|
|
|
/*
|
|
|
|
* linux/arch/i386/kernel/reboot.c
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/mm.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/delay.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <linux/mc146818rtc.h>
|
|
|
|
#include <linux/efi.h>
|
|
|
|
#include <linux/dmi.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
|
|
#include <asm/apic.h>
|
|
|
|
#include "mach_reboot.h"
|
|
|
|
#include <linux/reboot_fixups.h>
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Power off function, if any
|
|
|
|
*/
|
|
|
|
void (*pm_power_off)(void);
|
|
|
|
|
|
|
|
static int reboot_mode;
|
|
|
|
static int reboot_thru_bios;
|
|
|
|
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
int reboot_smp = 0;
|
|
|
|
static int reboot_cpu = -1;
|
|
|
|
/* shamelessly grabbed from lib/vsprintf.c for readability */
|
|
|
|
#define is_digit(c) ((c) >= '0' && (c) <= '9')
|
|
|
|
#endif
|
|
|
|
static int __init reboot_setup(char *str)
|
|
|
|
{
|
|
|
|
while(1) {
|
|
|
|
switch (*str) {
|
|
|
|
case 'w': /* "warm" reboot (no memory testing etc) */
|
|
|
|
reboot_mode = 0x1234;
|
|
|
|
break;
|
|
|
|
case 'c': /* "cold" reboot (with memory testing etc) */
|
|
|
|
reboot_mode = 0x0;
|
|
|
|
break;
|
|
|
|
case 'b': /* "bios" reboot by jumping through the BIOS */
|
|
|
|
reboot_thru_bios = 1;
|
|
|
|
break;
|
|
|
|
case 'h': /* "hard" reboot by toggling RESET and/or crashing the CPU */
|
|
|
|
reboot_thru_bios = 0;
|
|
|
|
break;
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
case 's': /* "smp" reboot by executing reset on BSP or other CPU*/
|
|
|
|
reboot_smp = 1;
|
|
|
|
if (is_digit(*(str+1))) {
|
|
|
|
reboot_cpu = (int) (*(str+1) - '0');
|
|
|
|
if (is_digit(*(str+2)))
|
|
|
|
reboot_cpu = reboot_cpu*10 + (int)(*(str+2) - '0');
|
|
|
|
}
|
|
|
|
/* we will leave sorting out the final value
|
|
|
|
when we are ready to reboot, since we might not
|
|
|
|
have set up boot_cpu_id or smp_num_cpu */
|
|
|
|
break;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
if((str = strchr(str,',')) != NULL)
|
|
|
|
str++;
|
|
|
|
else
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
__setup("reboot=", reboot_setup);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Reboot options and system auto-detection code provided by
|
|
|
|
* Dell Inc. so their systems "just work". :-)
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Some machines require the "reboot=b" commandline option, this quirk makes that automatic.
|
|
|
|
*/
|
|
|
|
static int __init set_bios_reboot(struct dmi_system_id *d)
|
|
|
|
{
|
|
|
|
if (!reboot_thru_bios) {
|
|
|
|
reboot_thru_bios = 1;
|
|
|
|
printk(KERN_INFO "%s series board detected. Selecting BIOS-method for reboots.\n", d->ident);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Some machines require the "reboot=s" commandline option, this quirk makes that automatic.
|
|
|
|
*/
|
|
|
|
static int __init set_smp_reboot(struct dmi_system_id *d)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
if (!reboot_smp) {
|
|
|
|
reboot_smp = 1;
|
|
|
|
printk(KERN_INFO "%s series board detected. Selecting SMP-method for reboots.\n", d->ident);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Some machines require the "reboot=b,s" commandline option, this quirk makes that automatic.
