Revert "FROMGIT: crypto: speck - add support for the Speck block cipher"

This reverts commit 1b5dd7104e.

Bug: 116008047
Change-Id: If9192b30cdb4212fb6c8111d70c532a109695fbd
Signed-off-by: Alistair Strachan <astrachan@google.com>
tirimbino
Alistair Strachan 6 years ago
parent fef6a1c04a
commit a3ac63b188
  1. 14
      crypto/Kconfig
  2. 1
      crypto/Makefile
  3. 299
      crypto/speck.c
  4. 18
      crypto/testmgr.c
  5. 128
      crypto/testmgr.h

@ -1468,20 +1468,6 @@ config CRYPTO_SERPENT_AVX2_X86_64
See also:
<http://www.cl.cam.ac.uk/~rja14/serpent.html>
config CRYPTO_SPECK
tristate "Speck cipher algorithm"
select CRYPTO_ALGAPI
help
Speck is a lightweight block cipher that is tuned for optimal
performance in software (rather than hardware).
Speck may not be as secure as AES, and should only be used on systems
where AES is not fast enough.
See also: <https://eprint.iacr.org/2013/404.pdf>
If unsure, say N.
config CRYPTO_TEA
tristate "TEA, XTEA and XETA cipher algorithms"
select CRYPTO_ALGAPI

@ -109,7 +109,6 @@ obj-$(CONFIG_CRYPTO_TEA) += tea.o
obj-$(CONFIG_CRYPTO_KHAZAD) += khazad.o
obj-$(CONFIG_CRYPTO_ANUBIS) += anubis.o
obj-$(CONFIG_CRYPTO_SEED) += seed.o
obj-$(CONFIG_CRYPTO_SPECK) += speck.o
obj-$(CONFIG_CRYPTO_SALSA20) += salsa20_generic.o
obj-$(CONFIG_CRYPTO_CHACHA20) += chacha20_generic.o
obj-$(CONFIG_CRYPTO_POLY1305) += poly1305_generic.o

