The implementation comes from Zach's [RFC, PATCH 10/24] i386 Vmi
descriptor changes:
Descriptor and trap table cleanups. Add cleanly written accessors for
IDT and GDT gates so the subarch may override them. Note that this
allows the hypervisor to transparently tweak the DPL of the descriptors
as well as the RPL of segments in those descriptors, with no unnecessary
kernel code modification. It also allows the hypervisor implementation
of the VMI to tweak the gates, allowing for custom exception frames or
extra layers of indirection above the guest fault / IRQ handlers.
Signed-off-by: Zachary Amsden <zach@vmware.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andi Kleen <ak@suse.de>
Recent GDT changes broke the SMP boot sequence if the booting CPU is
numbered anything other than zero. There's also a subtle source of error
in that the boot time CPU now uses cpu_gdt_table (which is actually the GDT
for booting CPUs in head.S). This patch fixes both problems by making GDT
descriptors themselves allocated from a per_cpu area and switching to them
in cpu_init(), which now means that cpu_gdt_table is exclusively used for
booting CPUs again.
Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
Cc: Zachary Amsden <zach@vmware.com>
Cc: Matt Tolentino <metolent@snoqualmie.dp.intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Make GDT page aligned and page padded to support running inside of a
hypervisor. This prevents false sharing of the GDT page with other hot
data, which is not allowed in Xen, and causes performance problems in
VMware.
Rather than go back to the old method of statically allocating the GDT
(which wastes unneded space for non-present CPUs), the GDT for APs is
allocated dynamically.
Signed-off-by: Zachary Amsden <zach@vmware.com>
Cc: "Seth, Rohit" <rohit.seth@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add an accessor function for getting the per-CPU gdt. Callee must already
have the CPU.
Signed-off-by: Zachary Amsden <zach@vmware.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
GCC can generate better code around descriptor update and access functions
when there is not an explicit "eax" register constraint.
Testing: You won't boot if this is messed up, since the TSS descriptor will be
corrupted. Verified the assembler and booted.
Signed-off-by: Zachary Amsden <zach@vmware.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
i386 inline assembler cleanup.
This change encapsulates descriptor and task register management. Also,
it is possible to improve assembler generation in two cases; savesegment
may store the value in a register instead of a memory location, which
allows GCC to optimize stack variables into registers, and MOV MEM, SEG
is always a 16-bit write to memory, making the casting in math-emu
unnecessary.
Signed-off-by: Zachary Amsden <zach@vmware.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!