|
|
|
|
*/
|
|
|
|
static int __init set_smp_bios_reboot(struct dmi_system_id *d)
|
|
|
|
{
|
|
|
|
set_smp_reboot(d);
|
|
|
|
set_bios_reboot(d);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct dmi_system_id __initdata reboot_dmi_table[] = {
|
|
|
|
{ /* Handle problems with rebooting on Dell 1300's */
|
|
|
|
.callback = set_smp_bios_reboot,
|
|
|
|
.ident = "Dell PowerEdge 1300",
|
|
|
|
.matches = {
|
|
|
|
DMI_MATCH(DMI_SYS_VENDOR, "Dell Computer Corporation"),
|
|
|
|
DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 1300/"),
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{ /* Handle problems with rebooting on Dell 300's */
|
|
|
|
.callback = set_bios_reboot,
|
|
|
|
.ident = "Dell PowerEdge 300",
|
|
|
|
.matches = {
|
|
|
|
DMI_MATCH(DMI_SYS_VENDOR, "Dell Computer Corporation"),
|
|
|
|
DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 300/"),
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{ /* Handle problems with rebooting on Dell 2400's */
|
|
|
|
.callback = set_bios_reboot,
|
|
|
|
.ident = "Dell PowerEdge 2400",
|
|
|
|
.matches = {
|
|
|
|
DMI_MATCH(DMI_SYS_VENDOR, "Dell Computer Corporation"),
|
|
|
|
DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 2400"),
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{ }
|
|
|
|
};
|
|
|
|
|
|
|
|
static int __init reboot_init(void)
|
|
|
|
{
|
|
|
|
dmi_check_system(reboot_dmi_table);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
core_initcall(reboot_init);
|
|
|
|
|
|
|
|
/* The following code and data reboots the machine by switching to real
|
|
|
|
mode and jumping to the BIOS reset entry point, as if the CPU has
|
|
|
|
really been reset. The previous version asked the keyboard
|
|
|
|
controller to pulse the CPU reset line, which is more thorough, but
|
|
|
|
doesn't work with at least one type of 486 motherboard. It is easy
|
|
|
|
to stop this code working; hence the copious comments. */
|
|
|
|
|
|
|
|
static unsigned long long
|
|
|
|
real_mode_gdt_entries [3] =
|
|
|
|
{
|
|
|
|
0x0000000000000000ULL, /* Null descriptor */
|
|
|
|
0x00009a000000ffffULL, /* 16-bit real-mode 64k code at 0x00000000 */
|
|
|
|
0x000092000100ffffULL /* 16-bit real-mode 64k data at 0x00000100 */
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct
|
|
|
|
{
|
|
|
|
unsigned short size __attribute__ ((packed));
|
|
|
|
unsigned long long * base __attribute__ ((packed));
|
|
|
|
}
|
|
|
|
real_mode_gdt = { sizeof (real_mode_gdt_entries) - 1, real_mode_gdt_entries },
|
|
|
|
real_mode_idt = { 0x3ff, NULL },
|
|
|
|
no_idt = { 0, NULL };
|
|
|
|
|
|
|
|
|
|
|
|
/* This is 16-bit protected mode code to disable paging and the cache,
|
|
|
|
switch to real mode and jump to the BIOS reset code.
|
|
|
|
|
|
|
|
The instruction that switches to real mode by writing to CR0 must be
|
|
|
|
followed immediately by a far jump instruction, which set CS to a
|
|
|
|
valid value for real mode, and flushes the prefetch queue to avoid
|
|
|
|
running instructions that have already been decoded in protected
|
|
|
|
mode.
|
|
|
|
|
|
|
|
Clears all the flags except ET, especially PG (paging), PE
|
|
|
|
(protected-mode enable) and TS (task switch for coprocessor state
|
|
|
|
save). Flushes the TLB after paging has been disabled. Sets CD and
|
|
|
|
NW, to disable the cache on a 486, and invalidates the cache. This
|
|
|
|
is more like the state of a 486 after reset. I don't know if
|
|
|
|
something else should be done for other chips.
|
|
|
|
|
|
|
|
More could be done here to set up the registers as if a CPU reset had
|
|
|
|
occurred; hopefully real BIOSs don't assume much. */
|
|
|
|
|
|
|
|
static unsigned char real_mode_switch [] =
|
|
|
|
{
|
|
|
|
0x66, 0x0f, 0x20, 0xc0, /* movl %cr0,%eax */
|
|
|
|
0x66, 0x83, 0xe0, 0x11, /* andl $0x00000011,%eax */
|
|
|
|
0x66, 0x0d, 0x00, 0x00, 0x00, 0x60, /* orl $0x60000000,%eax */
|
|
|
|
0x66, 0x0f, 0x22, 0xc0, /* movl %eax,%cr0 */
|
|
|
|
0x66, 0x0f, 0x22, 0xd8, /* movl %eax,%cr3 */
|
|
|
|
0x66, 0x0f, 0x20, 0xc3, /* movl %cr0,%ebx */
|
|
|
|
0x66, 0x81, 0xe3, 0x00, 0x00, 0x00, 0x60, /* andl $0x60000000,%ebx */
|
|
|
|
0x74, 0x02, /* jz f */
|
|
|
|
0x0f, 0x09, /* wbinvd */
|
|
|
|
0x24, 0x10, /* f: andb $0x10,al */
|
|
|
|
0x66, 0x0f, 0x22, 0xc0 /* movl %eax,%cr0 */
|
|
|
|
};
|
|
|
|
static unsigned char jump_to_bios [] =
|
|
|
|
{
|
|
|
|
0xea, 0x00, 0x00, 0xff, 0xff /* ljmp $0xffff,$0x0000 */
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Switch to real mode and then execute the code
|
|
|
|
* specified by the code and length parameters.
