/*: * Hibernate support specific for ARM64 * * Derived from work on ARM hibernation support by: * * Ubuntu project, hibernation support for mach-dove * Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu) * Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.) * https://lkml.org/lkml/2010/6/18/4 * https://lists.linux-foundation.org/pipermail/linux-pm/2010-June/027422.html * https://patchwork.kernel.org/patch/96442/ * * Copyright (C) 2006 Rafael J. Wysocki * * License terms: GNU General Public License (GPL) version 2 */ #define pr_fmt(x) "hibernate: " x #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Hibernate core relies on this value being 0 on resume, and marks it * __nosavedata assuming it will keep the resume kernel's '0' value. This * doesn't happen with either KASLR. * * defined as "__visible int in_suspend __nosavedata" in * kernel/power/hibernate.c */ extern int in_suspend; /* Do we need to reset el2? */ #define el2_reset_needed() (is_hyp_mode_available() && !is_kernel_in_hyp_mode()) /* temporary el2 vectors in the __hibernate_exit_text section. */ extern char hibernate_el2_vectors[]; /* hyp-stub vectors, used to restore el2 during resume from hibernate. */ extern char __hyp_stub_vectors[]; /* * The logical cpu number we should resume on, initialised to a non-cpu * number. */ static int sleep_cpu = -EINVAL; /* * Values that may not change over hibernate/resume. We put the build number * and date in here so that we guarantee not to resume with a different * kernel. */ struct arch_hibernate_hdr_invariants { char uts_version[__NEW_UTS_LEN + 1]; }; /* These values need to be know across a hibernate/restore. */ static struct arch_hibernate_hdr { struct arch_hibernate_hdr_invariants invariants; /* These are needed to find the relocated kernel if built with kaslr */ phys_addr_t ttbr1_el1; void (*reenter_kernel)(void); /* * Another entry point if jump to kernel happens with mmu disabled, * generally done when restoring hibernation image from bootloader * context */ phys_addr_t phys_reenter_kernel; /* * We need to know where the __hyp_stub_vectors are after restore to * re-configure el2. */ phys_addr_t __hyp_stub_vectors; u64 sleep_cpu_mpidr; } resume_hdr; static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i) { memset(i, 0, sizeof(*i)); memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version)); } int pfn_is_nosave(unsigned long pfn) { unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin); unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1); return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn)) || crash_is_nosave(pfn); } void notrace save_processor_state(void) { WARN_ON(num_online_cpus() != 1); } void notrace restore_processor_state(void) { } int arch_hibernation_header_save(void *addr, unsigned int max_size) { struct arch_hibernate_hdr *hdr = addr; if (max_size < sizeof(*hdr)) return -EOVERFLOW; arch_hdr_invariants(&hdr->invariants); hdr->ttbr1_el1 = __pa_symbol(swapper_pg_dir); hdr->reenter_kernel = _cpu_resume; hdr->phys_reenter_kernel = __pa(cpu_resume); /* We can't use __hyp_get_vectors() because kvm may still be loaded */ if (el2_reset_needed()) hdr->__hyp_stub_vectors = __pa_symbol(__hyp_stub_vectors); else hdr->__hyp_stub_vectors = 0; /* Save the mpidr of the cpu we called cpu_suspend() on... */ if (sleep_cpu < 0) { pr_err("Failing to hibernate on an unknown CPU.\n"); return -ENODEV; } hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu); pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu, hdr->sleep_cpu_mpidr); return 0; } EXPORT_SYMBOL(arch_hibernation_header_save); int arch_hibernation_header_restore(void *addr) { int ret; struct arch_hibernate_hdr_invariants invariants; struct arch_hibernate_hdr *hdr = addr; arch_hdr_invariants(&invariants); if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) { pr_crit("Hibernate image not generated by this kernel!\n"); return -EINVAL; } sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr); pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu, hdr->sleep_cpu_mpidr); if (sleep_cpu < 0) { pr_crit("Hibernated on a CPU not known to this kernel!\n"); sleep_cpu = -EINVAL; return -EINVAL; } if (!cpu_online(sleep_cpu)) { pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); ret = cpu_up(sleep_cpu); if (ret) { pr_err("Failed to bring hibernate-CPU up!