_data *initdata, *initdata_temp; int ret = 0; pr_info("%s: Removing enables held for handed-off clocks\n", __func__); mutex_lock(&msm_clock_init_lock); list_for_each_entry_safe(initdata, initdata_temp, &initdata_list, list) { ret = initdata->late_init(); if (ret) pr_err("%s: %pS failed late_init.\n", __func__, initdata); } list_for_each_entry_safe(h, h_temp, &handoff_list, list) { clk_disable_unprepare(h->clk); list_del(&h->list); kfree(h); } list_for_each_entry_safe(v, v_temp, &handoff_vdd_list, list) { unvote_vdd_level(v->vdd_class, v->vdd_class->num_levels - 1); list_del(&v->list); kfree(v); } mutex_unlock(&msm_clock_init_lock); return ret; } /* clock_late_init should run only after all deferred probing * (excluding DLKM probes) has completed. */ late_initcall_sync(clock_late_init);