|
|
|
/*
|
|
|
|
* linux/mm/bootmem.c
|
|
|
|
*
|
|
|
|
* Copyright (C) 1999 Ingo Molnar
|
|
|
|
* Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
|
|
|
|
*
|
|
|
|
* simple boot-time physical memory area allocator and
|
|
|
|
* free memory collector. It's used to deal with reserved
|
|
|
|
* system memory and memory holes as well.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/mm.h>
|
|
|
|
#include <linux/kernel_stat.h>
|
|
|
|
#include <linux/swap.h>
|
|
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/bootmem.h>
|
|
|
|
#include <linux/mmzone.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <asm/dma.h>
|
|
|
|
#include <asm/io.h>
|
|
|
|
#include "internal.h"
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Access to this subsystem has to be serialized externally. (this is
|
|
|
|
* true for the boot process anyway)
|
|
|
|
*/
|
|
|
|
unsigned long max_low_pfn;
|
|
|
|
unsigned long min_low_pfn;
|
|
|
|
unsigned long max_pfn;
|
|
|
|
|
|
|
|
EXPORT_SYMBOL(max_pfn); /* This is exported so
|
|
|
|
* dma_get_required_mask(), which uses
|
|
|
|
* it, can be an inline function */
|
|
|
|
|
|
|
|
static LIST_HEAD(bdata_list);
|
|
|
|
#ifdef CONFIG_CRASH_DUMP
|
|
|
|
/*
|
|
|
|
* If we have booted due to a crash, max_pfn will be a very low value. We need
|
|
|
|
* to know the amount of memory that the previous kernel used.
|
|
|
|
*/
|
|
|
|
unsigned long saved_max_pfn;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* return the number of _pages_ that will be allocated for the boot bitmap */
|
|
|
|
unsigned long __init bootmem_bootmap_pages (unsigned long pages)
|
|
|
|
{
|
|
|
|
unsigned long mapsize;
|
|
|
|
|
|
|
|
mapsize = (pages+7)/8;
|
|
|
|
mapsize = (mapsize + ~PAGE_MASK) & PAGE_MASK;
|
|
|
|
mapsize >>= PAGE_SHIFT;
|
|
|
|
|
|
|
|
return mapsize;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* link bdata in order
|
|
|
|
*/
|
|
|
|
static void link_bootmem(bootmem_data_t *bdata)
|
|
|
|
{
|
|
|
|
bootmem_data_t *ent;
|
|
|
|
if (list_empty(&bdata_list)) {
|
|
|
|
list_add(&bdata->list, &bdata_list);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
/* insert in order */
|
|
|
|
list_for_each_entry(ent, &bdata_list, list) {
|
|
|
|
if (bdata->node_boot_start < ent->node_boot_start) {
|
|
|
|
list_add_tail(&bdata->list, &ent->list);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
list_add_tail(&bdata->list, &bdata_list);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Called once to set up the allocator itself.
|
|
|
|
*/
|
|
|
|
static unsigned long __init init_bootmem_core (pg_data_t *pgdat,
|
|
|
|
unsigned long mapstart, unsigned long start, unsigned long end)
|
|
|
|
{
|
|
|
|
bootmem_data_t *bdata = pgdat->bdata;
|
|
|
|
unsigned long mapsize = ((end - start)+7)/8;
|
|
|
|
|
|
|
|
mapsize = ALIGN(mapsize, sizeof(long));
|
|
|
|
bdata->node_bootmem_map = phys_to_virt(mapstart << PAGE_SHIFT);
|
|
|
|
bdata->node_boot_start = (start << PAGE_SHIFT);
|
|
|
|
bdata->node_low_pfn = end;
|
|
|
|
link_bootmem(bdata);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initially all pages are reserved - setup_arch() has to
|
|
|
|
* register free RAM areas explicitly.
|
|
|
|
*/
|
|
|
|
memset(bdata->node_bootmem_map, 0xff, mapsize);
|
|
|
|
|
|
|
|
return mapsize;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Marks a particular physical memory range as unallocatable. Usable RAM
|
|
|
|
* might be used for boot-time allocations - or it might get added
|
|
|
|
* to the free page pool later on.