|
|
|
|
* We assume that length will aways be less that 100!
|
|
|
|
*/
|
|
|
|
void machine_real_restart(unsigned char *code, int length)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
local_irq_disable();
|
|
|
|
|
|
|
|
/* Write zero to CMOS register number 0x0f, which the BIOS POST
|
|
|
|
routine will recognize as telling it to do a proper reboot. (Well
|
|
|
|
that's what this book in front of me says -- it may only apply to
|
|
|
|
the Phoenix BIOS though, it's not clear). At the same time,
|
|
|
|
disable NMIs by setting the top bit in the CMOS address register,
|
|
|
|
as we're about to do peculiar things to the CPU. I'm not sure if
|
|
|
|
`outb_p' is needed instead of just `outb'. Use it to be on the
|
|
|
|
safe side. (Yes, CMOS_WRITE does outb_p's. - Paul G.)
|
|
|
|
*/
|
|
|
|
|
|
|
|
spin_lock_irqsave(&rtc_lock, flags);
|
|
|
|
CMOS_WRITE(0x00, 0x8f);
|
|
|
|
spin_unlock_irqrestore(&rtc_lock, flags);
|
|
|
|
|
|
|
|
/* Remap the kernel at virtual address zero, as well as offset zero
|
|
|
|
from the kernel segment. This assumes the kernel segment starts at
|
|
|
|
virtual address PAGE_OFFSET. */
|
|
|
|
|
|
|
|
memcpy (swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS,
|
|
|
|
sizeof (swapper_pg_dir [0]) * KERNEL_PGD_PTRS);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Use `swapper_pg_dir' as our page directory.
|
|
|
|
*/
|
|
|
|
load_cr3(swapper_pg_dir);
|
|
|
|
|
|
|
|
/* Write 0x1234 to absolute memory location 0x472. The BIOS reads
|
|
|
|
this on booting to tell it to "Bypass memory test (also warm
|
|
|
|
boot)". This seems like a fairly standard thing that gets set by
|
|
|
|
REBOOT.COM programs, and the previous reset routine did this
|
|
|
|
too. */
|
|
|
|
|
|
|
|
*((unsigned short *)0x472) = reboot_mode;
|
|
|
|
|
|
|
|
/* For the switch to real mode, copy some code to low memory. It has
|
|
|
|
to be in the first 64k because it is running in 16-bit mode, and it
|
|
|
|
has to have the same physical and virtual address, because it turns
|
|
|
|
off paging. Copy it near the end of the first page, out of the way
|
|
|
|
of BIOS variables. */
|
|
|
|
|
|
|
|
memcpy ((void *) (0x1000 - sizeof (real_mode_switch) - 100),
|
|
|
|
real_mode_switch, sizeof (real_mode_switch));
|
|
|
|
memcpy ((void *) (0x1000 - 100), code, length);
|
|
|
|
|
|
|
|
/* Set up the IDT for real mode. */
|
|
|
|
|
|
|
|
__asm__ __volatile__ ("lidt %0" : : "m" (real_mode_idt));
|
|
|
|
|
|
|
|
/* Set up a GDT from which we can load segment descriptors for real
|
|
|
|
mode. The GDT is not used in real mode; it is just needed here to
|
|
|
|
prepare the descriptors. */
|
|
|
|
|
|
|
|
__asm__ __volatile__ ("lgdt %0" : : "m" (real_mode_gdt));
|
|
|
|
|
|
|
|
/* Load the data segment registers, and thus the descriptors ready for
|
|
|
|
real mode. The base address of each segment is 0x100, 16 times the
|
|
|
|
selector value being loaded here. This is so that the segment
|
|
|
|
registers don't have to be reloaded after switching to real mode:
|
|
|
|
the values are consistent for real mode operation already. */
|
|
|
|
|
|
|
|
__asm__ __volatile__ ("movl $0x0010,%%eax\n"
|
|
|
|
"\tmovl %%eax,%%ds\n"
|
|
|
|
"\tmovl %%eax,%%es\n"
|
|
|
|
"\tmovl %%eax,%%fs\n"
|
|
|
|
"\tmovl %%eax,%%gs\n"
