This patch introduces a user: of the round_jiffies() function; the "5 second"
ext3/jbd wakeup.
While "every 5 seconds" doesn't sound as a problem, there can be many of these
(and these timers do add up over all the kernel). The "5 second" wakeup isn't
really timing sensitive; in addition even with rounding it'll still happen
every 5 seconds (with the exception of the very first time, which is likely to
be rounded up to somewhere closer to 6 seconds)
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch provides an improved fdtable allocation scheme, useful for
expanding fdtable file descriptor entries. The main focus is on the fdarray,
as its memory usage grows 128 times faster than that of an fdset.
The allocation algorithm sizes the fdarray in such a way that its memory usage
increases in easy page-sized chunks. The overall algorithm expands the allowed
size in powers of two, in order to amortize the cost of invoking vmalloc() for
larger allocation sizes. Namely, the following sizes for the fdarray are
considered, and the smallest that accommodates the requested fd count is
chosen:
pagesize / 4
pagesize / 2
pagesize <- memory allocator switch point
pagesize * 2
pagesize * 4
...etc...
Unlike the current implementation, this allocation scheme does not require a
loop to compute the optimal fdarray size, and can be done in efficient
straightline code.
Furthermore, since the fdarray overflows the pagesize boundary long before any
of the fdsets do, it makes sense to optimize run-time by allocating both
fdsets in a single swoop. Even together, they will still be, by far, smaller
than the fdarray. The fdtable->open_fds is now used as the anchor for the
fdset memory allocation.
Signed-off-by: Vadim Lobanov <vlobanov@speakeasy.net>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dipankar Sarma <dipankar@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
An fdtable can either be embedded inside a files_struct or standalone (after
being expanded). When an fdtable is being discarded after all RCU references
to it have expired, we must either free it directly, in the standalone case,
or free the files_struct it is contained within, in the embedded case.
Currently the free_files field controls this behavior, but we can get rid of
it entirely, as all the necessary information is already recorded. We can
distinguish embedded and standalone fdtables using max_fds, and if it is
embedded we can divine the relevant files_struct using container_of().
Signed-off-by: Vadim Lobanov <vlobanov@speakeasy.net>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dipankar Sarma <dipankar@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Currently, each fdtable supports three dynamically-sized arrays of data: the
fdarray and two fdsets. The code allows the number of fds supported by the
fdarray (fdtable->max_fds) to differ from the number of fds supported by each
of the fdsets (fdtable->max_fdset).
In practice, it is wasteful for these two sizes to differ: whenever we hit a
limit on the smaller-capacity structure, we will reallocate the entire fdtable
and all the dynamic arrays within it, so any delta in the memory used by the
larger-capacity structure will never be touched at all.
Rather than hogging this excess, we shouldn't even allocate it in the first
place, and keep the capacities of the fdarray and the fdsets equal. This
patch removes fdtable->max_fdset. As an added bonus, most of the supporting
code becomes simpler.
Signed-off-by: Vadim Lobanov <vlobanov@speakeasy.net>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dipankar Sarma <dipankar@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The wait_for_more_bios() function name was poorly chosen. While looking to
clean it up it I noticed that the dio struct refcounting between the bio
completion and dio submission paths was racey.
The bio submission path was simply freeing the dio struct if
atomic_dec_and_test() indicated that it dropped the final reference.
The aio bio completion path was dereferencing its dio struct pointer *after
dropping its reference* based on the remaining number of references.
These two paths could race and result in the aio bio completion path
dereferencing a freed dio, though this was not observed in the wild.
This moves the refcount under the bio lock so that bio completion can drop
its reference and decide to wake all in one atomic step.
Once testing and waking is locked dio_await_one() can test its sleeping
condition and mark itself uninterruptible under the lock. It gets simpler
and wait_for_more_bios() disappears.
The addition of the interrupt masking spin lock acquiry in dio_bio_submit()
looks alarming. This lock acquiry existed in that path before the recent
dio completion patch set. We shouldn't expect significant performance
regression from returning to the behaviour that existed before the
completion clean up work.
This passed 4k block ext3 O_DIRECT fsx and aio-stress on an SMP machine.
Signed-off-by: Zach Brown <zach.brown@oracle.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Suparna Bhattacharya <suparna@in.ibm.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: <xfs-masters@oss.sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The only time it is safe to call aio_complete() is when the ->ki_retry
function returns -EIOCBQUEUED to the AIO core. direct_io_worker() has
historically done this by relying on its caller to translate positive return
codes into -EIOCBQUEUED for the aio case. It did this by trying to keep
conditionals in sync. direct_io_worker() knew when finished_one_bio() was
going to call aio_complete(). It would reverse the test and wait and free the
dio in the cases it thought that finished_one_bio() wasn't going to.