|
|
|
|
*/
|
|
|
|
static void __init reserve_bootmem_core(bootmem_data_t *bdata, unsigned long addr, unsigned long size)
|
|
|
|
{
|
|
|
|
unsigned long i;
|
|
|
|
/*
|
|
|
|
* round up, partially reserved pages are considered
|
|
|
|
* fully reserved.
|
|
|
|
*/
|
|
|
|
unsigned long sidx = (addr - bdata->node_boot_start)/PAGE_SIZE;
|
|
|
|
unsigned long eidx = (addr + size - bdata->node_boot_start +
|
|
|
|
PAGE_SIZE-1)/PAGE_SIZE;
|
|
|
|
unsigned long end = (addr + size + PAGE_SIZE-1)/PAGE_SIZE;
|
|
|
|
|
|
|
|
BUG_ON(!size);
|
|
|
|
BUG_ON(sidx >= eidx);
|
|
|
|
BUG_ON((addr >> PAGE_SHIFT) >= bdata->node_low_pfn);
|
|
|
|
BUG_ON(end > bdata->node_low_pfn);
|
|
|
|
|
|
|
|
for (i = sidx; i < eidx; i++)
|
|
|
|
if (test_and_set_bit(i, bdata->node_bootmem_map)) {
|
|
|
|
#ifdef CONFIG_DEBUG_BOOTMEM
|
|
|
|
printk("hm, page %08lx reserved twice.\n", i*PAGE_SIZE);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __init free_bootmem_core(bootmem_data_t *bdata, unsigned long addr, unsigned long size)
|
|
|
|
{
|
|
|
|
unsigned long i;
|
|
|
|
unsigned long start;
|
|
|
|
/*
|
|
|
|
* round down end of usable mem, partially free pages are
|
|
|
|
* considered reserved.
|
|
|
|
*/
|
|
|
|
unsigned long sidx;
|
|
|
|
unsigned long eidx = (addr + size - bdata->node_boot_start)/PAGE_SIZE;
|
|
|
|
unsigned long end = (addr + size)/PAGE_SIZE;
|
|
|
|
|
|
|
|
BUG_ON(!size);
|
|
|
|
BUG_ON(end > bdata->node_low_pfn);
|
|
|
|
|
|
|
|
if (addr < bdata->last_success)
|
|
|
|
bdata->last_success = addr;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Round up the beginning of the address.
|
|
|
|
*/
|
|
|
|
start = (addr + PAGE_SIZE-1) / PAGE_SIZE;
|
|
|
|
sidx = start - (bdata->node_boot_start/PAGE_SIZE);
|
|
|
|
|
|
|
|
for (i = sidx; i < eidx; i++) {
|
|
|
|
if (unlikely(!test_and_clear_bit(i, bdata->node_bootmem_map)))
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We 'merge' subsequent allocations to save space. We might 'lose'
|
|
|
|
* some fraction of a page if allocations cannot be satisfied due to
|
|
|
|
* size constraints on boxes where there is physical RAM space
|
|
|
|
* fragmentation - in these cases (mostly large memory boxes) this
|
|
|
|
* is not a problem.
|
|
|
|
*
|
|
|
|
* On low memory boxes we get it right in 100% of the cases.
|
|
|
|
*
|
|
|
|
* alignment has to be a power of 2 value.
|
|
|
|
*
|
|
|
|
* NOTE: This function is _not_ reentrant.
|
|
|
|
*/
|
|
|
|
void * __init
|
|
|
|
__alloc_bootmem_core(struct bootmem_data *bdata, unsigned long size,
|
|
|
|
unsigned long align, unsigned long goal, unsigned long limit)
|
|
|
|
{
|
|
|
|
unsigned long offset, remaining_size, areasize, preferred;
|
|
|
|
unsigned long i, start = 0, incr, eidx, end_pfn = bdata->node_low_pfn;
|
|
|
|
void *ret;
|
|
|
|
|
|
|
|
if(!size) {
|
|
|
|
printk("__alloc_bootmem_core(): zero-sized request\n");
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
BUG_ON(align & (align-1));
|
|
|
|
|
|
|
|
if (limit && bdata->node_boot_start >= limit)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
limit >>=PAGE_SHIFT;
|
|
|
|
if (limit && end_pfn > limit)
|
|
|
|
end_pfn = limit;
|
|
|
|
|
|
|
|
eidx = end_pfn - (bdata->node_boot_start >> PAGE_SHIFT);
|
|
|
|
offset = 0;
|
|
|
|
if (align &&
|
|
|
|
(bdata->node_boot_start & (align - 1UL)) != 0)
|
|
|
|
offset = (align - (bdata->node_boot_start & (align - 1UL)));
|
|
|
|
offset >>= PAGE_SHIFT;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We try to allocate bootmem pages above 'goal'
|
|
|
|
* first, then we try to allocate lower pages.
