for_each_cpu() actually iterates across all possible CPUs. We've had mistakes
in the past where people were using for_each_cpu() where they should have been
iterating across only online or present CPUs. This is inefficient and
possibly buggy.
We're renaming for_each_cpu() to for_each_possible_cpu() to avoid this in the
future.
This patch replaces for_each_cpu with for_each_possible_cpu.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Currently most callers of lmb_alloc() don't check if it worked or not, if it
ever does weird bad things will probably happen. The few callers who do check
just panic or BUG_ON.
So make lmb_alloc() panic internally, to catch bugs at the source. The few
callers who did check the result no longer need to.
The only caller that did anything interesting with the return result was
careful_allocation(). For it we create __lmb_alloc_base() which _doesn't_ panic
automatically, a little messy, but passable.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This patch separates usage of KERNELBASE and PAGE_OFFSET. I haven't
looked at any of the PPC32 code, if we ever want to support Kdump on
PPC we'll have to do another audit, ditto for iSeries.
This patch makes PAGE_OFFSET the constant, it'll always be 0xC * 1
gazillion for 64-bit.
To get a physical address from a virtual one you subtract PAGE_OFFSET,
_not_ KERNELBASE.
KERNELBASE is the virtual address of the start of the kernel, it's
often the same as PAGE_OFFSET, but _might not be_.
If you want to know something's offset from the start of the kernel
you should subtract KERNELBASE.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
There's a bunch of code that compares an address with KERNELBASE to see if
it's a "kernel address", ie. >= KERNELBASE. The proper test is actually to
compare with PAGE_OFFSET, since we're going to change KERNELBASE soon.
So replace all of them with an is_kernel_addr() macro that does that.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
There's never been a hardware platform that has both pSeries/RPA LPAR
hypervisor and stab (pre-POWER4 segment management). This removes
the redundant code in stab_initalize().
Signed-off-by: Olof Johansson <olof@lixom.net>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This patch merges platform codes. systemcfg->platform is no longer used,
systemcfg use in general is deprecated as much as possible (and renamed
_systemcfg before it gets completely moved elsewhere in a future patch),
_machine is now used on ppc64 along as ppc32. Platform codes aren't gone
yet but we are getting a step closer. A bunch of asm code in head[_64].S
is also turned into C code.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Adds a new CONFIG_PPC_64K_PAGES which, when enabled, changes the kernel
base page size to 64K. The resulting kernel still boots on any
hardware. On current machines with 4K pages support only, the kernel
will maintain 16 "subpages" for each 64K page transparently.
Note that while real 64K capable HW has been tested, the current patch
will not enable it yet as such hardware is not released yet, and I'm
still verifying with the firmware architects the proper to get the
information from the newer hypervisors.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This moves the remaining files in arch/ppc64/mm to arch/powerpc/mm,
and arranges that we use them when compiling with ARCH=ppc64.
Signed-off-by: Paul Mackerras <paulus@samba.org>
PPC64 machines before Power4 need a segment table page allocated for each
CPU. Currently these are allocated statically in a big array in head.S for
all CPUs. The segment tables need to be in the first segment (so
do_stab_bolted doesn't take a recursive fault on the stab itself), but
other than that there are no constraints which require the stabs for the
secondary CPUs to be statically allocated.
This patch allocates segment tables dynamically during boot, using
lmb_alloc() to ensure they are within the first 256M segment. This reduces
the kernel image size by 192k...
Tested on RS64 iSeries, POWER3 pSeries, and POWER5.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch started as simply removing a few never-used macros from
asm-ppc64/pgtable.h, then kind of grew. It now makes a bunch of
cleanups to the ppc64 low-level header files (with corresponding
changes to .c files where necessary) such as:
- Abolishing never-used macros
- Eliminating multiple #defines with the same purpose
- Removing pointless macros (cases where just expanding the
macro everywhere turns out clearer and more sensible)
- Removing some cases where macros which could be defined in
terms of each other weren't
- Moving imalloc() related definitions from pgtable.h to their
own header file (imalloc.h)
- Re-arranging headers to group things more logically
- Moving all VSID allocation related things to mmu.h, instead
of being split between mmu.h and mmu_context.h
- Removing some reserved space for flags from the PMD - we're
not using it.
- Fix some bugs which broke compile with STRICT_MM_TYPECHECKS.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!