Not surprisingly, it ended up getting it wrong. 'ret' could be a negative
errno from the submission path but it failed to communicate this to
finished_one_bio(). direct_io_worker() would return < 0, it's callers
wouldn't raise -EIOCBQUEUED, and aio_complete() would be called. In the
future finished_one_bio()'s tests wouldn't reflect this and aio_complete()
would be called for a second time which can manifest as an oops.
The previous cleanups have whittled the sync and async completion paths down
to the point where we can collapse them and clearly reassert the invariant
that we must only call aio_complete() after returning -EIOCBQUEUED.
direct_io_worker() will only return -EIOCBQUEUED when it is not the last to
drop the dio refcount and the aio bio completion path will only call
aio_complete() when it is the last to drop the dio refcount.
direct_io_worker() can ensure that it is the last to drop the reference count
by waiting for bios to drain. It does this for sync ops, of course, and for
partial dio writes that must fall back to buffered and for aio ops that saw
errors during submission.
This means that operations that end up waiting, even if they were issued as
aio ops, will not call aio_complete() from dio. Instead we return the return
code of the operation and let the aio core call aio_complete(). This is
purposely done to fix a bug where AIO DIO file extensions would call
aio_complete() before their callers have a chance to update i_size.
Now that direct_io_worker() is explicitly returning -EIOCBQUEUED its callers
no longer have to translate for it. XFS needs to be careful not to free
resources that will be used during AIO completion if -EIOCBQUEUED is returned.
We maintain the previous behaviour of trying to write fs metadata for O_SYNC
aio+dio writes.
Signed-off-by: Zach Brown <zach.brown@oracle.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Suparna Bhattacharya <suparna@in.ibm.com>
Acked-by: Jeff Moyer <jmoyer@redhat.com>
Cc: <xfs-masters@oss.sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Now that we have a single refcount and waiting path we can reuse it in the
async 'should_wait' path. It continues to rely on the fragile link between
the conditional in dio_complete_aio() which decides to complete the AIO and
the conditional in direct_io_worker() which decides to wait and free.
By waiting before dropping the reference we stop dio_bio_end_aio() from
calling dio_complete_aio() which used to wake up the waiter after seeing the
reference count drop to 0. We hoist this wake up into dio_bio_end_aio() which
now notices when it's left a single remaining reference that is held by the
waiter.
Signed-off-by: Zach Brown <zach.brown@oracle.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Suparna Bhattacharya <suparna@in.ibm.com>
Acked-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Previously we had two confusing counts of bio progress. 'bio_count' was
decremented as bios were processed and freed by the dio core. It was used to
indicate final completion of the dio operation. 'bios_in_flight' reflected
how many bios were between submit_bio() and bio->end_io. It was used by the
sync path to decide when to wake up and finish completing bios and was ignored
by the async path.
This patch collapses the two notions into one notion of a dio reference count.
bios hold a dio reference when they're between submit_bio and bio->end_io.
Since bios_in_flight was only used in the sync path it is now equivalent to
dio->refcount - 1 which accounts for direct_io_worker() holding a reference
for the duration of the operation.
dio_bio_complete() -> finished_one_bio() was called from the sync path after
finding bios on the list that the bio->end_io function had deposited.
finished_one_bio() can not drop the dio reference on behalf of these bios now
because bio->end_io already has. The is_async test in finished_one_bio()
meant that it never actually did anything other than drop the bio_count for
sync callers. So we remove its refcount decrement, don't call it from
dio_bio_complete(), and hoist its call up into the async dio_bio_complete()
caller after an explicit refcount decrement. It is renamed dio_complete_aio()
to reflect the remaining work it actually does.
Signed-off-by: Zach Brown <zach.brown@oracle.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Suparna Bhattacharya <suparna@in.ibm.com>
Acked-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
We only need to call blk_run_address_space() once after all the bios for the
direct IO op have been submitted. This removes the chance of calling
blk_run_address_space() after spurious wake ups as the sync path waits for
bios to drain. It's also one less difference betwen the sync and async paths.
In the process we remove a redundant dio_bio_submit() that its caller had
already performed.
Signed-off-by: Zach Brown <zach.brown@oracle.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Suparna Bhattacharya <suparna@in.ibm.com>
Acked-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
There have been a lot of bugs recently due to the way direct_io_worker() tries
to decide how to finish direct IO operations. In the worst examples it has
failed to call aio_complete() at all (hang) or called it too many times
(oops).