|
|
|
|
*/
|
|
|
|
if (goal && (goal >= bdata->node_boot_start) &&
|
|
|
|
((goal >> PAGE_SHIFT) < end_pfn)) {
|
|
|
|
preferred = goal - bdata->node_boot_start;
|
|
|
|
|
|
|
|
if (bdata->last_success >= preferred)
|
|
|
|
if (!limit || (limit && limit > bdata->last_success))
|
|
|
|
preferred = bdata->last_success;
|
|
|
|
} else
|
|
|
|
preferred = 0;
|
|
|
|
|
|
|
|
preferred = ALIGN(preferred, align) >> PAGE_SHIFT;
|
|
|
|
preferred += offset;
|
|
|
|
areasize = (size+PAGE_SIZE-1)/PAGE_SIZE;
|
|
|
|
incr = align >> PAGE_SHIFT ? : 1;
|
|
|
|
|
|
|
|
restart_scan:
|
|
|
|
for (i = preferred; i < eidx; i += incr) {
|
|
|
|
unsigned long j;
|
|
|
|
i = find_next_zero_bit(bdata->node_bootmem_map, eidx, i);
|
|
|
|
i = ALIGN(i, incr);
|
|
|
|
if (i >= eidx)
|
|
|
|
break;
|
|
|
|
if (test_bit(i, bdata->node_bootmem_map))
|
|
|
|
continue;
|
|
|
|
for (j = i + 1; j < i + areasize; ++j) {
|
|
|
|
if (j >= eidx)
|
|
|
|
goto fail_block;
|
|
|
|
if (test_bit (j, bdata->node_bootmem_map))
|
|
|
|
goto fail_block;
|
|
|
|
}
|
|
|
|
start = i;
|
|
|
|
goto found;
|
|
|
|
fail_block:
|
|
|
|
i = ALIGN(j, incr);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (preferred > offset) {
|
|
|
|
preferred = offset;
|
|
|
|
goto restart_scan;
|
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
found:
|
|
|
|
bdata->last_success = start << PAGE_SHIFT;
|
|
|
|
BUG_ON(start >= eidx);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Is the next page of the previous allocation-end the start
|
|
|
|
* of this allocation's buffer? If yes then we can 'merge'
|
|
|
|
* the previous partial page with this allocation.
|
|
|
|
*/
|
|
|
|
if (align < PAGE_SIZE &&
|
|
|
|
bdata->last_offset && bdata->last_pos+1 == start) {
|
|
|
|
offset = ALIGN(bdata->last_offset, align);
|
|
|
|
BUG_ON(offset > PAGE_SIZE);
|
|
|
|
remaining_size = PAGE_SIZE-offset;
|
|
|
|
if (size < remaining_size) {
|
|
|
|
areasize = 0;
|
|
|
|
/* last_pos unchanged */
|
|
|
|
bdata->last_offset = offset+size;
|
|
|
|
ret = phys_to_virt(bdata->last_pos*PAGE_SIZE + offset +
|
|
|
|
bdata->node_boot_start);
|
|
|
|
} else {
|
|
|
|
remaining_size = size - remaining_size;
|
|
|
|
areasize = (remaining_size+PAGE_SIZE-1)/PAGE_SIZE;
|
|
|
|
ret = phys_to_virt(bdata->last_pos*PAGE_SIZE + offset +
|
|
|
|
bdata->node_boot_start);
|
|
|
|
bdata->last_pos = start+areasize-1;
|
|
|
|
bdata->last_offset = remaining_size;
|
|
|
|
}
|
|
|
|
bdata->last_offset &= ~PAGE_MASK;
|
|
|
|
} else {
|
|
|
|
bdata->last_pos = start + areasize - 1;
|
|
|
|
bdata->last_offset = size & ~PAGE_MASK;
|
|
|
|
ret = phys_to_virt(start * PAGE_SIZE + bdata->node_boot_start);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Reserve the area now:
|
|
|
|
*/
|
|
|
|
for (i = start; i < start+areasize; i++)
|
|
|
|
if (unlikely(test_and_set_bit(i, bdata->node_bootmem_map)))
|
|
|
|
BUG();
|
|
|
|
memset(ret, 0, size);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static unsigned long __init free_all_bootmem_core(pg_data_t *pgdat)
|
|
|
|
{
|
|
|
|
struct page *page;
|
[PATCH] sparsemem memory model
Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of
mem_map[] is needed by discontiguous memory machines (like in the old
CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem
replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually
become a complete replacement.