|
|
|
|
"\tmovl %%eax,%%ss" : : : "eax");
|
|
|
|
|
|
|
|
/* Jump to the 16-bit code that we copied earlier. It disables paging
|
|
|
|
and the cache, switches to real mode, and jumps to the BIOS reset
|
|
|
|
entry point. */
|
|
|
|
|
|
|
|
__asm__ __volatile__ ("ljmp $0x0008,%0"
|
|
|
|
:
|
|
|
|
: "i" ((void *) (0x1000 - sizeof (real_mode_switch) - 100)));
|
|
|
|
}
|
|
|
|
|
|
|
|
void machine_restart(char * __unused)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
int cpuid;
|
|
|
|
|
|
|
|
cpuid = GET_APIC_ID(apic_read(APIC_ID));
|
|
|
|
|
|
|
|
if (reboot_smp) {
|
|
|
|
|
|
|
|
/* check to see if reboot_cpu is valid
|
|
|
|
if its not, default to the BSP */
|
|
|
|
if ((reboot_cpu == -1) ||
|
|
|
|
(reboot_cpu > (NR_CPUS -1)) ||
|
|
|
|
!physid_isset(cpuid, phys_cpu_present_map))
|
|
|
|
reboot_cpu = boot_cpu_physical_apicid;
|
|
|
|
|
|
|
|
reboot_smp = 0; /* use this as a flag to only go through this once*/
|
|
|
|
/* re-run this function on the other CPUs
|
|
|
|
it will fall though this section since we have
|
|
|
|
cleared reboot_smp, and do the reboot if it is the
|
|
|
|
correct CPU, otherwise it halts. */
|
|
|
|
if (reboot_cpu != cpuid)
|
|
|
|
smp_call_function((void *)machine_restart , NULL, 1, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* if reboot_cpu is still -1, then we want a tradional reboot,
|
|
|
|
and if we are not running on the reboot_cpu,, halt */
|
|
|
|
if ((reboot_cpu != -1) && (cpuid != reboot_cpu)) {
|
|
|
|
for (;;)
|
|
|
|
__asm__ __volatile__ ("hlt");
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Stop all CPUs and turn off local APICs and the IO-APIC, so
|
|
|
|
* other OSs see a clean IRQ state.
|
|
|
|
*/
|
|
|
|
smp_send_stop();
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
|
|
|
|
lapic_shutdown();
|
|
|
|
|
|
|
|
#ifdef CONFIG_X86_IO_APIC
|
|
|
|
disable_IO_APIC();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (!reboot_thru_bios) {
|
|
|
|
if (efi_enabled) {
|
|
|
|
efi.reset_system(EFI_RESET_COLD, EFI_SUCCESS, 0, NULL);
|
|
|
|
__asm__ __volatile__("lidt %0": :"m" (no_idt));
|
|
|
|
__asm__ __volatile__("int3");
|
|
|
|
}
|
|
|
|
/* rebooting needs to touch the page at absolute addr 0 */
|
|
|
|
*((unsigned short *)__va(0x472)) = reboot_mode;
|
|
|
|
for (;;) {
|
|
|
|
mach_reboot_fixups(); /* for board specific fixups */
|
|
|
|
mach_reboot();
|
|
|
|
/* That didn't work - force a triple fault.. */
|
|
|
|
__asm__ __volatile__("lidt %0": :"m" (no_idt));
|
|
|
|
__asm__ __volatile__("int3");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (efi_enabled)
|
|
|
|
efi.reset_system(EFI_RESET_WARM, EFI_SUCCESS, 0, NULL);
|
|
|
|
|
|
|
|
machine_real_restart(jump_to_bios, sizeof(jump_to_bios));
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPORT_SYMBOL(machine_restart);
|
|
|
|
|
|
|
|
void machine_halt(void)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPORT_SYMBOL(machine_halt);
|
|
|
|
|
|
|
|
void machine_power_off(void)
|
|
|
|
{
|
|
|
|
lapic_shutdown();
|
|
|
|
|
|
|
|
if (efi_enabled)
|
|
|
|
efi.reset_system(EFI_RESET_SHUTDOWN, EFI_SUCCESS, 0, NULL);
|
|
|
|
if (pm_power_off)
|
|
|
|
pm_power_off();
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPORT_SYMBOL(machine_power_off);
|
|
|
|
|