@ -1,299 +0,0 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Speck: a lightweight block cipher
*
* Copyright (c) 2018 Google, Inc
*
* Speck has 10 variants, including 5 block sizes. For now we only implement
* the variants Speck128/128, Speck128/192, Speck128/256, Speck64/96, and
* Speck64/128. Speck${B}/${K} denotes the variant with a block size of B bits
* and a key size of K bits. The Speck128 variants are believed to be the most
* secure variants, and they use the same block size and key sizes as AES. The
* Speck64 variants are less secure, but on 32-bit processors are usually
* faster. The remaining variants (Speck32, Speck48, and Speck96) are even less
* secure and/or not as well suited for implementation on either 32-bit or
* 64-bit processors, so are omitted.
*
* Reference: "The Simon and Speck Families of Lightweight Block Ciphers"
* https://eprint.iacr.org/2013/404.pdf
*
* In a correspondence, the Speck designers have also clarified that the words
* should be interpreted in little-endian format, and the words should be
* ordered such that the first word of each block is 'y' rather than 'x', and
* the first key word (rather than the last) becomes the first round key.
*/
#include <asm/unaligned.h>
#include <linux/bitops.h>
#include <linux/crypto.h>
#include <linux/init.h>
#include <linux/module.h>
/* Speck128 */
#define SPECK128_BLOCK_SIZE 16
#define SPECK128_128_KEY_SIZE 16
#define SPECK128_128_NROUNDS 32
#define SPECK128_192_KEY_SIZE 24
#define SPECK128_192_NROUNDS 33
#define SPECK128_256_KEY_SIZE 32
#define SPECK128_256_NROUNDS 34
struct speck128_tfm_ctx {
u64 round_keys[SPECK128_256_NROUNDS];
int nrounds;
};
static __always_inline void speck128_round(u64 *x, u64 *y, u64 k)
{
*x = ror64(*x, 8);
*x += *y;
*x ^= k;
*y = rol64(*y, 3);
*y ^= *x;
}
static __always_inline void speck128_unround(u64 *x, u64 *y, u64 k)
{
*y ^= *x;
*y = ror64(*y, 3);
*x ^= k;
*x -= *y;
*x = rol64(*x, 8);
}
static void speck128_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
const struct speck128_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
u64 y = get_unaligned_le64(in);
u64 x = get_unaligned_le64(in + 8);
int i;
for (i = 0; i < ctx->nrounds; i++)
speck128_round(&x, &y, ctx->round_keys[i]);
put_unaligned_le64(y, out);
put_unaligned_le64(x, out + 8);
}
static void speck128_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
const struct speck128_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
u64 y = get_unaligned_le64(in);
u64 x = get_unaligned_le64(in + 8);
int i;
for (i = ctx->nrounds - 1; i >= 0; i--)
speck128_unround(&x, &y, ctx->round_keys[i]);
put_unaligned_le64(y, out);
put_unaligned_le64(x, out + 8);
}
static int speck128_setkey(struct crypto_tfm *tfm, const u8 *key,
unsigned int keylen)
{
struct speck128_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
u64 l[3];
u64 k;
int i;
switch (keylen) {
case SPECK128_128_KEY_SIZE:
k = get_unaligned_le64(key);
l[0] = get_unaligned_le64(key + 8);
ctx->nrounds = SPECK128_128_NROUNDS;
for (i = 0; i < ctx->nrounds; i++) {
ctx->round_keys[i] = k;
speck128_round(&l[0], &k, i);
}
break;
case SPECK128_192_KEY_SIZE:
k = get_unaligned_le64(key);
l[0] = get_unaligned_le64(key + 8);
l[1] = get_unaligned_le64(key + 16);
ctx->nrounds = SPECK128_192_NROUNDS;
for (i = 0; i < ctx->nrounds; i++) {
ctx->round_keys[i] = k;
speck128_round(&l[i % 2], &k, i);
}
break;
case SPECK128_256_KEY_SIZE:
k = get_unaligned_le64(key);
l[0] = get_unaligned_le64(key + 8);
l[1] = get_unaligned_le64(key + 16);
l[2] = get_unaligned_le64(key + 24);
ctx->nrounds = SPECK128_256_NROUNDS;
for (i = 0; i < ctx->nrounds; i++) {
ctx->round_keys[i] = k;
speck128_round(&l[i % 3], &k, i);