A significant advantage over DISCONTIGMEM is that it's completely separated
from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA
and DISCONTIG are often confused.
Another advantage is that sparse doesn't require each NUMA node's ranges to be
contiguous. It can handle overlapping ranges between nodes with no problems,
where DISCONTIGMEM currently throws away that memory.
Sparsemem uses an array to provide different pfn_to_page() translations for
each SECTION_SIZE area of physical memory. This is what allows the mem_map[]
to be chopped up.
In order to do quick pfn_to_page() operations, the section number of the page
is encoded in page->flags. Part of the sparsemem infrastructure enables
sharing of these bits more dynamically (at compile-time) between the
page_zone() and sparsemem operations. However, on 32-bit architectures, the
number of bits is quite limited, and may require growing the size of the
page->flags type in certain conditions. Several things might force this to
occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of
memory), an increase in the physical address space, or an increase in the
number of used page->flags.
One thing to note is that, once sparsemem is present, the NUMA node
information no longer needs to be stored in the page->flags. It might provide
speed increases on certain platforms and will be stored there if there is
room. But, if out of room, an alternate (theoretically slower) mechanism is
used.
This patch introduces CONFIG_FLATMEM. It is used in almost all cases where
there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM
often have to compile out the same areas of code.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Martin Bligh <mbligh@aracnet.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Bob Picco <bob.picco@hp.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
20 years ago
|
|
|
unsigned long pfn;
|
|
|
|
bootmem_data_t *bdata = pgdat->bdata;
|
|
|
|
unsigned long i, count, total = 0;
|
|
|
|
unsigned long idx;
|
|
|
|
unsigned long *map;
|
|
|
|
int gofast = 0;
|
|
|
|
|
|
|
|
BUG_ON(!bdata->node_bootmem_map);
|
|
|
|
|
|
|
|
count = 0;
|
|
|
|
/* first extant page of the node */
|
[PATCH] sparsemem memory model
Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of
mem_map[] is needed by discontiguous memory machines (like in the old
CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem
replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually
become a complete replacement.
A significant advantage over DISCONTIGMEM is that it's completely separated
from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA
and DISCONTIG are often confused.
Another advantage is that sparse doesn't require each NUMA node's ranges to be
contiguous. It can handle overlapping ranges between nodes with no problems,
where DISCONTIGMEM currently throws away that memory.
Sparsemem uses an array to provide different pfn_to_page() translations for
each SECTION_SIZE area of physical memory. This is what allows the mem_map[]
to be chopped up.
In order to do quick pfn_to_page() operations, the section number of the page
is encoded in page->flags. Part of the sparsemem infrastructure enables
sharing of these bits more dynamically (at compile-time) between the
page_zone() and sparsemem operations. However, on 32-bit architectures, the
number of bits is quite limited, and may require growing the size of the
page->flags type in certain conditions. Several things might force this to
occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of
memory), an increase in the physical address space, or an increase in the
number of used page->flags.
One thing to note is that, once sparsemem is present, the NUMA node
information no longer needs to be stored in the page->flags. It might provide
speed increases on certain platforms and will be stored there if there is
room. But, if out of room, an alternate (theoretically slower) mechanism is
used.
