You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
kernel_samsung_sm7125/arch/blackfin/include/asm/spinlock.h

106 lines
2.5 KiB

/*
* Copyright 2004-2009 Analog Devices Inc.
*
* Licensed under the GPL-2 or later.
*/
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
#ifndef __BFIN_SPINLOCK_H
#define __BFIN_SPINLOCK_H
#ifndef CONFIG_SMP
# include <asm-generic/spinlock.h>
#else
#include <linux/atomic.h>
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
asmlinkage int __raw_spin_is_locked_asm(volatile int *ptr);
asmlinkage void __raw_spin_lock_asm(volatile int *ptr);
asmlinkage int __raw_spin_trylock_asm(volatile int *ptr);
asmlinkage void __raw_spin_unlock_asm(volatile int *ptr);
asmlinkage void __raw_read_lock_asm(volatile int *ptr);
asmlinkage int __raw_read_trylock_asm(volatile int *ptr);
asmlinkage void __raw_read_unlock_asm(volatile int *ptr);
asmlinkage void __raw_write_lock_asm(volatile int *ptr);
asmlinkage int __raw_write_trylock_asm(volatile int *ptr);
asmlinkage void __raw_write_unlock_asm(volatile int *ptr);
static inline int arch_spin_is_locked(arch_spinlock_t *lock)
{
return __raw_spin_is_locked_asm(&lock->lock);
}
static inline void arch_spin_lock(arch_spinlock_t *lock)
{
__raw_spin_lock_asm(&lock->lock);
}
#define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock)
static inline int arch_spin_trylock(arch_spinlock_t *lock)
{
return __raw_spin_trylock_asm(&lock->lock);
}
static inline void arch_spin_unlock(arch_spinlock_t *lock)
{
__raw_spin_unlock_asm(&lock->lock);
}
static inline void arch_spin_unlock_wait(arch_spinlock_t *lock)
{
while (arch_spin_is_locked(lock))
cpu_relax();
}
static inline int arch_read_can_lock(arch_rwlock_t *rw)
{
return __raw_uncached_fetch_asm(&rw->lock) > 0;
}
static inline int arch_write_can_lock(arch_rwlock_t *rw)
{
return __raw_uncached_fetch_asm(&rw->lock) == RW_LOCK_BIAS;
}
static inline void arch_read_lock(arch_rwlock_t *rw)
{
__raw_read_lock_asm(&rw->lock);
}
#define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
static inline int arch_read_trylock(arch_rwlock_t *rw)
{
return __raw_read_trylock_asm(&rw->lock);
}
static inline void arch_read_unlock(arch_rwlock_t *rw)
{
__raw_read_unlock_asm(&rw->lock);
}
static inline void arch_write_lock(arch_rwlock_t *rw)
{
__raw_write_lock_asm(&rw->lock);
}
#define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
static inline int arch_write_trylock(arch_rwlock_t *rw)
{
return __raw_write_trylock_asm(&rw->lock);
}
static inline void arch_write_unlock(arch_rwlock_t *rw)
{
__raw_write_unlock_asm(&rw->lock);
}
#define arch_spin_relax(lock) cpu_relax()
#define arch_read_relax(lock) cpu_relax()
#define arch_write_relax(lock) cpu_relax()
#endif
#endif /* !__BFIN_SPINLOCK_H */