}
break;
default:
return -EINVAL;
}
return 0;
}
/* Speck64 */
#define SPECK64_BLOCK_SIZE 8
#define SPECK64_96_KEY_SIZE 12
#define SPECK64_96_NROUNDS 26
#define SPECK64_128_KEY_SIZE 16
#define SPECK64_128_NROUNDS 27
struct speck64_tfm_ctx {
u32 round_keys[SPECK64_128_NROUNDS];
int nrounds;
};
static __always_inline void speck64_round(u32 *x, u32 *y, u32 k)
{
*x = ror32(*x, 8);
*x += *y;
*x ^= k;
*y = rol32(*y, 3);
*y ^= *x;
}
static __always_inline void speck64_unround(u32 *x, u32 *y, u32 k)
{
*y ^= *x;
*y = ror32(*y, 3);
*x ^= k;
*x -= *y;
*x = rol32(*x, 8);
}
static void speck64_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
const struct speck64_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
u32 y = get_unaligned_le32(in);
u32 x = get_unaligned_le32(in + 4);
int i;
for (i = 0; i < ctx->nrounds; i++)
speck64_round(&x, &y, ctx->round_keys[i]);
put_unaligned_le32(y, out);
put_unaligned_le32(x, out + 4);
}
static void speck64_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
const struct speck64_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
u32 y = get_unaligned_le32(in);
u32 x = get_unaligned_le32(in + 4);
int i;
for (i = ctx->nrounds - 1; i >= 0; i--)
speck64_unround(&x, &y, ctx->round_keys[i]);
put_unaligned_le32(y, out);
put_unaligned_le32(x, out + 4);
}
static int speck64_setkey(struct crypto_tfm *tfm, const u8 *key,
unsigned int keylen)
{
struct speck64_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
u32 l[3];
u32 k;
int i;
switch (keylen) {
case SPECK64_96_KEY_SIZE:
k = get_unaligned_le32(key);
l[0] = get_unaligned_le32(key + 4);
l[1] = get_unaligned_le32(key + 8);
ctx->nrounds = SPECK64_96_NROUNDS;
for (i = 0; i < ctx->nrounds; i++) {
ctx->round_keys[i] = k;
speck64_round(&l[i % 2], &k, i);
}
break;
case SPECK64_128_KEY_SIZE:
k = get_unaligned_le32(key);
l[0] = get_unaligned_le32(key + 4);
l[1] = get_unaligned_le32(key + 8);
l[2] = get_unaligned_le32(key + 12);
ctx->nrounds = SPECK64_128_NROUNDS;
for (i = 0; i < ctx->nrounds; i++) {
ctx->round_keys[i] = k;
speck64_round(&l[i % 3], &k, i);
}
break;
default:
return -EINVAL;
}
return 0;
}
/* Algorithm definitions */
static struct crypto_alg speck_algs[] = {
{
.cra_name = "speck128",
.cra_driver_name = "speck128-generic",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = SPECK128_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct speck128_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_u = {
.cipher = {
.cia_min_keysize = SPECK128_128_KEY_SIZE,
.cia_max_keysize = SPECK128_256_KEY_SIZE,
.cia_setkey = speck128_setkey,
.cia_encrypt = speck128_encrypt,
.cia_decrypt = speck128_decrypt
}
}
}, {
.cra_name = "speck64",
.cra_driver_name = "speck64-generic",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = SPECK64_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct speck64_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_u = {
.cipher = {
.cia_min_keysize = SPECK64_96_KEY_SIZE,
.cia_max_keysize = SPECK64_128_KEY_SIZE,
.cia_setkey = speck64_setkey,
.cia_encrypt = speck64_encrypt,
.cia_decrypt = speck64_decrypt
}
}
}
};
static int __init speck_module_init(void)
{
return crypto_register_algs(speck_algs, ARRAY_SIZE(speck_algs));
}
static void __exit speck_module_exit(void)
{
crypto_unregister_algs(speck_algs, ARRAY_SIZE(speck_algs));
}
module_init(speck_module_init);
module_exit(speck_module_exit);
MODULE_DESCRIPTION("Speck block cipher (generic)");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Eric Biggers <ebiggers@google.com>");
MODULE_ALIAS_CRYPTO("speck128");
MODULE_ALIAS_CRYPTO("speck128-generic");
MODULE_ALIAS_CRYPTO("speck64");
MODULE_ALIAS_CRYPTO("speck64-generic");

