You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
458 lines
11 KiB
458 lines
11 KiB
20 years ago
|
/*
|
||
|
* ip27-irq.c: Highlevel interrupt handling for IP27 architecture.
|
||
|
*
|
||
|
* Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org)
|
||
|
* Copyright (C) 1999, 2000 Silicon Graphics, Inc.
|
||
|
* Copyright (C) 1999 - 2001 Kanoj Sarcar
|
||
|
*/
|
||
|
#include <linux/config.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/irq.h>
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/signal.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/ioport.h>
|
||
|
#include <linux/irq.h>
|
||
|
#include <linux/timex.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/random.h>
|
||
|
#include <linux/smp_lock.h>
|
||
|
#include <linux/kernel_stat.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/bitops.h>
|
||
|
|
||
|
#include <asm/bootinfo.h>
|
||
|
#include <asm/io.h>
|
||
|
#include <asm/mipsregs.h>
|
||
|
#include <asm/system.h>
|
||
|
|
||
|
#include <asm/ptrace.h>
|
||
|
#include <asm/processor.h>
|
||
|
#include <asm/pci/bridge.h>
|
||
|
#include <asm/sn/addrs.h>
|
||
|
#include <asm/sn/agent.h>
|
||
|
#include <asm/sn/arch.h>
|
||
|
#include <asm/sn/hub.h>
|
||
|
#include <asm/sn/intr.h>
|
||
|
|
||
|
#undef DEBUG_IRQ
|
||
|
#ifdef DEBUG_IRQ
|
||
|
#define DBG(x...) printk(x)
|
||
|
#else
|
||
|
#define DBG(x...)
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Linux has a controller-independent x86 interrupt architecture.
|
||
|
* every controller has a 'controller-template', that is used
|
||
|
* by the main code to do the right thing. Each driver-visible
|
||
|
* interrupt source is transparently wired to the apropriate
|
||
|
* controller. Thus drivers need not be aware of the
|
||
|
* interrupt-controller.
|
||
|
*
|
||
|
* Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
|
||
|
* PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
|
||
|
* (IO-APICs assumed to be messaging to Pentium local-APICs)
|
||
|
*
|
||
|
* the code is designed to be easily extended with new/different
|
||
|
* interrupt controllers, without having to do assembly magic.
|
||
|
*/
|
||
|
|
||
|
extern asmlinkage void ip27_irq(void);
|
||
|
|
||
|
extern struct bridge_controller *irq_to_bridge[];
|
||
|
extern int irq_to_slot[];
|
||
|
|
||
|
/*
|
||
|
* use these macros to get the encoded nasid and widget id
|
||
|
* from the irq value
|
||
|
*/
|
||
|
#define IRQ_TO_BRIDGE(i) irq_to_bridge[(i)]
|
||
|
#define SLOT_FROM_PCI_IRQ(i) irq_to_slot[i]
|
||
|
|
||
|
static inline int alloc_level(int cpu, int irq)
|
||
|
{
|
||
|
struct slice_data *si = cpu_data[cpu].data;
|
||
|
int level; /* pre-allocated entries */
|
||
|
|
||
|
level = find_first_zero_bit(si->irq_alloc_mask, LEVELS_PER_SLICE);
|
||
|
if (level >= LEVELS_PER_SLICE)
|
||
|
panic("Cpu %d flooded with devices\n", cpu);
|
||
|
|
||
|
__set_bit(level, si->irq_alloc_mask);
|
||
|
si->level_to_irq[level] = irq;
|
||
|
|
||
|
return level;
|
||
|
}
|
||
|
|
||
|
