You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
385 lines
11 KiB
385 lines
11 KiB
20 years ago
|
/*
|
||
|
* linux/arch/arm/mach-omap/time.c
|
||
|
*
|
||
|
* OMAP Timers
|
||
|
*
|
||
|
* Copyright (C) 2004 Nokia Corporation
|
||
|
* Partial timer rewrite and additional VST timer support by
|
||
|
* Tony Lindgen <tony@atomide.com> and
|
||
|
* Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com>
|
||
|
*
|
||
|
* MPU timer code based on the older MPU timer code for OMAP
|
||
|
* Copyright (C) 2000 RidgeRun, Inc.
|
||
|
* Author: Greg Lonnon <glonnon@ridgerun.com>
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify it
|
||
|
* under the terms of the GNU General Public License as published by the
|
||
|
* Free Software Foundation; either version 2 of the License, or (at your
|
||
|
* option) any later version.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
||
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
||
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
|
||
|
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
|
||
|
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||
|
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License along
|
||
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
||
|
* 675 Mass Ave, Cambridge, MA 02139, USA.
|
||
|
*/
|
||
|
|
||
|
#include <linux/config.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
|
||
|
#include <asm/system.h>
|
||
|
#include <asm/hardware.h>
|
||
|
#include <asm/io.h>
|
||
|
#include <asm/leds.h>
|
||
|
#include <asm/irq.h>
|
||
|
#include <asm/mach/irq.h>
|
||
|
#include <asm/mach/time.h>
|
||
|
|
||
|
struct sys_timer omap_timer;
|
||
|
|
||
|
#ifdef CONFIG_OMAP_MPU_TIMER
|
||
|
|
||
|
/*
|
||
|
* ---------------------------------------------------------------------------
|
||
|
* MPU timer
|
||
|
* ---------------------------------------------------------------------------
|
||
|
*/
|
||
|
#define OMAP_MPU_TIMER1_BASE (0xfffec500)
|
||
|
#define OMAP_MPU_TIMER2_BASE (0xfffec600)
|
||
|
#define OMAP_MPU_TIMER3_BASE (0xfffec700)
|
||
|
#define OMAP_MPU_TIMER_BASE OMAP_MPU_TIMER1_BASE
|
||
|
#define OMAP_MPU_TIMER_OFFSET 0x100
|
||
|
|
||
|
#define MPU_TIMER_FREE (1 << 6)
|
||
|
#define MPU_TIMER_CLOCK_ENABLE (1 << 5)
|
||
|
#define MPU_TIMER_AR (1 << 1)
|
||
|
#define MPU_TIMER_ST (1 << 0)
|
||
|
|
||
|
/* cycles to nsec conversions taken from arch/i386/kernel/timers/timer_tsc.c,
|
||
|
* converted to use kHz by Kevin Hilman */
|
||
|
/* convert from cycles(64bits) => nanoseconds (64bits)
|
||
|
* basic equation:
|
||
|
* ns = cycles / (freq / ns_per_sec)
|
||
|
* ns = cycles * (ns_per_sec / freq)
|
||
|
* ns = cycles * (10^9 / (cpu_khz * 10^3))
|
||
|
* ns = cycles * (10^6 / cpu_khz)
|
||
|
*
|
||
|
* Then we use scaling math (suggested by george at mvista.com) to get:
|
||
|
* ns = cycles * (10^6 * SC / cpu_khz / SC
|
||
|
* ns = cycles * cyc2ns_scale / SC
|
||
|
*
|
||
|
* And since SC is a constant power of two, we can convert the div
|
||
|
* into a shift.
|
||
|
* -johnstul at us.ibm.com "math is hard, lets go shopping!"
|
||
|
*/
|
||
|
static unsigned long cyc2ns_scale;
|
||
|
#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
|
||
|
|
||
|
static inline void set_cyc2ns_scale(unsigned long cpu_khz)
|
||
|
{
|
||
|
cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR)/cpu_khz;
|
||
|
}
|
||
|
|
||
|
static inline unsigned long long cycles_2_ns(unsigned long long cyc)
|
||
|
{
|
||
|
return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* MPU_TICKS_PER_SEC must be an even number, otherwise machinecycles_to_usecs
|
||
|
* will break. On P2, the timer count rate is 6.5 MHz after programming PTV
|
||
|
* with 0. This divides the 13MHz input by 2, and is undocumented.