@ -3033,24 +3033,6 @@ static const struct alg_test_desc alg_test_descs[] = {
.dec = __VECS(serpent_dec_tv_template)
}
}
}, {
.alg = "ecb(speck128)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = __VECS(speck128_enc_tv_template),
.dec = __VECS(speck128_dec_tv_template)
}
}
}, {
.alg = "ecb(speck64)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = __VECS(speck64_enc_tv_template),
.dec = __VECS(speck64_dec_tv_template)
}
}
}, {
.alg = "ecb(tea)",
.test = alg_test_skcipher,

@ -13706,134 +13706,6 @@ static const struct cipher_testvec serpent_xts_dec_tv_template[] = {
},
};
/*
* Speck test vectors taken from the original paper:
* "The Simon and Speck Families of Lightweight Block Ciphers"
* https://eprint.iacr.org/2013/404.pdf
*
* Note that the paper does not make byte and word order clear. But it was
* confirmed with the authors that the intended orders are little endian byte
* order and (y, x) word order. Equivalently, the printed test vectors, when
* looking at only the bytes (ignoring the whitespace that divides them into
* words), are backwards: the left-most byte is actually the one with the
* highest memory address, while the right-most byte is actually the one with
* the lowest memory address.
*/
static const struct cipher_testvec speck128_enc_tv_template[] = {
{ /* Speck128/128 */
.key = "\x00\x01\x02\x03\x04\x05\x06\x07"
"\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f",
.klen = 16,
.input = "\x20\x6d\x61\x64\x65\x20\x69\x74"
"\x20\x65\x71\x75\x69\x76\x61\x6c",
.ilen = 16,
.result = "\x18\x0d\x57\x5c\xdf\xfe\x60\x78"
"\x65\x32\x78\x79\x51\x98\x5d\xa6",
.rlen = 16,
}, { /* Speck128/192 */
.key = "\x00\x01\x02\x03\x04\x05\x06\x07"
"\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
"\x10\x11\x12\x13\x14\x15\x16\x17",
.klen = 24,
.input = "\x65\x6e\x74\x20\x74\x6f\x20\x43"
"\x68\x69\x65\x66\x20\x48\x61\x72",
.ilen = 16,
.result = "\x86\x18\x3c\xe0\x5d\x18\xbc\xf9"
"\x66\x55\x13\x13\x3a\xcf\xe4\x1b",
.rlen = 16,
}, { /* Speck128/256 */
.key = "\x00\x01\x02\x03\x04\x05\x06\x07"
"\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
"\x10\x11\x12\x13\x14\x15\x16\x17"
"\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f",
.klen = 32,
.input = "\x70\x6f\x6f\x6e\x65\x72\x2e\x20"
"\x49\x6e\x20\x74\x68\x6f\x73\x65",
.ilen = 16,
.result = "\x43\x8f\x18\x9c\x8d\xb4\xee\x4e"
"\x3e\xf5\xc0\x05\x04\x01\x09\x41",
.rlen = 16,
},
};
static const struct cipher_testvec speck128_dec_tv_template[] = {
{ /* Speck128/128 */
.key = "\x00\x01\x02\x03\x04\x05\x06\x07"
"\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f",
.klen = 16,
.input = "\x18\x0d\x57\x5c\xdf\xfe\x60\x78"
"\x65\x32\x78\x79\x51\x98\x5d\xa6",
.ilen = 16,
.result = "\x20\x6d\x61\x64\x65\x20\x69\x74"
"\x20\x65\x71\x75\x69\x76\x61\x6c",
.rlen = 16,
}, { /* Speck128/192 */
.key = "\x00\x01\x02\x03\x04\x05\x06\x07"
"\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
"\x10\x11\x12\x13\x14\x15\x16\x17",
.klen = 24,
.input = "\x86\x18\x3c\xe0\x5d\x18\xbc\xf9"
"\x66\x55\x13\x13\x3a\xcf\xe4\x1b",
.ilen = 16,
.result = "\x65\x6e\x74\x20\x74\x6f\x20\x43"
"\x68\x69\x65\x66\x20\x48\x61\x72",
.rlen = 16,
}, { /* Speck128/256 */
.key = "\x00\x01\x02\x03\x04\x05\x06\x07"
"\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
"\x10\x11\x12\x13\x14\x15\x16\x17"
"\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f",
.klen = 32,
.input = "\x43\x8f\x18\x9c\x8d\xb4\xee\x4e"
"\x3e\xf5\xc0\x05\x04\x01\x09\x41",
.ilen = 16,
.result = "\x70\x6f\x6f\x6e\x65\x72\x2e\x20"
"\x49\x6e\x20\x74\x68\x6f\x73\x65",
.rlen = 16,
},
};
static const struct cipher_testvec speck64_enc_tv_template[] = {
{ /* Speck64/96 */
.key = "\x00\x01\x02\x03\x08\x09\x0a\x0b"
"\x10\x11\x12\x13",
.klen = 12,
.input = "\x65\x61\x6e\x73\x20\x46\x61\x74",
.ilen = 8,
.result = "\x6c\x94\x75\x41\xec\x52\x79\x9f",
.rlen = 8,
}, { /* Speck64/128 */
.key = "\x00\x01\x02\x03\x08\x09\x0a\x0b"
"\x10\x11\x12\x13\x18\x19\x1a\x1b",
.klen = 16,
.input = "\x2d\x43\x75\x74\x74\x65\x72\x3b",
.ilen = 8,
.result = "\x8b\x02\x4e\x45\x48\xa5\x6f\x8c",
.rlen = 8,
},
};
static const struct cipher_testvec speck64_dec_tv_template[] = {
{ /* Speck64/96 */
.key = "\x00\x01\x02\x03\x08\x09\x0a\x0b"
"\x10\x11\x12\x13",
.klen = 12,
.input = "\x6c\x94\x75\x41\xec\x52\x79\x9f",
.ilen = 8,
.result = "\x65\x61\x6e\x73\x20\x46\x61\x74",
.rlen = 8,
}, { /* Speck64/128 */
.key = "\x00\x01\x02\x03\x08\x09\x0a\x0b"
"\x10\x11\x12\x13\x18\x19\x1a\x1b",
.klen = 16,
.input = "\x8b\x02\x4e\x45\x48\xa5\x6f\x8c",
.ilen = 8,
.result = "\x2d\x43\x75\x74\x74\x65\x72\x3b",
.rlen = 8,
},
};
/* Cast6 test vectors from RFC 2612 */
static const struct cipher_testvec cast6_enc_tv_template[] = {
{

Loading…
Cancel
Save