static inline int find_level(cpuid_t *cpunum, int irq)
|
||
|
{
|
||
|
int cpu, i;
|
||
|
|
||
|
for (cpu = 0; cpu <= NR_CPUS; cpu++) {
|
||
|
struct slice_data *si = cpu_data[cpu].data;
|
||
|
|
||
|
if (!cpu_online(cpu))
|
||
|
continue;
|
||
|
|
||
|
for (i = BASE_PCI_IRQ; i < LEVELS_PER_SLICE; i++)
|
||
|
if (si->level_to_irq[i] == irq) {
|
||
|
*cpunum = cpu;
|
||
|
|
||
|
return i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
panic("Could not identify cpu/level for irq %d\n", irq);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Find first bit set
|
||
|
*/
|
||
|
static int ms1bit(unsigned long x)
|
||
|
{
|
||
|
int b = 0, s;
|
||
|
|
||
|
s = 16; if (x >> 16 == 0) s = 0; b += s; x >>= s;
|
||
|
s = 8; if (x >> 8 == 0) s = 0; b += s; x >>= s;
|
||
|
s = 4; if (x >> 4 == 0) s = 0; b += s; x >>= s;
|
||
|
s = 2; if (x >> 2 == 0) s = 0; b += s; x >>= s;
|
||
|
s = 1; if (x >> 1 == 0) s = 0; b += s;
|
||
|
|
||
|
return b;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This code is unnecessarily complex, because we do SA_INTERRUPT
|
||
|
* intr enabling. Basically, once we grab the set of intrs we need
|
||
|
* to service, we must mask _all_ these interrupts; firstly, to make
|
||
|
* sure the same intr does not intr again, causing recursion that
|
||
|
* can lead to stack overflow. Secondly, we can not just mask the
|
||
|
* one intr we are do_IRQing, because the non-masked intrs in the
|
||
|
* first set might intr again, causing multiple servicings of the
|
||
|
* same intr. This effect is mostly seen for intercpu intrs.
|
||
|
* Kanoj 05.13.00
|
||
|
*/
|
||
|
|
||
|
void ip27_do_irq_mask0(struct pt_regs *regs)
|
||
|
{
|
||
|
int irq, swlevel;
|
||
|
hubreg_t pend0, mask0;
|
||
|
cpuid_t cpu = smp_processor_id();
|
||
|
int pi_int_mask0 =
|
||
|
(cputoslice(cpu) == 0) ? PI_INT_MASK0_A : PI_INT_MASK0_B;
|
||
|
|
||
|
/* copied from Irix intpend0() */
|
||
|
pend0 = LOCAL_HUB_L(PI_INT_PEND0);
|
||
|
mask0 = LOCAL_HUB_L(pi_int_mask0);
|
||
|
|
||
|
pend0 &= mask0; /* Pick intrs we should look at */
|
||
|
if (!pend0)
|
||
|
return;
|
||
|
|
||
|
swlevel = ms1bit(pend0);
|
||
|
#ifdef CONFIG_SMP
|
||
|
if (pend0 & (1UL << CPU_RESCHED_A_IRQ)) {
|
||
|
LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ);
|
||
|
} else if (pend0 & (1UL << CPU_RESCHED_B_IRQ)) {
|
||
|
LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ);
|
||
|
} else if (pend0 & (1UL << CPU_CALL_A_IRQ)) {
|
||
|
LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ);
|
||
|
smp_call_function_interrupt();
|
||
|
} else if (pend0 & (1UL << CPU_CALL_B_IRQ)) {
|
||
|
LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ);
|
||
|
smp_call_function_interrupt();
|
||
|
} else
|
||
|
#endif
|
||
|
{
|
||
|
/* "map" swlevel to irq */
|
||
|
struct slice_data *si = cpu_data[cpu].data;
|
||
|
|
||
|
irq = si->level_to_irq[swlevel];
|
||
|
do_IRQ(irq, regs);
|
||
|
}
|
||
|
|
||
|
LOCAL_HUB_L(PI_INT_PEND0);
|
||
|
}
|
||
|
|
||
|
void ip27_do_irq_mask1(struct pt_regs *regs)
