The functions smk_cipso_doi and smk_unlbl_ambient are not used outside
smackfs.c and should hence be static.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Previously I added sessionid output to all audit messages where it was
available but we still didn't know the sessionid of the sender of
netlink messages. This patch adds that information to netlink messages
so we can audit who sent netlink messages.
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add the security= boot parameter. This is done to avoid LSM
registration clashes in case of more than one bult-in module.
User can choose a security module to enable at boot. If no
security= boot parameter is specified, only the first LSM
asking for registration will be loaded. An invalid security
module name will be treated as if no module has been chosen.
LSM modules must check now if they are allowed to register
by calling security_module_enable(ops) first. Modify SELinux
and SMACK to do so.
Do not let SMACK register smackfs if it was not chosen on
boot. Smackfs assumes that smack hooks are registered and
the initial task security setup (swapper->security) is done.
Signed-off-by: Ahmed S. Darwish <darwish.07@gmail.com>
Acked-by: James Morris <jmorris@namei.org>
Older smackfs was parsing MAC rules by characters, thus a need of locking
write sessions on open() was needed. This lock is no longer useful now since
each rule is handled by a single write() call.
This is also a bugfix since seq_open() was not called if an open() O_RDWR flag
was given, leading to a seq_read() without an initialized seq_file, thus an
Oops.
Signed-off-by: Ahmed S. Darwish <darwish.07@gmail.com>
Reported-by: Jonathan Corbet <corbet@lwn.net>
Acked-by: Casey Schaufler <casey@schaufler-ca.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Smackfs write() implementation does not put a higher bound on the number of
bytes to copy from user-space. This may lead to a DOS attack if a malicious
`count' field is given.
Assure that given `count' is exactly the length needed for a /smack/load rule.
In case of /smack/cipso where the length is relative, assure that `count'
does not exceed the size needed for a buffer representing maximum possible
number of CIPSO 2.2 categories.
Signed-off-by: Ahmed S. Darwish <darwish.07@gmail.com>
Acked-by: Casey Schaufler <casey@schaufler-ca.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Smack uses CIPSO labeling, but allows for unlabeled packets by
specifying an "ambient" label that is applied to incoming unlabeled
packets.
Because the other end of the connection may dislike IP options, and ssh
is one know application that behaves thus, it is prudent to respond in
kind.
This patch changes the network labeling behavior such that an outgoing
packet that would be given a CIPSO label that matches the ambient label
is left unlabeled. An "unlbl" domain is added and the netlabel
defaulting mechanism invoked rather than assuming that everything is
CIPSO. Locking has been added around changes to the ambient label as
the mechanisms used to do so are more involved.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Acked-by: Paul Moore <paul.moore@hp.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>