This patch introduces CONFIG_FLATMEM. It is used in almost all cases where
there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM
often have to compile out the same areas of code.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Martin Bligh <mbligh@aracnet.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Bob Picco <bob.picco@hp.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
20 years ago
|
|
|
pfn = bdata->node_boot_start >> PAGE_SHIFT;
|
|
|
|
idx = bdata->node_low_pfn - (bdata->node_boot_start >> PAGE_SHIFT);
|
|
|
|
map = bdata->node_bootmem_map;
|
|
|
|
/* Check physaddr is O(LOG2(BITS_PER_LONG)) page aligned */
|
|
|
|
if (bdata->node_boot_start == 0 ||
|
|
|
|
ffs(bdata->node_boot_start) - PAGE_SHIFT > ffs(BITS_PER_LONG))
|
|
|
|
gofast = 1;
|
|
|
|
for (i = 0; i < idx; ) {
|
|
|
|
unsigned long v = ~map[i / BITS_PER_LONG];
|
[PATCH] sparsemem memory model
Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of
mem_map[] is needed by discontiguous memory machines (like in the old
CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem
replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually
become a complete replacement.
A significant advantage over DISCONTIGMEM is that it's completely separated
from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA
and DISCONTIG are often confused.
Another advantage is that sparse doesn't require each NUMA node's ranges to be
contiguous. It can handle overlapping ranges between nodes with no problems,
where DISCONTIGMEM currently throws away that memory.
Sparsemem uses an array to provide different pfn_to_page() translations for
each SECTION_SIZE area of physical memory. This is what allows the mem_map[]
to be chopped up.
In order to do quick pfn_to_page() operations, the section number of the page
is encoded in page->flags. Part of the sparsemem infrastructure enables
sharing of these bits more dynamically (at compile-time) between the
page_zone() and sparsemem operations. However, on 32-bit architectures, the
number of bits is quite limited, and may require growing the size of the
page->flags type in certain conditions. Several things might force this to
occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of
memory), an increase in the physical address space, or an increase in the
number of used page->flags.
One thing to note is that, once sparsemem is present, the NUMA node
information no longer needs to be stored in the page->flags. It might provide
speed increases on certain platforms and will be stored there if there is
room. But, if out of room, an alternate (theoretically slower) mechanism is
used.
This patch introduces CONFIG_FLATMEM. It is used in almost all cases where
there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM
often have to compile out the same areas of code.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Martin Bligh <mbligh@aracnet.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Bob Picco <bob.picco@hp.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
20 years ago
|
|
|
|
|
|
|
if (gofast && v == ~0UL) {
|
|
|
|
int order;
|
|
|
|
|
[PATCH] sparsemem memory model
Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of
mem_map[] is needed by discontiguous memory machines (like in the old
CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem
replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually
become a complete replacement.
A significant advantage over DISCONTIGMEM is that it's completely separated
from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA
and DISCONTIG are often confused.
Another advantage is that sparse doesn't require each NUMA node's ranges to be
contiguous. It can handle overlapping ranges between nodes with no problems,
where DISCONTIGMEM currently throws away that memory.
Sparsemem uses an array to provide different pfn_to_page() translations for
each SECTION_SIZE area of physical memory. This is what allows the mem_map[]
to be chopped up.
In order to do quick pfn_to_page() operations, the section number of the page
is encoded in page->flags. Part of the sparsemem infrastructure enables
sharing of these bits more dynamically (at compile-time) between the
page_zone() and sparsemem operations. However, on 32-bit architectures, the
number of bits is quite limited, and may require growing the size of the
page->flags type in certain conditions. Several things might force this to
occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of
memory), an increase in the physical address space, or an increase in the
number of used page->flags.
One thing to note is that, once sparsemem is present, the NUMA node
information no longer needs to be stored in the page->flags. It might provide
speed increases on certain platforms and will be stored there if there is
room. But, if out of room, an alternate (theoretically slower) mechanism is
used.
This patch introduces CONFIG_FLATMEM. It is used in almost all cases where
there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM
often have to compile out the same areas of code.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Martin Bligh <mbligh@aracnet.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Bob Picco <bob.picco@hp.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
20 years ago
|
|
|
page = pfn_to_page(pfn);
|
|
|
|
count += BITS_PER_LONG;
|
|
|
|
order = ffs(BITS_PER_LONG) - 1;
|
|
|
|
__free_pages_bootmem(page, order);
|
|
|
|
i += BITS_PER_LONG;
|
|
|
|
page += BITS_PER_LONG;
|
|
|
|
} else if (v) {
|
|
|
|
unsigned long m;
|
[PATCH] sparsemem memory model
Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of
mem_map[] is needed by discontiguous memory machines (like in the old
CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem
replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually
become a complete replacement.