|
||
|
{
|
||
|
int irq, swlevel;
|
||
|
hubreg_t pend1, mask1;
|
||
|
cpuid_t cpu = smp_processor_id();
|
||
|
int pi_int_mask1 = (cputoslice(cpu) == 0) ? PI_INT_MASK1_A : PI_INT_MASK1_B;
|
||
|
struct slice_data *si = cpu_data[cpu].data;
|
||
|
|
||
|
/* copied from Irix intpend0() */
|
||
|
pend1 = LOCAL_HUB_L(PI_INT_PEND1);
|
||
|
mask1 = LOCAL_HUB_L(pi_int_mask1);
|
||
|
|
||
|
pend1 &= mask1; /* Pick intrs we should look at */
|
||
|
if (!pend1)
|
||
|
return;
|
||
|
|
||
|
swlevel = ms1bit(pend1);
|
||
|
/* "map" swlevel to irq */
|
||
|
irq = si->level_to_irq[swlevel];
|
||
|
LOCAL_HUB_CLR_INTR(swlevel);
|
||
|
do_IRQ(irq, regs);
|
||
|
|
||
|
LOCAL_HUB_L(PI_INT_PEND1);
|
||
|
}
|
||
|
|
||
|
void ip27_prof_timer(struct pt_regs *regs)
|
||
|
{
|
||
|
panic("CPU %d got a profiling interrupt", smp_processor_id());
|
||
|
}
|
||
|
|
||
|
void ip27_hub_error(struct pt_regs *regs)
|
||
|
{
|
||
|
panic("CPU %d got a hub error interrupt", smp_processor_id());
|
||
|
}
|
||
|
|
||
|
static int intr_connect_level(int cpu, int bit)
|
||
|
{
|
||
|
nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
|
||
|
struct slice_data *si = cpu_data[cpu].data;
|
||
|
|
||
|
__set_bit(bit, si->irq_enable_mask);
|
||
|
|
||
|
if (!cputoslice(cpu)) {
|
||
|
REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]);
|
||
|
REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]);
|
||
|
} else {
|
||
|
REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]);
|
||
|
REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int intr_disconnect_level(int cpu, int bit)
|
||
|
{
|
||
|
nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
|
||
|
struct slice_data *si = cpu_data[cpu].data;
|
||
|
|
||
|
__clear_bit(bit, si->irq_enable_mask);
|
||
|
|
||
|
if (!cputoslice(cpu)) {
|
||
|
REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]);
|
||
|
REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]);
|
||
|
} else {
|
||
|
REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]);
|
||
|
REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Startup one of the (PCI ...) IRQs routes over a bridge. */
|
||
|
static unsigned int startup_bridge_irq(unsigned int irq)
|
||
|
{
|
||
|
struct bridge_controller *bc;
|
||
|
bridgereg_t device;
|
||
|
bridge_t *bridge;
|
||
|
int pin, swlevel;
|
||
|
cpuid_t cpu;
|
||
|
|
||
|
pin = SLOT_FROM_PCI_IRQ(irq);
|
||
|
bc = IRQ_TO_BRIDGE(irq);
|
||
|
bridge = bc->base;
|
||
|
|
||
|
DBG("bridge_startup(): irq= 0x%x pin=%d\n", irq, pin);
|
||
|
/*
|
||
|
* "map" irq to a swlevel greater than 6 since the first 6 bits
|
||
|
* of INT_PEND0 are taken
|
||
|
*/
|
||
|
swlevel = find_level(&cpu, irq);
|
||
|
bridge->b_int_addr[pin].addr = (0x20000 | swlevel | (bc->nasid << 8));
|
||
|
bridge->b_int_enable |= (1 << pin);
|
||
|
bridge->b_int_enable |= 0x7ffffe00; /* more stuff in int_enable */
|
||
|
|
||
|
/*
|
||
|
* Enable sending of an interrupt clear packt to the hub on a high to
|
||
|
* low transition of the interrupt pin.