|
||
|
*/
|
||
|
#ifdef CONFIG_MACH_OMAP_PERSEUS2
|
||
|
/* REVISIT: This ifdef construct should be replaced by a query to clock
|
||
|
* framework to see if timer base frequency is 12.0, 13.0 or 19.2 MHz.
|
||
|
*/
|
||
|
#define MPU_TICKS_PER_SEC (13000000 / 2)
|
||
|
#else
|
||
|
#define MPU_TICKS_PER_SEC (12000000 / 2)
|
||
|
#endif
|
||
|
|
||
|
#define MPU_TIMER_TICK_PERIOD ((MPU_TICKS_PER_SEC / HZ) - 1)
|
||
|
|
||
|
typedef struct {
|
||
|
u32 cntl; /* CNTL_TIMER, R/W */
|
||
|
u32 load_tim; /* LOAD_TIM, W */
|
||
|
u32 read_tim; /* READ_TIM, R */
|
||
|
} omap_mpu_timer_regs_t;
|
||
|
|
||
|
#define omap_mpu_timer_base(n) \
|
||
|
((volatile omap_mpu_timer_regs_t*)IO_ADDRESS(OMAP_MPU_TIMER_BASE + \
|
||
|
(n)*OMAP_MPU_TIMER_OFFSET))
|
||
|
|
||
|
static inline unsigned long omap_mpu_timer_read(int nr)
|
||
|
{
|
||
|
volatile omap_mpu_timer_regs_t* timer = omap_mpu_timer_base(nr);
|
||
|
return timer->read_tim;
|
||
|
}
|
||
|
|
||
|
static inline void omap_mpu_timer_start(int nr, unsigned long load_val)
|
||
|
{
|
||
|
volatile omap_mpu_timer_regs_t* timer = omap_mpu_timer_base(nr);
|
||
|
|
||
|
timer->cntl = MPU_TIMER_CLOCK_ENABLE;
|
||
|
udelay(1);
|
||
|
timer->load_tim = load_val;
|
||
|
udelay(1);
|
||
|
timer->cntl = (MPU_TIMER_CLOCK_ENABLE | MPU_TIMER_AR | MPU_TIMER_ST);
|
||
|
}
|
||
|
|
||
|
unsigned long omap_mpu_timer_ticks_to_usecs(unsigned long nr_ticks)
|
||
|
{
|
||
|
unsigned long long nsec;
|
||
|
|
||
|
nsec = cycles_2_ns((unsigned long long)nr_ticks);
|
||
|
return (unsigned long)nsec / 1000;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Last processed system timer interrupt
|
||
|
*/
|
||
|
static unsigned long omap_mpu_timer_last = 0;
|
||
|
|
||
|
/*
|
||
|
* Returns elapsed usecs since last system timer interrupt
|
||
|
*/
|
||
|
static unsigned long omap_mpu_timer_gettimeoffset(void)
|
||
|
{
|
||
|
unsigned long now = 0 - omap_mpu_timer_read(0);
|
||
|
unsigned long elapsed = now - omap_mpu_timer_last;
|
||
|
|
||
|
return omap_mpu_timer_ticks_to_usecs(elapsed);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Elapsed time between interrupts is calculated using timer0.
|
||
|
* Latency during the interrupt is calculated using timer1.
|
||
|
* Both timer0 and timer1 are counting at 6MHz (P2 6.5MHz).