This set of patches cleans up the completion phase with the goal of removing
the complexity that lead to these bugs. We end up with one path that
calculates the result of the operation after all off the bios have completed.
We decide when to generate a result of the operation using that path based on
the final release of a refcount on the dio structure.
I tried to progress towards the final state in steps that were relatively easy
to understand. Each step should compile but I only tested the final result of
having all the patches applied.
I've tested these on low end PC drives with aio-stress, the direct IO tests I
could manage to get running in LTP, orasim, and some home-brew functional
tests.
In http://lkml.org/lkml/2006/9/21/103 IBM reports success with ext2 and ext3
running DIO LTP tests. They found that XFS bug which has since been addressed
in the patch series.
This patch:
The mechanics which decide the result of a direct IO operation were duplicated
in the sync and async paths.
The async path didn't check page_errors which can manifest as silently
returning success when the final pointer in an operation faults and its
matching file region is filled with zeros.
The sync path and async path differed in whether they passed errors to the
caller's dio->end_io operation. The async path was passing errors to it which
trips an assertion in XFS, though it is apparently harmless.
This centralizes the completion phase of dio ops in one place. AIO will now
return EFAULT consistently and all paths fall back to the previously sync
behaviour of passing the number of bytes 'transferred' to the dio->end_io
callback, regardless of errors.
dio_await_completion() doesn't have to propogate EIO from non-uptodate bios
now that it's being propogated through dio_complete() via dio->io_error. This
lets it return void which simplifies its sole caller.
Signed-off-by: Zach Brown <zach.brown@oracle.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Suparna Bhattacharya <suparna@in.ibm.com>
Acked-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add a simple /proc/pid/io to show the IO accounting fields.
Maybe this shouldn't be merged in mainline - the preferred reporting channel
is taskstats. But given the poor state of our userspace support for
taskstats, this is useful for developer-testing, at least. And it improves
the changes that the procps developers will wire it up into top(1). Opinions
are sought.
The patch also wires up the existing IO-accounting fields.
It's a bit racy on 32-bit machines: if process A reads process B's
/proc/pid/io while process B is updating one of those 64-bit counters, process
A could see an intermediate result.
Cc: Jay Lan <jlan@sgi.com>
Cc: Shailabh Nagar <nagar@watson.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Chris Sturtivant <csturtiv@sgi.com>
Cc: Tony Ernst <tee@sgi.com>
Cc: Guillaume Thouvenin <guillaume.thouvenin@bull.net>
Cc: David Wright <daw@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Account for direct-io.
Cc: Jay Lan <jlan@sgi.com>
Cc: Shailabh Nagar <nagar@watson.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Chris Sturtivant <csturtiv@sgi.com>
Cc: Tony Ernst <tee@sgi.com>
Cc: Guillaume Thouvenin <guillaume.thouvenin@bull.net>
Cc: David Wright <daw@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
CIFS implements ->readpages and doesn't use read_cache_pages(). So wire the
read IO accounting up within CIFS.
Cc: Jay Lan <jlan@sgi.com>
Cc: Shailabh Nagar <nagar@watson.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Chris Sturtivant <csturtiv@sgi.com>
Cc: Tony Ernst <tee@sgi.com>
Cc: Guillaume Thouvenin <guillaume.thouvenin@bull.net>
Cc: Steven French <sfrench@us.ibm.com>
Cc: David Wright <daw@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Account for the number of byte writes which this process caused to not happen
after all.
Cc: Jay Lan <jlan@sgi.com>
Cc: Shailabh Nagar <nagar@watson.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Chris Sturtivant <csturtiv@sgi.com>
Cc: Tony Ernst <tee@sgi.com>
Cc: Guillaume Thouvenin <guillaume.thouvenin@bull.net>
Cc: David Wright <daw@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Accounting writes is fairly simple: whenever a process flips a page from clean
to dirty, we accuse it of having caused a write to underlying storage of
PAGE_CACHE_SIZE bytes.
This may overestimate the amount of writing: the page-dirtying may cause only
one buffer_head's worth of writeout. Fixing that is possible, but probably a
bit messy and isn't obviously important.
Cc: Jay Lan <jlan@sgi.com>
Cc: Shailabh Nagar <nagar@watson.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Chris Sturtivant <csturtiv@sgi.com>
Cc: Tony Ernst <tee@sgi.com>
Cc: Guillaume Thouvenin <guillaume.thouvenin@bull.net>
Cc: David Wright <daw@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Save a tabstop in __set_page_dirty_nobuffers() and __set_page_dirty_buffers()
and a few other places. No functional changes.