|
||
|
*
|
||
|
* IRIX sets additional bits in the address which are documented as
|
||
|
* reserved in the bridge docs.
|
||
|
*/
|
||
|
bridge->b_int_mode |= (1UL << pin);
|
||
|
|
||
|
/*
|
||
|
* We assume the bridge to have a 1:1 mapping between devices
|
||
|
* (slots) and intr pins.
|
||
|
*/
|
||
|
device = bridge->b_int_device;
|
||
|
device &= ~(7 << (pin*3));
|
||
|
device |= (pin << (pin*3));
|
||
|
bridge->b_int_device = device;
|
||
|
|
||
|
bridge->b_wid_tflush;
|
||
|
|
||
|
return 0; /* Never anything pending. */
|
||
|
}
|
||
|
|
||
|
/* Shutdown one of the (PCI ...) IRQs routes over a bridge. */
|
||
|
static void shutdown_bridge_irq(unsigned int irq)
|
||
|
{
|
||
|
struct bridge_controller *bc = IRQ_TO_BRIDGE(irq);
|
||
|
bridge_t *bridge = bc->base;
|
||
|
struct slice_data *si = cpu_data[bc->irq_cpu].data;
|
||
|
int pin, swlevel;
|
||
|
cpuid_t cpu;
|
||
|
|
||
|
DBG("bridge_shutdown: irq 0x%x\n", irq);
|
||
|
pin = SLOT_FROM_PCI_IRQ(irq);
|
||
|
|
||
|
/*
|
||
|
* map irq to a swlevel greater than 6 since the first 6 bits
|
||
|
* of INT_PEND0 are taken
|
||
|
*/
|
||
|
swlevel = find_level(&cpu, irq);
|
||
|
intr_disconnect_level(cpu, swlevel);
|
||
|
|
||
|
__clear_bit(swlevel, si->irq_alloc_mask);
|
||
|
si->level_to_irq[swlevel] = -1;
|
||
|
|
||
|
bridge->b_int_enable &= ~(1 << pin);
|
||
|
bridge->b_wid_tflush;
|
||
|
}
|
||
|
|
||
|
static inline void enable_bridge_irq(unsigned int irq)
|
||
|
{
|
||
|
cpuid_t cpu;
|
||
|
int swlevel;
|
||
|
|
||
|
swlevel = find_level(&cpu, irq); /* Criminal offence */
|
||
|
intr_connect_level(cpu, swlevel);
|
||
|
}
|
||
|
|
||
|
static inline void disable_bridge_irq(unsigned int irq)
|
||
|
{
|
||
|
cpuid_t cpu;
|
||
|
int swlevel;
|
||
|
|
||
|
swlevel = find_level(&cpu, irq); /* Criminal offence */
|
||
|
intr_disconnect_level(cpu, swlevel);
|
||
|
}
|
||
|
|
||
|
static void mask_and_ack_bridge_irq(unsigned int irq)
|
||
|
{
|
||
|
disable_bridge_irq(irq);
|
||
|
}
|
||
|
|
||
|
static void end_bridge_irq(unsigned int irq)
|
||
|
{
|
||
|
if (!(irq_desc[irq].status & (IRQ_DISABLED|IRQ_INPROGRESS)) &&
|
||
|
irq_desc[irq].action)
|
||
|
enable_bridge_irq(irq);
|
||
|
}
|
||
|
|
||
|
static struct hw_interrupt_type bridge_irq_type = {
|
||
|
.typename = "bridge",
|
||
|
.startup = startup_bridge_irq,
|
||
|
.shutdown = shutdown_bridge_irq,
|
||
|
.enable = enable_bridge_irq,
|
||
|
.disable = disable_bridge_irq,
|
||
|
.ack = mask_and_ack_bridge_irq,
|
||
|
.end = end_bridge_irq,
|
||
|
};
|
||
|
|
||
|
static unsigned long irq_map[NR_IRQS / BITS_PER_LONG];
|
||
|
|
||
|