|
||
|
*/
|
||
|
static irqreturn_t omap_mpu_timer_interrupt(int irq, void *dev_id,
|
||
|
struct pt_regs *regs)
|
||
|
{
|
||
|
unsigned long now, latency;
|
||
|
|
||
|
write_seqlock(&xtime_lock);
|
||
|
now = 0 - omap_mpu_timer_read(0);
|
||
|
latency = MPU_TICKS_PER_SEC / HZ - omap_mpu_timer_read(1);
|
||
|
omap_mpu_timer_last = now - latency;
|
||
|
timer_tick(regs);
|
||
|
write_sequnlock(&xtime_lock);
|
||
|
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
static struct irqaction omap_mpu_timer_irq = {
|
||
|
.name = "mpu timer",
|
||
|
.flags = SA_INTERRUPT,
|
||
|
.handler = omap_mpu_timer_interrupt
|
||
|
};
|
||
|
|
||
|
static unsigned long omap_mpu_timer1_overflows;
|
||
|
static irqreturn_t omap_mpu_timer1_interrupt(int irq, void *dev_id,
|
||
|
struct pt_regs *regs)
|
||
|
{
|
||
|
omap_mpu_timer1_overflows++;
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
static struct irqaction omap_mpu_timer1_irq = {
|
||
|
.name = "mpu timer1 overflow",
|
||
|
.flags = SA_INTERRUPT,
|
||
|
.handler = omap_mpu_timer1_interrupt
|
||
|
};
|
||
|
|
||
|
static __init void omap_init_mpu_timer(void)
|
||
|
{
|
||
|
set_cyc2ns_scale(MPU_TICKS_PER_SEC / 1000);
|
||
|
omap_timer.offset = omap_mpu_timer_gettimeoffset;
|
||
|
setup_irq(INT_TIMER1, &omap_mpu_timer1_irq);
|
||
|
setup_irq(INT_TIMER2, &omap_mpu_timer_irq);
|
||
|
omap_mpu_timer_start(0, 0xffffffff);
|
||
|
omap_mpu_timer_start(1, MPU_TIMER_TICK_PERIOD);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Scheduler clock - returns current time in nanosec units.
|
||
|
*/
|
||
|
unsigned long long sched_clock(void)
|
||
|
{
|
||
|
unsigned long ticks = 0 - omap_mpu_timer_read(0);
|
||
|
unsigned long long ticks64;
|
||
|
|
||
|
ticks64 = omap_mpu_timer1_overflows;
|
||
|
ticks64 <<= 32;
|
||
|
ticks64 |= ticks;
|
||
|
|
||
|
return cycles_2_ns(ticks64);
|
||
|
}
|
||
|
#endif /* CONFIG_OMAP_MPU_TIMER */
|
||
|
|
||
|
#ifdef CONFIG_OMAP_32K_TIMER
|
||
|
|
||
|
#ifdef CONFIG_ARCH_OMAP1510
|
||
|
#error OMAP 32KHz timer does not currently work on 1510!
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* ---------------------------------------------------------------------------
|
||
|
* 32KHz OS timer
|
||
|
*
|
||
|
* This currently works only on 16xx, as 1510 does not have the continuous
|
||
|
* 32KHz synchronous timer. The 32KHz synchronous timer is used to keep track
|
||
|
* of time in addition to the 32KHz OS timer. Using only the 32KHz OS timer
|
||
|
* on 1510 would be possible, but the timer would not be as accurate as
|
||
|
* with the 32KHz synchronized timer.
|
||
|
* ---------------------------------------------------------------------------
|
||
|
*/
|
||
|
#define OMAP_32K_TIMER_BASE 0xfffb9000
|
||
|
#define OMAP_32K_TIMER_CR 0x08
|
||
|
#define OMAP_32K_TIMER_TVR 0x00
|
||
|
#define OMAP_32K_TIMER_TCR 0x04
|
||
|
|
||
|
#define OMAP_32K_TICKS_PER_HZ (32768 / HZ)
|
||
|
|
||
|
/*
|
||
|
* TRM says 1 / HZ = ( TVR + 1) / 32768, so TRV = (32768 / HZ) - 1
|
||
|
* so with HZ = 100, TVR = 327.68.
|
||
|
*/
|
||
|
#define OMAP_32K_TIMER_TICK_PERIOD ((32768 / HZ) - 1)
|
||
|
#define MAX_SKIP_JIFFIES 25
|
||
|
#define TIMER_32K_SYNCHRONIZED 0xfffbc410
|
||
|
|
||
|
#define JIFFIES_TO_HW_TICKS(nr_jiffies, clock_rate) \
|
||
|
(((nr_jiffies) * (clock_rate)) / HZ)
|
||
|
|
||
|
static inline void omap_32k_timer_write(int val, int reg)
|
||
|
{
|
||
|
omap_writew(val, reg + OMAP_32K_TIMER_BASE);
|
||
|
}
|
||
|
|
||
|
static inline unsigned long omap_32k_timer_read(int reg)
|
||
|
{
|
||
|
return omap_readl(reg + OMAP_32K_TIMER_BASE) & 0xffffff;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The 32KHz synchronized timer is an additional timer on 16xx.
|
||
|
* It is always running.
