|
|
|
/*
|
|
|
|
* QLogic Fibre Channel HBA Driver
|
|
|
|
* Copyright (c) 2003-2005 QLogic Corporation
|
|
|
|
*
|
|
|
|
* See LICENSE.qla2xxx for copyright and licensing details.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static __inline__ uint16_t qla2x00_debounce_register(volatile uint16_t __iomem *);
|
|
|
|
/*
|
|
|
|
* qla2x00_debounce_register
|
|
|
|
* Debounce register.
|
|
|
|
*
|
|
|
|
* Input:
|
|
|
|
* port = register address.
|
|
|
|
*
|
|
|
|
* Returns:
|
|
|
|
* register value.
|
|
|
|
*/
|
|
|
|
static __inline__ uint16_t
|
|
|
|
qla2x00_debounce_register(volatile uint16_t __iomem *addr)
|
|
|
|
{
|
|
|
|
volatile uint16_t first;
|
|
|
|
volatile uint16_t second;
|
|
|
|
|
|
|
|
do {
|
|
|
|
first = RD_REG_WORD(addr);
|
|
|
|
barrier();
|
|
|
|
cpu_relax();
|
|
|
|
second = RD_REG_WORD(addr);
|
|
|
|
} while (first != second);
|
|
|
|
|
|
|
|
return (first);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __inline__ int qla2x00_normalize_dma_addr(
|
|
|
|
dma_addr_t *e_addr, uint32_t *e_len,
|
|
|
|
dma_addr_t *ne_addr, uint32_t *ne_len);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* qla2x00_normalize_dma_addr() - Normalize an DMA address.
|
|
|
|
* @e_addr: Raw DMA address
|
|
|
|
* @e_len: Raw DMA length
|
|
|
|
* @ne_addr: Normalized second DMA address
|
|
|
|
* @ne_len: Normalized second DMA length
|
|
|
|
*
|
|
|
|
* If the address does not span a 4GB page boundary, the contents of @ne_addr
|
|
|
|
* and @ne_len are undefined. @e_len is updated to reflect a normalization.
|
|
|
|
*
|
|
|
|
* Example:
|
|
|
|
*
|
|
|
|
* ffffabc0ffffeeee (e_addr) start of DMA address
|
|
|
|
* 0000000020000000 (e_len) length of DMA transfer
|
|
|
|
* ffffabc11fffeeed end of DMA transfer
|
|
|
|
*
|
|
|
|
* Is the 4GB boundary crossed?
|
|
|
|
*
|
|
|
|
* ffffabc0ffffeeee (e_addr)
|
|
|
|
* ffffabc11fffeeed (e_addr + e_len - 1)
|
|
|
|
* 00000001e0000003 ((e_addr ^ (e_addr + e_len - 1))
|
|
|
|
* 0000000100000000 ((e_addr ^ (e_addr + e_len - 1)) & ~(0xffffffff)
|
|
|
|
*
|
|
|
|
* Compute start of second DMA segment:
|
|
|
|
*
|
|
|
|
* ffffabc0ffffeeee (e_addr)
|
|
|
|
* ffffabc1ffffeeee (0x100000000 + e_addr)
|
|
|
|
* ffffabc100000000 (0x100000000 + e_addr) & ~(0xffffffff)
|
|
|
|
* ffffabc100000000 (ne_addr)
|
|
|
|
*
|
|
|
|
* Compute length of second DMA segment:
|
|
|
|
*
|
|
|
|
* 00000000ffffeeee (e_addr & 0xffffffff)
|
|
|
|
* 0000000000001112 (0x100000000 - (e_addr & 0xffffffff))
|
|
|
|
* 000000001fffeeee (e_len - (0x100000000 - (e_addr & 0xffffffff))
|
|
|
|
* 000000001fffeeee (ne_len)
|
|
|
|
*
|
|
|
|
* Adjust length of first DMA segment
|
|
|
|
*
|
|
|
|
* 0000000020000000 (e_len)
|
|
|
|
* 0000000000001112 (e_len - ne_len)
|
|
|
|
* 0000000000001112 (e_len)
|
|
|
|
*
|
|
|
|
* Returns non-zero if the specified address was normalized, else zero.