A significant advantage over DISCONTIGMEM is that it's completely separated
from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA
and DISCONTIG are often confused.
Another advantage is that sparse doesn't require each NUMA node's ranges to be
contiguous. It can handle overlapping ranges between nodes with no problems,
where DISCONTIGMEM currently throws away that memory.
Sparsemem uses an array to provide different pfn_to_page() translations for
each SECTION_SIZE area of physical memory. This is what allows the mem_map[]
to be chopped up.
In order to do quick pfn_to_page() operations, the section number of the page
is encoded in page->flags. Part of the sparsemem infrastructure enables
sharing of these bits more dynamically (at compile-time) between the
page_zone() and sparsemem operations. However, on 32-bit architectures, the
number of bits is quite limited, and may require growing the size of the
page->flags type in certain conditions. Several things might force this to
occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of
memory), an increase in the physical address space, or an increase in the
number of used page->flags.
One thing to note is that, once sparsemem is present, the NUMA node
information no longer needs to be stored in the page->flags. It might provide
speed increases on certain platforms and will be stored there if there is
room. But, if out of room, an alternate (theoretically slower) mechanism is
used.
This patch introduces CONFIG_FLATMEM. It is used in almost all cases where
there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM
often have to compile out the same areas of code.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Martin Bligh <mbligh@aracnet.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Bob Picco <bob.picco@hp.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
20 years ago
|
|
|
|
|
|
|
page = pfn_to_page(pfn);
|
|
|
|
for (m = 1; m && i < idx; m<<=1, page++, i++) {
|
|
|
|
if (v & m) {
|
|
|
|
count++;
|
|
|
|
__free_pages_bootmem(page, 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
i+=BITS_PER_LONG;
|
|
|
|
}
|
[PATCH] sparsemem memory model
Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of
mem_map[] is needed by discontiguous memory machines (like in the old
CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem
replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually
become a complete replacement.
A significant advantage over DISCONTIGMEM is that it's completely separated
from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA
and DISCONTIG are often confused.
Another advantage is that sparse doesn't require each NUMA node's ranges to be
contiguous. It can handle overlapping ranges between nodes with no problems,
where DISCONTIGMEM currently throws away that memory.
Sparsemem uses an array to provide different pfn_to_page() translations for
each SECTION_SIZE area of physical memory. This is what allows the mem_map[]
to be chopped up.
In order to do quick pfn_to_page() operations, the section number of the page
is encoded in page->flags. Part of the sparsemem infrastructure enables
sharing of these bits more dynamically (at compile-time) between the
page_zone() and sparsemem operations. However, on 32-bit architectures, the
number of bits is quite limited, and may require growing the size of the
page->flags type in certain conditions. Several things might force this to
occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of
memory), an increase in the physical address space, or an increase in the
number of used page->flags.
One thing to note is that, once sparsemem is present, the NUMA node
information no longer needs to be stored in the page->flags. It might provide
speed increases on certain platforms and will be stored there if there is
room. But, if out of room, an alternate (theoretically slower) mechanism is
used.