\n"); sleep_cpu = -EINVAL; return ret; } } resume_hdr = *hdr; return 0; } EXPORT_SYMBOL(arch_hibernation_header_restore); /* * Copies length bytes, starting at src_start into an new page, * perform cache maintentance, then maps it at the specified address low * address as executable. * * This is used by hibernate to copy the code it needs to execute when * overwriting the kernel text. This function generates a new set of page * tables, which it loads into ttbr0. * * Length is provided as we probably only want 4K of data, even on a 64K * page system. */ static int create_safe_exec_page(void *src_start, size_t length, unsigned long dst_addr, phys_addr_t *phys_dst_addr, void *(*allocator)(gfp_t mask), gfp_t mask) { int rc = 0; pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *pte; unsigned long dst = (unsigned long)allocator(mask); if (!dst) { rc = -ENOMEM; goto out; } memcpy((void *)dst, src_start, length); flush_icache_range(dst, dst + length); pgd = pgd_offset_raw(allocator(mask), dst_addr); if (pgd_none(*pgd)) { pud = allocator(mask); if (!pud) { rc = -ENOMEM; goto out; } pgd_populate(&init_mm, pgd, pud); } pud = pud_offset(pgd, dst_addr); if (pud_none(*pud)) { pmd = allocator(mask); if (!pmd) { rc = -ENOMEM; goto out; } pud_populate(&init_mm, pud, pmd); } pmd = pmd_offset(pud, dst_addr); if (pmd_none(*pmd)) { pte = allocator(mask); if (!pte) { rc = -ENOMEM; goto out; } pmd_populate_kernel(&init_mm, pmd, pte); } pte = pte_offset_kernel(pmd, dst_addr); set_pte(pte, pfn_pte(virt_to_pfn(dst), PAGE_KERNEL_EXEC)); /* * Load our new page tables. A strict BBM approach requires that we * ensure that TLBs are free of any entries that may overlap with the * global mappings we are about to install. * * For a real hibernate/resume cycle TTBR0 currently points to a zero * page, but TLBs may contain stale ASID-tagged entries (e.g. for EFI * runtime services), while for a userspace-driven test_resume cycle it * points to userspace page tables (and we must point it at a zero page * ourselves). Elsewhere we only (un)install the idmap with preemption * disabled, so T0SZ should be as required regardless. */ cpu_set_reserved_ttbr0(); local_flush_tlb_all(); write_sysreg(virt_to_phys(pgd), ttbr0_el1); isb(); *phys_dst_addr = virt_to_phys((void *)dst); out: return rc; } #define dcache_clean_range(start, end) __flush_dcache_area(start, (end - start)) int swsusp_arch_suspend(void) { int ret = 0; unsigned long flags; struct sleep_stack_data state; if (cpus_are_stuck_in_kernel()) { pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n"); return -EBUSY; } local_dbg_save(flags); if (__cpu_suspend_enter(&state)) { /* make the crash dump kernel image visible/saveable */ crash_prepare_suspend(); sleep_cpu = smp_processor_id(); ret = swsusp_save(); } else { place_marker("M - Image Kernel Start"); /* Clean kernel core startup/idle code to PoC*/ dcache_clean_range(__mmuoff_data_start, __mmuoff_data_end); dcache_clean_range(__idmap_text_start, __idmap_text_end); /* Clean kvm setup code to PoC? */ if (el2_reset_needed()) { dcache_clean_range(__hyp_idmap_text_start, __hyp_idmap_text_end); dcache_clean_range(__hyp_text_start, __hyp_text_end); } /* make the crash dump kernel image protected again */ crash_post_resume(); /* * Tell the hibernation core that we've just restored * the memory */ in_suspend = 0; sleep_cpu = -EINVAL; __cpu_suspend_exit(); /* * Just in case the boot kernel did turn the SSBD * mitigation off behind our back, let's set the state * to what we expect it to be. */ switch (arm64_get_ssbd_state()) { case ARM64_SSBD_FORCE_ENABLE: case ARM64_SSBD_KERNEL: arm64_set_ssbd_mitigation(true); } } local_dbg_restore(flags); place_marker("PM: Kernel restore start!"); return ret; } static void _copy_pte(pte_t *dst_pte, pte_t *src_pte, unsigned long addr) { pte_t pte = *src_pte; if (pte_valid(pte)) { /* * Resume will overwrite areas that may be marked * read only (code, rodata). Clear the RDONLY bit from * the temporary mappings we use during restore. */ set_pte(dst_pte, pte_mkwrite(pte)); } else if (debug_pagealloc_enabled() && !pte_none(pte)) { /* * debug_pagealloc will removed the PTE_VALID bit if * the page isn't in use by the resume kernel. It may have * been in use by the original kernel, in which case we need * to put it back in our copy to do the restore. * * Before marking this entry valid, check the pfn should * be mapped. */ BUG_ON(!pfn_valid(pte_pfn(pte))); set_pte(dst_pte, pte_mkpresent(pte_mkwrite(pte))); } } static int copy_pte(pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long start, unsigned long end) { pte_t *src_pte; pte_t *dst_pte; unsigned long addr = start; dst_pte = (pte_t *)get_safe_page(GFP_ATOMIC); if (!dst_pte) return -ENOMEM; pmd_populate_kernel(&init_mm, dst_pmd, dst_pte); dst_pte = pte_offset_kernel(dst_pmd, start); src_pte = pte_offset_kernel(src_pmd, start); do { _copy_pte(dst_pte, src_pte, addr); } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); return 0; } static int copy_pmd(pud_t *dst_pud, pud_t *src_pud, unsigned long start, unsigned long end) { pmd_t *src_pmd; pmd_t *dst_pmd; unsigned long next; unsigned long addr = start; if (pud_none(*dst_pud)) { dst_pmd = (pmd_t *)get_safe_page(GFP_ATOMIC); if (!dst_pmd) return -ENOMEM; pud_populate(&init_mm, dst_pud, dst_pmd); } dst_pmd = pmd_offset(dst_pud, start); src_pmd = pmd_offset(src_pud, start); do { next = pmd_addr_end(addr, end); if (pmd_none(*src_pmd)) continue; if (pmd_table(*src_pmd)) { if (copy_pte(dst_pmd, src_pmd, addr, next)) return -ENOMEM; } else { set_pmd(dst_pmd, __pmd(pmd_val(*src_pmd) & ~PMD_SECT_RDONLY)); } } while (dst_pmd++, src_pmd++, addr = next, addr != end); return 0; } static int copy_pud(pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long start, unsigned long end) { pud_t *dst_pud; pud_t *src_pud; unsigned long next; unsigned long addr = start; if (pgd_none(*dst_pgd)) { dst_pud = (pud_t *)get_safe_page(GFP_ATOMIC); if (!dst_pud) return -ENOMEM; pgd_populate(&init_mm, dst_pgd, dst_pud); } dst_pud = pud_offset(dst_pgd, start); src_pud = pud_offset(src_pgd, start); do { next = pud_addr_end(addr, end); if (pud_none(*src_pud)) continue; if (pud_table(*(src_pud))) { if (copy_pmd(dst_pud, src_pud, addr, next)) return -ENOMEM; } else { set_pud(dst_pud, __pud(pud_val(*src_pud) & ~PMD_SECT_RDONLY)); } } while (dst_pud++, src_pud++, addr = next, addr != end); return 0; } static int copy_page_tables(pgd_t *dst_pgd, unsigned long start, unsigned long end) { unsigned long next; unsigned long addr = start; pgd_t *src_pgd = pgd_offset_k(start); dst_pgd = pgd_offset_raw(dst_pgd, start); do { next = pgd_addr_end(addr, end); if (pgd_none(*src_pgd)) continue; if (copy_pud(dst_pgd, src_pgd, addr, next)) return -ENOMEM; } while (dst_pgd++, src_pgd++, addr = next, addr != end); return 0; } /* * Setup then Resume from the hibernate image using swsusp_arch_suspend_exit(). * * Memory allocated by get_safe_page() will be dealt with by the hibernate code, * we don't need to free it here. */ int swsusp_arch_resume(void) { int rc = 0; void *zero_page; size_t exit_size; pgd_t *tmp_pg_dir; phys_addr_t phys_hibernate_exit; void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *, void *, phys_addr_t, phys_addr_t); /* * Restoring the memory image will overwrite the ttbr1 page tables. * Create a second copy of just the linear map, and use this when * restoring. */ tmp_pg_dir = (pgd_t *)get_safe_page(GFP_ATOMIC); if (!tmp_pg_dir) { pr_err("Failed to allocate memory for temporary page tables.\n"); rc = -ENOMEM; goto out; } rc = copy_page_tables(tmp_pg_dir, PAGE_OFFSET, 0); if (rc) goto out; /* * We need a zero page that is zero before & after resume in order to * to break before make on the ttbr1 page tables. */ zero_page = (void *)get_safe_page(GFP_ATOMIC); if (!zero_page) { pr_err("Failed to allocate zero page.\n"); rc = -ENOMEM; goto out; } /* * Locate the exit code in the bottom-but-one page, so that *NULL * still has disastrous affects. */ hibernate_exit = (void *)PAGE_SIZE; exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start; /* * Copy swsusp_arch_suspend_exit() to a safe page. This will generate * a new set of ttbr0 page tables and load them. */ rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size, (unsigned long)hibernate_exit, &phys_hibernate_exit, (void *)get_safe_page, GFP_ATOMIC); if (rc) { pr_err("Failed to create safe executable page for hibernate_exit code.\n"); goto out; } /* * The hibernate exit text contains a set of el2 vectors, that will * be executed at el2 with the mmu off in order to reload hyp-stub. */ __flush_dcache_area(hibernate_exit, exit_size); /* * KASLR will cause the el2 vectors to be in a different location in * the resumed kernel. Load hibernate's temporary copy into el2. * * We can skip this step if we booted at EL1, or are running with VHE. */ if (el2_reset_needed()) { phys_addr_t el2_vectors = phys_hibernate_exit; /* base */ el2_vectors += hibernate_el2_vectors - __hibernate_exit_text_start; /* offset */ __hyp_set_vectors(el2_vectors); } hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1, resume_hdr.reenter_kernel, restore_pblist, resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page)); out: return rc; } int hibernate_resume_nonboot_cpu_disable(void) { if (sleep_cpu < 0) { pr_err("Failing to resume from hibernate on an unknown CPU.\n"); return -ENODEV; } return freeze_secondary_cpus(sleep_cpu); }