Cc: Jay Lan <jlan@sgi.com>
Cc: Shailabh Nagar <nagar@watson.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Chris Sturtivant <csturtiv@sgi.com>
Cc: Tony Ernst <tee@sgi.com>
Cc: Guillaume Thouvenin <guillaume.thouvenin@bull.net>
Cc: David Wright <daw@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
fs/proc/proc_misc.c: In function `version_read_proc':
fs/proc/proc_misc.c:256: warning: implicit declaration of function `utsname'
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch provides process filtering feature.
The process filter allows failing only permitted processes
by /proc/<pid>/make-it-fail
Please see the example that demostrates how to inject slab allocation
failures into module init/cleanup code
in Documentation/fault-injection/fault-injection.txt
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch provides fault-injection capability for disk IO.
Boot option:
fail_make_request=<probability>,<interval>,<space>,<times>
<interval> -- specifies the interval of failures.
<probability> -- specifies how often it should fail in percent.
<space> -- specifies the size of free space where disk IO can be issued
safely in bytes.
<times> -- specifies how many times failures may happen at most.
Debugfs:
/debug/fail_make_request/interval
/debug/fail_make_request/probability
/debug/fail_make_request/specifies
/debug/fail_make_request/times
Example:
fail_make_request=10,100,0,-1
echo 1 > /sys/blocks/hda/hda1/make-it-fail
generic_make_request() on /dev/hda1 fails once per 10 times.
Cc: Jens Axboe <axboe@suse.de>
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Replace kmalloc+memset with kcalloc and simplify
Signed-off-by: Yan Burman <burman.yan@gmail.com>
Cc: Neil Brown <neilb@cse.unsw.edu.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
NFS3: Calculate 'w' a bit later in nfs3svc_encode_getaclres()
This is a small performance optimization since we can return before
needing 'w'. It also saves a few bytes of .text :
Before:
text data bss dec hex filename
1632 140 0 1772 6ec fs/nfsd/nfs3acl.o
After:
text data bss dec hex filename
1624 140 0 1764 6e4 fs/nfsd/nfs3acl.o
Signed-off-by: Jesper Juhl <jesper.juhl@gmail.com>
Cc: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
NFS2: Calculate 'w' a bit later in nfsaclsvc_encode_getaclres()
This is a small performance optimization since we can return before
needing 'w'. It also saves a few bytes of .text :
Before:
text data bss dec hex filename
2406 212 0 2618 a3a fs/nfsd/nfs2acl.o
After:
text data bss dec hex filename
2400 212 0 2612 a34 fs/nfsd/nfs2acl.o
Signed-off-by: Jesper Juhl <jesper.juhl@gmail.com>
Cc: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add a per pid_namespace child-reaper. This is needed so processes are reaped
within the same pid space and do not spill over to the parent pid space. Its
also needed so containers preserve existing semantic that pid == 1 would reap
orphaned children.
This is based on Eric Biederman's patch: http://lkml.org/lkml/2006/2/6/285
Signed-off-by: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Rename struct pspace to struct pid_namespace for consistency with other
namespaces (uts_namespace and ipc_namespace). Also rename
include/linux/pspace.h to include/linux/pid_namespace.h and variables from
pspace to pid_ns.
Signed-off-by: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Rename 'struct namespace' to 'struct mnt_namespace' to avoid confusion with
other namespaces being developped for the containers : pid, uts, ipc, etc.
'namespace' variables and attributes are also renamed to 'mnt_ns'
Signed-off-by: Kirill Korotaev <dev@sw.ru>
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add an anonymous union and ((deprecated)) to catch direct usage of the
session field.
[akpm@osdl.org: fix various missed conversions]
[jdike@addtoit.com: fix UML bug]
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Replace occurences of task->signal->session by a new process_session() helper
routine.
It will be useful for pid namespaces to abstract the session pid number.
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This facility provides three entry points:
ilog2() Log base 2 of unsigned long
ilog2_u32() Log base 2 of u32
ilog2_u64() Log base 2 of u64
These facilities can either be used inside functions on dynamic data:
int do_something(long q)
{
...;
y = ilog2(x)
...;
}
Or can be used to statically initialise global variables with constant values:
unsigned n = ilog2(27);
When performing static initialisation, the compiler will report "error:
initializer element is not constant" if asked to take a log of zero or of
something not reducible to a constant. They treat negative numbers as
unsigned.
When not dealing with a constant, they fall back to using fls() which permits
them to use arch-specific log calculation instructions - such as BSR on
x86/x86_64 or SCAN on FRV - if available.
[akpm@osdl.org: MMC fix]
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: David Howells <dhowells@redhat.com>
Cc: Wojtek Kaniewski <wojtekka@toxygen.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>