These symbols are only used in the file that they are defined in,
so they should not be in the global namespace.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Implementing the machine_crash_shutdown which will be called by
crash_kexec (called in case of a panic, sysrq etc.). Disable the
interrupts, shootdown cpus using debugger IPI and collect regs
for all CPUs.
elfcorehdr= specifies the location of elf core header stored by
the crashed kernel. This command line option will be passed by
the kexec-tools to capture kernel.
savemaxmem= specifies the actual memory size that the first kernel
has and this value will be used for dumping in the capture kernel.
This command line option will be passed by the kexec-tools to
capture kernel.
Signed-off-by: Haren Myneni <haren@us.ibm.com>
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
It turns out that commit f9bd170a87
broke the cascade from XICS to i8259 on pSeries machines; specifically
we ended up not ever doing the EOI on the XICS for the cascade. The
result was that interrupts from the serial ports (and presumably any
other devices using ISA interrupts) didn't get through. This fixes
it and also simplifies the code, by doing the EOI on the XICS in the
xics_get_irq routine after reading and acking the interrupt on the
i8259.
Signed-off-by: Paul Mackerras <paulus@samba.org>
This patch merges platform codes. systemcfg->platform is no longer used,
systemcfg use in general is deprecated as much as possible (and renamed
_systemcfg before it gets completely moved elsewhere in a future patch),
_machine is now used on ppc64 along as ppc32. Platform codes aren't gone
yet but we are getting a step closer. A bunch of asm code in head[_64].S
is also turned into C code.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Use __do_IRQ instead. The only difference is that every controller
is now assumed to have an end() routine (only xics_8259 did not).
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
This patch moves the XICS interrupt controller code into the
platforms/pseries directory, since it only appears on pSeries
machines. If it ever appears on some other machine we can move it to
sysdev, although xics.c itself will need a bunch of changes in that
case to remove pSeries specific assumptions.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
We still had an old copy of i8259.h lying around; this gets rid of it
and corrects the callers of i8259_init and i8259_irq.
Signed-off-by: Paul Mackerras <paulus@samba.org>
A few xics cleanups:
- Make some things static.
- Be more consistent with error printing - interrupts are unsigned,
error values are signed.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The kexec boot is not successful on some power machines since all CPUs are
getting removed from global interrupt queue (GIQ) before kexec boot. Some
systems always expect at least one CPU in GIQ. Hence, this patch will make
sure that only secondary CPUs are removed from GIQ.
Signed-off-by: Haren Myneni <hbabu@us.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch implements the kexec support for ppc64 platforms.
A couple of notes:
1) We copy the pages in virtual mode, using the full base kernel
and a statically allocated stack. At kexec_prepare time we
scan the pages and if any overlap our (0, _end[]) range we
return -ETXTBSY.
On PowerPC 64 systems running in LPAR (logical partitioning)
mode, only a small region of memory, referred to as the RMO,
can be accessed in real mode. Since Linux runs with only one
zone of memory in the memory allocator, and it can be orders of
magnitude more memory than the RMO, looping until we allocate
pages in the source region is not feasible. Copying in virtual
means we don't have to write a hash table generation and call
hypervisor to insert translations, instead we rely on the pinned
kernel linear mapping. The kernel already has move to linked
location built in, so there is no requirement to load it at 0.
If we want to load something other than a kernel, then a stub
can be written to copy a linear chunk in real mode.
2) The start entry point gets passed parameters from the kernel.
Slaves are started at a fixed address after copying code from
the entry point.
All CPUs get passed their firmware assigned physical id in r3
(most calling conventions use this register for the first
argument).
This is used to distinguish each CPU from all other CPUs.
Since firmware is not around, there is no other way to obtain
this information other than to pass it somewhere.
A single CPU, referred to here as the master and the one executing
the kexec call, branches to start with the address of start in r4.
While this can be calculated, we have to load it through a gpr to
branch to this point so defining the register this is contained
in is free. A stack of unspecified size is available at r1
(also common calling convention).
All remaining running CPUs are sent to start at absolute address
0x60 after copying the first 0x100 bytes from start to address 0.
This convention was chosen because it matches what the kernel
has been doing itself. (only gpr3 is defined).
Note: This is not quite the convention of the kexec bootblock v2
in the kernel. A stub has been written to convert between them,
and we may adjust the kernel in the future to allow this directly
without any stub.
3) Destination pages can be placed anywhere, even where they
would not be accessible in real mode. This will allow us to
place ram disks above the RMO if we choose.
Signed-off-by: Milton Miller <miltonm@bga.com>
Signed-off-by: R Sharada <sharada@in.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Move the code to set global interrupt queue membership to xics.c,
and remove no longer needed extern declarations. Also call it on
all cpus (even the boot cpu) to prepare for kexec.
Signed-off-by: Milton Miller <miltonm@bga.com>
Signed-off-by: R Sharada <sharada@in.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!