|
|
|
|
*/
|
|
|
|
static __inline__ int
|
|
|
|
qla2x00_normalize_dma_addr(
|
|
|
|
dma_addr_t *e_addr, uint32_t *e_len,
|
|
|
|
dma_addr_t *ne_addr, uint32_t *ne_len)
|
|
|
|
{
|
|
|
|
int normalized;
|
|
|
|
|
|
|
|
normalized = 0;
|
|
|
|
if ((*e_addr ^ (*e_addr + *e_len - 1)) & ~(0xFFFFFFFFULL)) {
|
|
|
|
/* Compute normalized crossed address and len */
|
|
|
|
*ne_addr = (0x100000000ULL + *e_addr) & ~(0xFFFFFFFFULL);
|
|
|
|
*ne_len = *e_len - (0x100000000ULL - (*e_addr & 0xFFFFFFFFULL));
|
|
|
|
*e_len -= *ne_len;
|
|
|
|
|
|
|
|
normalized++;
|
|
|
|
}
|
|
|
|
return (normalized);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __inline__ void qla2x00_poll(scsi_qla_host_t *);
|
|
|
|
static inline void
|
|
|
|
qla2x00_poll(scsi_qla_host_t *ha)
|
|
|
|
{
|
|
|
|
ha->isp_ops.intr_handler(0, ha, NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __inline__ void qla2x00_check_fabric_devices(scsi_qla_host_t *);
|
|
|
|
/*
|
|
|
|
* This routine will wait for fabric devices for
|
|
|
|
* the reset delay.
|
|
|
|
*/
|
|
|
|
static __inline__ void qla2x00_check_fabric_devices(scsi_qla_host_t *ha)
|
|
|
|
{
|
|
|
|
uint16_t fw_state;
|
|
|
|
|
|
|
|
qla2x00_get_firmware_state(ha, &fw_state);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* qla2x00_issue_marker() - Issue a Marker IOCB if necessary.
|
|
|
|
* @ha: HA context
|
|
|
|
* @ha_locked: is function called with the hardware lock
|
|
|
|
*
|
|
|
|
* Returns non-zero if a failure occured, else zero.
|
|
|
|
*/
|
|
|
|
static inline int
|
|
|
|
qla2x00_issue_marker(scsi_qla_host_t *ha, int ha_locked)
|
|
|
|
{
|
|
|
|
/* Send marker if required */
|
|
|
|
if (ha->marker_needed != 0) {
|
|
|
|
if (ha_locked) {
|
|
|
|
if (__qla2x00_marker(ha, 0, 0, MK_SYNC_ALL) !=
|
|
|
|
QLA_SUCCESS)
|
|
|
|
return (QLA_FUNCTION_FAILED);
|
|
|
|
} else {
|
|
|
|
if (qla2x00_marker(ha, 0, 0, MK_SYNC_ALL) !=
|
|
|
|
QLA_SUCCESS)
|
|
|
|
return (QLA_FUNCTION_FAILED);
|
|
|
|
}
|
|
|
|
ha->marker_needed = 0;
|
|
|
|
}
|
|
|
|
return (QLA_SUCCESS);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline uint8_t *host_to_fcp_swap(uint8_t *, uint32_t);
|
|
|
|
static inline uint8_t *
|
|
|
|
host_to_fcp_swap(uint8_t *fcp, uint32_t bsize)
|
|
|
|
{
|
|
|
|
uint32_t *ifcp = (uint32_t *) fcp;
|
|
|
|
uint32_t *ofcp = (uint32_t *) fcp;
|
|
|
|
uint32_t iter = bsize >> 2;
|
|
|
|
|
|
|
|
for (; iter ; iter--)
|
|
|
|
*ofcp++ = swab32(*ifcp++);
|
|
|
|
|
|
|
|
return fcp;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int qla2x00_is_reserved_id(scsi_qla_host_t *, uint16_t);
|
|
|
|
static inline int
|
|
|
|
qla2x00_is_reserved_id(scsi_qla_host_t *ha, uint16_t loop_id)
|
|
|
|
{
|
|
|
|
if (IS_QLA24XX(ha) || IS_QLA54XX(ha))
|
|
|
|
return (loop_id > NPH_LAST_HANDLE);
|
|
|
|
|
|
|
|
return ((loop_id > ha->last_loop_id && loop_id < SNS_FIRST_LOOP_ID) ||
|
|
|
|
loop_id == MANAGEMENT_SERVER || loop_id == BROADCAST);
|
|
|
|
};
|