|
|
|
/*
|
|
|
|
* fs/partitions/check.c
|
|
|
|
*
|
|
|
|
* Code extracted from drivers/block/genhd.c
|
|
|
|
* Copyright (C) 1991-1998 Linus Torvalds
|
|
|
|
* Re-organised Feb 1998 Russell King
|
|
|
|
*
|
|
|
|
* We now have independent partition support from the
|
|
|
|
* block drivers, which allows all the partition code to
|
|
|
|
* be grouped in one location, and it to be mostly self
|
|
|
|
* contained.
|
|
|
|
*
|
|
|
|
* Added needed MAJORS for new pairs, {hdi,hdj}, {hdk,hdl}
|
|
|
|
*/
|
|
|
|
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
15 years ago
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include <linux/ctype.h>
|
|
|
|
#include <linux/genhd.h>
|
|
|
|
|
|
|
|
#include "check.h"
|
|
|
|
|
|
|
|
#include "acorn.h"
|
|
|
|
#include "amiga.h"
|
|
|
|
#include "atari.h"
|
|
|
|
#include "ldm.h"
|
|
|
|
#include "mac.h"
|
|
|
|
#include "msdos.h"
|
|
|
|
#include "osf.h"
|
|
|
|
#include "sgi.h"
|
|
|
|
#include "sun.h"
|
|
|
|
#include "ibm.h"
|
|
|
|
#include "ultrix.h"
|
|
|
|
#include "efi.h"
|
|
|
|
#include "karma.h"
|
|
|
|
#include "sysv68.h"
|
|
|
|
#include "cmdline.h"
|
|
|
|
|
|
|
|
int warn_no_part = 1; /*This is ugly: should make genhd removable media aware*/
|
|
|
|
|
|
|
|
static int (*check_part[])(struct parsed_partitions *) = {
|
|
|
|
/*
|
|
|
|
* Probe partition formats with tables at disk address 0
|
|
|
|
* that also have an ADFS boot block at 0xdc0.
|
|
|
|
*/
|
|
|
|
#ifdef CONFIG_ACORN_PARTITION_ICS
|
|
|
|
adfspart_check_ICS,
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_ACORN_PARTITION_POWERTEC
|
|
|
|
adfspart_check_POWERTEC,
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_ACORN_PARTITION_EESOX
|
|
|
|
adfspart_check_EESOX,
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Now move on to formats that only have partition info at
|
|
|
|
* disk address 0xdc0. Since these may also have stale
|
|
|
|
* PC/BIOS partition tables, they need to come before
|
|
|
|
* the msdos entry.
|
|
|
|
*/
|
|
|
|
#ifdef CONFIG_ACORN_PARTITION_CUMANA
|
|
|
|
adfspart_check_CUMANA,
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_ACORN_PARTITION_ADFS
|
|
|
|
adfspart_check_ADFS,
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef CONFIG_CMDLINE_PARTITION
|
|
|
|
cmdline_partition,
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_EFI_PARTITION
|
|
|
|
efi_partition, /* this must come before msdos */
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_SGI_PARTITION
|
|
|
|
sgi_partition,
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_LDM_PARTITION
|
|
|
|
ldm_partition, /* this must come before msdos */
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_MSDOS_PARTITION
|
|
|
|
msdos_partition,
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_OSF_PARTITION
|
|
|
|
osf_partition,
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_SUN_PARTITION
|
|
|
|
sun_partition,
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_AMIGA_PARTITION
|
|
|
|
amiga_partition,
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_ATARI_PARTITION
|
|
|
|
atari_partition,
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_MAC_PARTITION
|
|
|
|
mac_partition,
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_ULTRIX_PARTITION
|
|
|
|
ultrix_partition,
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_IBM_PARTITION
|
|
|
|
ibm_partition,
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_KARMA_PARTITION
|
|
|
|
karma_partition,
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_SYSV68_PARTITION
|
|
|
|
sysv68_partition,
|
|
|
|
#endif
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct parsed_partitions *allocate_partitions(struct gendisk *hd)
|
|
|
|
{
|
|
|
|
struct parsed_partitions *state;
|
|
|
|
int nr;
|
|
|
|
|
|
|
|
state = kzalloc(sizeof(*state), GFP_KERNEL);
|
|
|
|
if (!state)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
nr = disk_max_parts(hd);
|
|
|
|
state->parts = vzalloc(nr * sizeof(state->parts[0]));
|
|
|
|
if (!state->parts) {
|
|
|
|
kfree(state);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
state->limit = nr;
|
|
|
|
|
|
|
|
return state;
|
|
|
|
}
|
|
|
|
|
|
|
|
void free_partitions(struct parsed_partitions *state)
|
|
|
|
{
|
|
|
|
vfree(state->parts);
|
|
|
|
kfree(state);
|
|
|
|
}
|
|
|
|
|
|
|
|
struct parsed_partitions *
|
|
|
|
check_partition(struct gendisk *hd, struct block_device *bdev)
|
|
|
|
{
|
|
|
|
struct parsed_partitions *state;
|
|
|
|
int i, res, err;
|
|
|
|
|
|
|
|
state = allocate_partitions(hd);
|
|
|
|
if (!state)
|
|
|
|
return NULL;
|
|
|
|
state->pp_buf = (char *)__get_free_page(GFP_KERNEL);
|
|
|
|
if (!state->pp_buf) {
|
|
|
|
free_partitions(state);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
state->pp_buf[0] = '\0';
|
|
|
|
|
|
|
|
state->bdev = bdev;
|
|
|
|
disk_name(hd, 0, state->name);
|
|
|
|
snprintf(state->pp_buf, PAGE_SIZE, " %s:", state->name);
|
|
|
|
if (isdigit(state->name[strlen(state->name)-1]))
|
|
|
|
sprintf(state->name, "p");
|
|
|
|
|
|
|
|
i = res = err = 0;
|
|
|
|
while (!res && check_part[i]) {
|
|
|
|
memset(state->parts, 0, state->limit * sizeof(state->parts[0]));
|
|
|
|
res = check_part[i++](state);
|
|
|
|
if (res < 0) {
|
|
|
|
/* We have hit an I/O error which we don't report now.
|
|
|
|
* But record it, and let the others do their job.
|
|
|
|
*/
|
|
|
|
err = res;
|
|
|
|
res = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
if (res > 0) {
|
|
|
|
printk(KERN_INFO "%s", state->pp_buf);
|
|
|
|
|
|
|
|
free_page((unsigned long)state->pp_buf);
|
|
|
|
return state;
|
|
|
|
}
|
|
|
|
if (state->access_beyond_eod)
|
|
|
|
err = -ENOSPC;
|
|
|
|
if (err)
|
|
|
|
/* The partition is unrecognized. So report I/O errors if there were any */
|
|
|
|
res = err;
|
|
|
|
if (!res)
|
|
|
|
strlcat(state->pp_buf, " unknown partition table\n", PAGE_SIZE);
|
|
|
|
else if (warn_no_part)
|
|
|
|
strlcat(state->pp_buf, " unable to read partition table\n", PAGE_SIZE);
|
|
|
|
|
|
|
|
printk(KERN_INFO "%s", state->pp_buf);
|
|
|
|
|
|
|
|
free_page((unsigned long)state->pp_buf);
|
|
|
|
free_partitions(state);
|
|
|
|
return ERR_PTR(res);
|
|
|
|
}
|