This patch introduces CONFIG_FLATMEM. It is used in almost all cases where
there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM
often have to compile out the same areas of code.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Martin Bligh <mbligh@aracnet.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Bob Picco <bob.picco@hp.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
20 years ago
|
|
|
pfn += BITS_PER_LONG;
|
|
|
|
}
|
|
|
|
total += count;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Now free the allocator bitmap itself, it's not
|
|
|
|
* needed anymore:
|
|
|
|
*/
|
|
|
|
page = virt_to_page(bdata->node_bootmem_map);
|
|
|
|
count = 0;
|
|
|
|
for (i = 0; i < ((bdata->node_low_pfn-(bdata->node_boot_start >> PAGE_SHIFT))/8 + PAGE_SIZE-1)/PAGE_SIZE; i++,page++) {
|
|
|
|
count++;
|
|
|
|
__free_pages_bootmem(page, 0);
|
|
|
|
}
|
|
|
|
total += count;
|
|
|
|
bdata->node_bootmem_map = NULL;
|
|
|
|
|
|
|
|
return total;
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned long __init init_bootmem_node (pg_data_t *pgdat, unsigned long freepfn, unsigned long startpfn, unsigned long endpfn)
|
|
|
|
{
|
|
|
|
return(init_bootmem_core(pgdat, freepfn, startpfn, endpfn));
|
|
|
|
}
|
|
|
|
|
|
|
|
void __init reserve_bootmem_node (pg_data_t *pgdat, unsigned long physaddr, unsigned long size)
|
|
|
|
{
|
|
|
|
reserve_bootmem_core(pgdat->bdata, physaddr, size);
|
|
|
|
}
|
|
|
|
|
|
|
|
void __init free_bootmem_node (pg_data_t *pgdat, unsigned long physaddr, unsigned long size)
|
|
|
|
{
|
|
|
|
free_bootmem_core(pgdat->bdata, physaddr, size);
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned long __init free_all_bootmem_node (pg_data_t *pgdat)
|
|
|
|
{
|
|
|
|
return(free_all_bootmem_core(pgdat));
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned long __init init_bootmem (unsigned long start, unsigned long pages)
|
|
|
|
{
|
|
|
|
max_low_pfn = pages;
|
|
|
|
min_low_pfn = start;
|
|
|
|
return(init_bootmem_core(NODE_DATA(0), start, 0, pages));
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE
|
|
|
|
void __init reserve_bootmem (unsigned long addr, unsigned long size)
|
|
|
|
{
|
|
|
|
reserve_bootmem_core(NODE_DATA(0)->bdata, addr, size);
|
|
|
|
}
|
|
|
|
#endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */
|
|
|
|
|
|
|
|
void __init free_bootmem (unsigned long addr, unsigned long size)
|
|
|
|
{
|
|
|
|
free_bootmem_core(NODE_DATA(0)->bdata, addr, size);
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned long __init free_all_bootmem (void)
|
|
|
|
{
|
|
|
|
return(free_all_bootmem_core(NODE_DATA(0)));
|
|
|
|
}
|
|
|
|
|
|
|
|
void * __init __alloc_bootmem(unsigned long size, unsigned long align, unsigned long goal)
|
|
|
|
{
|
|
|
|
bootmem_data_t *bdata;
|
|
|
|
void *ptr;
|
|
|
|
|
|
|
|
list_for_each_entry(bdata, &bdata_list, list)
|
|
|
|
if ((ptr = __alloc_bootmem_core(bdata, size, align, goal, 0)))
|
|
|
|
return(ptr);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Whoops, we cannot satisfy the allocation request.
|
|
|
|
*/
|
|
|
|
printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
|
|
|
|
panic("Out of memory");
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size, unsigned long align,
|
|
|
|
unsigned long goal)
|
|
|
|
{
|
|
|
|
void *ptr;
|
|
|
|
|
|
|
|
ptr = __alloc_bootmem_core(pgdat->bdata, size, align, goal, 0);
|
|
|
|
if (ptr)
|
|
|
|
return (ptr);
|
|
|
|
|
|
|
|
return __alloc_bootmem(size, align, goal);
|
|
|
|
}
|
|
|
|
|
|
|
|
#define LOW32LIMIT 0xffffffff
|
|
|
|
|
|
|
|
void * __init __alloc_bootmem_low(unsigned long size, unsigned long align, unsigned long goal)
|
|
|
|
{
|
|
|
|
bootmem_data_t *bdata;
|
|
|
|
void *ptr;
|
|
|
|
|
|
|
|
list_for_each_entry(bdata, &bdata_list, list)
|
|
|
|
if ((ptr = __alloc_bootmem_core(bdata, size,
|
|
|
|
align, goal, LOW32LIMIT)))
|
|
|
|
return(ptr);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Whoops, we cannot satisfy the allocation request.
|
|
|
|
*/
|
|
|
|
printk(KERN_ALERT "low bootmem alloc of %lu bytes failed!\n", size);
|
|
|
|
panic("Out of low memory");
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
|
|
|
|
unsigned long align, unsigned long goal)
|
|
|
|
{
|
|
|
|
return __alloc_bootmem_core(pgdat->bdata, size, align, goal, LOW32LIMIT);
|
|
|
|
}
|