static int allocate_irqno(void)
|
||
|
{
|
||
|
int irq;
|
||
|
|
||
|
again:
|
||
|
irq = find_first_zero_bit(irq_map, NR_IRQS);
|
||
|
|
||
|
if (irq >= NR_IRQS)
|
||
|
return -ENOSPC;
|
||
|
|
||
|
if (test_and_set_bit(irq, irq_map))
|
||
|
goto again;
|
||
|
|
||
|
return irq;
|
||
|
}
|
||
|
|
||
|
void free_irqno(unsigned int irq)
|
||
|
{
|
||
|
clear_bit(irq, irq_map);
|
||
|
}
|
||
|
|
||
|
void __devinit register_bridge_irq(unsigned int irq)
|
||
|
{
|
||
|
irq_desc[irq].status = IRQ_DISABLED;
|
||
|
irq_desc[irq].action = 0;
|
||
|
irq_desc[irq].depth = 1;
|
||
|
irq_desc[irq].handler = &bridge_irq_type;
|
||
|
}
|
||
|
|
||
|
int __devinit request_bridge_irq(struct bridge_controller *bc)
|
||
|
{
|
||
|
int irq = allocate_irqno();
|
||
|
int swlevel, cpu;
|
||
|
nasid_t nasid;
|
||
|
|
||
|
if (irq < 0)
|
||
|
return irq;
|
||
|
|
||
|
/*
|
||
|
* "map" irq to a swlevel greater than 6 since the first 6 bits
|
||
|
* of INT_PEND0 are taken
|
||
|
*/
|
||
|
cpu = bc->irq_cpu;
|
||
|
swlevel = alloc_level(cpu, irq);
|
||
|
if (unlikely(swlevel < 0)) {
|
||
|
free_irqno(irq);
|
||
|
|
||
|
return -EAGAIN;
|
||
|
}
|
||
|
|
||
|
/* Make sure it's not already pending when we connect it. */
|
||
|
nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
|
||
|
REMOTE_HUB_CLR_INTR(nasid, swlevel);
|
||
|
|
||
|
intr_connect_level(cpu, swlevel);
|
||
|
|
||
|
register_bridge_irq(irq);
|
||
|
|
||
|
return irq;
|
||
|
}
|
||
|
|
||
|
void __init arch_init_irq(void)
|
||
|
{
|
||
|
set_except_vector(0, ip27_irq);
|
||
|
}
|
||
|
|
||
|
void install_ipi(void)
|
||
|
{
|
||
|
int slice = LOCAL_HUB_L(PI_CPU_NUM);
|
||
|
int cpu = smp_processor_id();
|
||
|
struct slice_data *si = cpu_data[cpu].data;
|
||
|
hubreg_t mask, set;
|
||
|
|
||
|
if (slice == 0) {
|
||
|
LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ);
|
||
|
LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ);
|
||
|
mask = LOCAL_HUB_L(PI_INT_MASK0_A); /* Slice A */
|
||
|
set = (1UL << CPU_RESCHED_A_IRQ) | (1UL << CPU_CALL_A_IRQ);
|
||
|
mask |= set;
|
||
|
si->irq_enable_mask[0] |= set;
|
||
|
si->irq_alloc_mask[0] |= set;
|
||
|
LOCAL_HUB_S(PI_INT_MASK0_A, mask);
|
||
|
} else {
|
||
|
LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ);
|
||
|
LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ);
|
||
|
mask = LOCAL_HUB_L(PI_INT_MASK0_B); /* Slice B */
|
||
|
set = (1UL << CPU_RESCHED_B_IRQ) | (1UL << CPU_CALL_B_IRQ);
|
||
|
mask |= set;
|
||
|
si->irq_enable_mask[1] |= set;
|
||
|
si->irq_alloc_mask[1] |= set;
|
||
|
LOCAL_HUB_S(PI_INT_MASK0_B, mask);
|
||
|
}
|
||
|
}
|