// SPDX-License-Identifier: GPL-2.0 /* * A hack to create a platform device from a DMI entry. This will * allow autoloading of the IPMI drive based on SMBIOS entries. */ #include #include #include #include #include #include "ipmi_dmi.h" struct ipmi_dmi_info { int type; u32 flags; unsigned long addr; u8 slave_addr; struct ipmi_dmi_info *next; }; static struct ipmi_dmi_info *ipmi_dmi_infos; static int ipmi_dmi_nr __initdata; static void __init dmi_add_platform_ipmi(unsigned long base_addr, u32 flags, u8 slave_addr, int irq, int offset, int type) { struct platform_device *pdev; struct resource r[4]; unsigned int num_r = 1, size; struct property_entry p[4] = { PROPERTY_ENTRY_U8("slave-addr", slave_addr), PROPERTY_ENTRY_U8("ipmi-type", type), PROPERTY_ENTRY_U16("i2c-addr", base_addr), { } }; char *name, *override; int rv; struct ipmi_dmi_info *info; info = kmalloc(sizeof(*info), GFP_KERNEL); if (!info) { pr_warn("ipmi:dmi: Could not allocate dmi info\n"); } else { info->type = type; info->flags = flags; info->addr = base_addr; info->slave_addr = slave_addr; info->next = ipmi_dmi_infos; ipmi_dmi_infos = info; } name = "dmi-ipmi-si"; override = "ipmi_si"; switch (type) { case IPMI_DMI_TYPE_SSIF: name = "dmi-ipmi-ssif"; override = "ipmi_ssif"; offset = 1; size = 1; break; case IPMI_DMI_TYPE_BT: size = 3; break; case IPMI_DMI_TYPE_KCS: case IPMI_DMI_TYPE_SMIC: size = 2; break; default: pr_err("ipmi:dmi: Invalid IPMI type: %d", type); return; } pdev = platform_device_alloc(name, ipmi_dmi_nr); if (!pdev) { pr_err("ipmi:dmi: Error allocation IPMI platform device"); return; } pdev->driver_override = kasprintf(GFP_KERNEL, "%s", override); if (!pdev->driver_override) goto err; if (type == IPMI_DMI_TYPE_SSIF) goto add_properties; memset(r, 0, sizeof(r)); r[0].start = base_addr; r[0].end = r[0].start + offset - 1; r[0].name = "IPMI Address 1"; r[0].flags = flags; if (size > 1) { r[1].start = r[0].start + offset; r[1].end = r[1].start + offset - 1; r[1].name = "IPMI Address 2"; r[1].flags = flags; num_r++; } if (size > 2) { r[2].start = r[1].start + offset; r[2].end = r[2].start + offset - 1; r[2].name = "IPMI Address 3"; r[2].flags = flags; num_r++; } if (irq) { r[num_r].start = irq; r[num_r].end = irq; r[num_r].name = "IPMI IRQ"; r[num_r].flags = IORESOURCE_IRQ; num_r++; } rv = platform_device_add_resources(pdev, r, num_r); if (rv) { dev_err(&pdev->dev, "ipmi:dmi: Unable to add resources: %d\n", rv); goto err; } add_properties: rv = platform_device_add_properties(pdev, p); if (rv) { dev_err(&pdev->dev, "ipmi:dmi: Unable to add properties: %d\n", rv); goto err; } rv = platform_device_add(pdev); if (rv) { dev_err(&pdev->dev, "ipmi:dmi: Unable to add device: %d\n", rv); goto err; } ipmi_dmi_nr++; return; err: platform_device_put(pdev); } /* * Look up the slave address for a given interface. This is here * because ACPI doesn't have a slave address while SMBIOS does, but we * prefer using ACPI so the ACPI code can use the IPMI namespace. * This function allows an ACPI-specified IPMI device to look up the * slave address from the DMI table. */ int ipmi_dmi_get_slave_addr(int type, u32 flags, unsigned long base_addr) { struct ipmi_dmi_info *info = ipmi_dmi_infos; while (info) { if (info->type == type && info->flags == flags && info->addr == base_addr) return info->slave_addr; info = info->next; } return 0; } EXPORT_SYMBOL(ipmi_dmi_get_slave_addr); #define DMI_IPMI_MIN_LENGTH 0x10 #define DMI_IPMI_VER2_LENGTH 0x12 #define DMI_IPMI_TYPE 4 #define DMI_IPMI_SLAVEADDR 6 #define DMI_IPMI_ADDR 8 #define DMI_IPMI_ACCESS 0x10 #define DMI_IPMI_IRQ 0x11 #define DMI_IPMI_IO_MASK 0xfffe static void __init dmi_decode_ipmi(const struct dmi_header *dm) { const u8 *data = (const u8 *) dm; u32 flags = IORESOURCE_IO; unsigned long base_addr; u8 len = dm->length; u8 slave_addr; int irq = 0, offset; int type; if (len < DMI_IPMI_MIN_LENGTH) return; type = data[DMI_IPMI_TYPE]; slave_addr = data[DMI_IPMI_SLAVEADDR]; memcpy(&base_addr, data + DMI_IPMI_ADDR, sizeof(unsigned long)); if (!base_addr) { pr_err("Base address is zero, assuming no IPMI interface\n"); return; } if (len >= DMI_IPMI_VER2_LENGTH) { if (type == IPMI_DMI_TYPE_SSIF) { offset = 0; flags = 0; base_addr = data[DMI_IPMI_ADDR] >> 1; if (base_addr == 0) { /* * Some broken systems put the I2C address in * the slave address field. We try to * accommodate them here. */ base_addr = data[DMI_IPMI_SLAVEADDR] >> 1; slave_addr = 0; } } else { if (base_addr & 1) { /* I/O */ base_addr &= DMI_IPMI_IO_MASK; } else { /* Memory */ flags = IORESOURCE_MEM; } /* * If bit 4 of byte 0x10 is set, then the lsb * for the address is odd. */ base_addr |= (data[DMI_IPMI_ACCESS] >> 4) & 1; irq = data[DMI_IPMI_IRQ]; /* * The top two bits of byte 0x10 hold the * register spacing. */ switch ((data[DMI_IPMI_ACCESS] >> 6) & 3) { case 0: /* Byte boundaries */ offset = 1; break; case 1: /* 32-bit boundaries */ offset = 4; break; case 2: /* 16-byte boundaries */ offset = 16; break; default: pr_err("ipmi:dmi: Invalid offset: 0"); return; } } } else { /* Old DMI spec. */ /* * Note that technically, the lower bit of the base * address should be 1 if the address is I/O and 0 if * the address is in memory. So many systems get that * wrong (and all that I have seen are I/O) so we just * ignore that bit and assume I/O. Systems that use * memory should use the newer spec, anyway. */ base_addr = base_addr & DMI_IPMI_IO_MASK; offset = 1; } dmi_add_platform_ipmi(base_addr, flags, slave_addr, irq, offset, type); } static int __init scan_for_dmi_ipmi(void) { const struct dmi_device *dev = NULL; while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) dmi_decode_ipmi((const struct dmi_header *) dev->device_data); return 0; } subsys_initcall(scan_for_dmi_ipmi);