|
||
|
*/
|
||
|
static inline unsigned long omap_32k_sync_timer_read(void)
|
||
|
{
|
||
|
return omap_readl(TIMER_32K_SYNCHRONIZED);
|
||
|
}
|
||
|
|
||
|
static inline void omap_32k_timer_start(unsigned long load_val)
|
||
|
{
|
||
|
omap_32k_timer_write(load_val, OMAP_32K_TIMER_TVR);
|
||
|
omap_32k_timer_write(0x0f, OMAP_32K_TIMER_CR);
|
||
|
}
|
||
|
|
||
|
static inline void omap_32k_timer_stop(void)
|
||
|
{
|
||
|
omap_32k_timer_write(0x0, OMAP_32K_TIMER_CR);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Rounds down to nearest usec
|
||
|
*/
|
||
|
static inline unsigned long omap_32k_ticks_to_usecs(unsigned long ticks_32k)
|
||
|
{
|
||
|
return (ticks_32k * 5*5*5*5*5*5) >> 9;
|
||
|
}
|
||
|
|
||
|
static unsigned long omap_32k_last_tick = 0;
|
||
|
|
||
|
/*
|
||
|
* Returns elapsed usecs since last 32k timer interrupt
|
||
|
*/
|
||
|
static unsigned long omap_32k_timer_gettimeoffset(void)
|
||
|
{
|
||
|
unsigned long now = omap_32k_sync_timer_read();
|
||
|
return omap_32k_ticks_to_usecs(now - omap_32k_last_tick);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Timer interrupt for 32KHz timer. When dynamic tick is enabled, this
|
||
|
* function is also called from other interrupts to remove latency
|
||
|
* issues with dynamic tick. In the dynamic tick case, we need to lock
|
||
|
* with irqsave.
|
||
|
*/
|
||
|
static irqreturn_t omap_32k_timer_interrupt(int irq, void *dev_id,
|
||
|
struct pt_regs *regs)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
unsigned long now;
|
||
|
|
||
|
write_seqlock_irqsave(&xtime_lock, flags);
|
||
|
now = omap_32k_sync_timer_read();
|
||
|
|
||
|
while (now - omap_32k_last_tick >= OMAP_32K_TICKS_PER_HZ) {
|
||
|
omap_32k_last_tick += OMAP_32K_TICKS_PER_HZ;
|
||
|
timer_tick(regs);
|
||
|
}
|
||
|
|
||
|
/* Restart timer so we don't drift off due to modulo or dynamic tick.
|
||
|
* By default we program the next timer to be continuous to avoid
|
||
|
* latencies during high system load. During dynamic tick operation the
|
||
|
* continuous timer can be overridden from pm_idle to be longer.
|
||
|
*/
|
||
|
omap_32k_timer_start(omap_32k_last_tick + OMAP_32K_TICKS_PER_HZ - now);
|
||
|
write_sequnlock_irqrestore(&xtime_lock, flags);
|
||
|
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
static struct irqaction omap_32k_timer_irq = {
|
||
|
.name = "32KHz timer",
|
||
|
.flags = SA_INTERRUPT,
|
||
|
.handler = omap_32k_timer_interrupt
|
||
|
};
|
||
|
|
||
|
static __init void omap_init_32k_timer(void)
|
||
|
{
|
||
|
setup_irq(INT_OS_TIMER, &omap_32k_timer_irq);
|
||
|
omap_timer.offset = omap_32k_timer_gettimeoffset;
|
||
|
omap_32k_last_tick = omap_32k_sync_timer_read();
|
||
|
omap_32k_timer_start(OMAP_32K_TIMER_TICK_PERIOD);
|
||
|
}
|
||
|
#endif /* CONFIG_OMAP_32K_TIMER */
|
||
|
|
||
|
/*
|
||
|
* ---------------------------------------------------------------------------
|
||
|
* Timer initialization
|
||
|
* ---------------------------------------------------------------------------
|
||
|
*/
|
||
|
void __init omap_timer_init(void)
|
||
|
{
|
||
|
#if defined(CONFIG_OMAP_MPU_TIMER)
|
||
|
omap_init_mpu_timer();
|
||
|
#elif defined(CONFIG_OMAP_32K_TIMER)
|
||
|
omap_init_32k_timer();
|
||
|
#else
|
||
|
#error No system timer selected in Kconfig!
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
struct sys_timer omap_timer = {
|
||
|
.init = omap_timer_init,
|
||
|
.offset = NULL, /* Initialized later */
|
||
|
};
|