You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
275 lines
7.5 KiB
275 lines
7.5 KiB
20 years ago
|
/* Stand alone funtions for QSpan Tundra support.
|
||
|
*/
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/pci.h>
|
||
|
#include <asm/mpc8xx.h>
|
||
|
|
||
|
extern void puthex(unsigned long val);
|
||
|
extern void puts(const char *);
|
||
|
|
||
|
/* To map PCI devices, you first write 0xffffffff into the device
|
||
|
* base address registers. When the register is read back, the
|
||
|
* number of most significant '1' bits describes the amount of address
|
||
|
* space needed for mapping. If the most significant bit is not set,
|
||
|
* either the device does not use that address register, or it has
|
||
|
* a fixed address that we can't change. After the address is assigned,
|
||
|
* the command register has to be written to enable the card.
|
||
|
*/
|
||
|
typedef struct {
|
||
|
u_char pci_bus;
|
||
|
u_char pci_devfn;
|
||
|
ushort pci_command;
|
||
|
uint pci_addrs[6];
|
||
|
} pci_map_t;
|
||
|
|
||
|
/* We should probably dynamically allocate these structures.
|
||
|
*/
|
||
|
#define MAX_PCI_DEVS 32
|
||
|
int pci_dev_cnt;
|
||
|
pci_map_t pci_map[MAX_PCI_DEVS];
|
||
|
|
||
|
void pci_conf_write(int bus, int device, int func, int reg, uint writeval);
|
||
|
void pci_conf_read(int bus, int device, int func, int reg, void *readval);
|
||
|
void probe_addresses(int bus, int devfn);
|
||
|
void map_pci_addrs(void);
|
||
|
|
||
|
extern int
|
||
|
qs_pci_read_config_byte(unsigned char bus, unsigned char dev_fn,
|
||
|
unsigned char offset, unsigned char *val);
|
||
|
extern int
|
||
|
qs_pci_read_config_word(unsigned char bus, unsigned char dev_fn,
|
||
|
unsigned char offset, unsigned short *val);
|
||
|
extern int
|
||
|
qs_pci_read_config_dword(unsigned char bus, unsigned char dev_fn,
|
||
|
unsigned char offset, unsigned int *val);
|
||
|
extern int
|
||
|
qs_pci_write_config_byte(unsigned char bus, unsigned char dev_fn,
|
||
|
unsigned char offset, unsigned char val);
|
||
|
extern int
|
||
|
qs_pci_write_config_word(unsigned char bus, unsigned char dev_fn,
|
||
|
unsigned char offset, unsigned short val);
|
||
|
extern int
|
||
|
qs_pci_write_config_dword(unsigned char bus, unsigned char dev_fn,
|
||
|
unsigned char offset, unsigned int val);
|
||
|
|
||
|
|
||
|
/* This is a really stripped version of PCI bus scan. All we are
|
||
|
* looking for are devices that exist.
|
||
|
*/
|
||
|
void
|
||
|
pci_scanner(int addr_probe)
|
||
|
{
|
||
|
unsigned int devfn, l, class, bus_number;
|
||
|
unsigned char hdr_type, is_multi;
|
||
|
|
||
|
is_multi = 0;
|
||
|
bus_number = 0;
|
||
|
for (devfn = 0; devfn < 0xff; ++devfn) {
|
||
|
/* The device numbers are comprised of upper 5 bits of
|
||
|
* device number and lower 3 bits of multi-function number.
|
||
|
*/
|
||
|
if ((devfn & 7) && !is_multi) {
|
||
|
/* Don't scan multifunction addresses if this is
|
||
|
* not a multifunction device.
|
||
|
*/
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/* Read the header to determine card type.
|
||
|
*/
|
||
|
qs_pci_read_config_byte(bus_number, devfn, PCI_HEADER_TYPE,
|
||
|
&hdr_type);
|
||
|
|
||
|
/* If this is a base device number, check the header to
|
||
|
* determine if it is mulifunction.
|
||
|
*/
|
||
|
if ((devfn & 7) == 0)
|
||
|
is_multi = hdr_type & 0x80;
|
||
|
|
||
|
/* Check to see if the board is really in the slot.
|
||
|
*/
|
||
|
qs_pci_read_config_dword(bus_number, devfn, PCI_VENDOR_ID, &l);
|
||
|
/* some broken boards return 0 if a slot is empty: */
|
||
|
if (l == 0xffffffff || l == 0x00000000 || l == 0x0000ffff ||
|
||
|
l == 0xffff0000) {
|
||
|
/* Nothing there.
|
||
|
*/
|
||
|
is_multi = 0;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/* If we are not performing an address probe,
|
||
|
* just simply print out some information.
|
||
|
*/
|
||
|
if (!addr_probe) {
|
||
|
qs_pci_read_config_dword(bus_number, devfn,
|
||
|
PCI_CLASS_REVISION, &class);
|
||
|
|
||
|
class >>= 8; /* upper 3 bytes */
|
||
|
|
||
|
#if 0
|
||
|
printf("Found (%3d:%d): vendor 0x%04x, device 0x%04x, class 0x%06x\n",
|
||
|
(devfn >> 3), (devfn & 7),
|
||
|
(l & 0xffff), (l >> 16) & 0xffff, class);
|
||
|
#else
|
||
|
puts("Found ("); puthex(devfn >> 3);
|
||
|
puts(":"); puthex(devfn & 7);
|
||
|
puts("): vendor "); puthex(l & 0xffff);
|
||
|
puts(", device "); puthex((l >> 16) & 0xffff);
|
||
|
puts(", class "); puthex(class); puts("\n");
|
||
|
#endif
|
||
|
}
|
||
|
else {
|
||
|
/* If this is a "normal" device, build address list.
|
||
|
*/
|
||
|
if ((hdr_type & 0x7f) == PCI_HEADER_TYPE_NORMAL)
|
||
|
probe_addresses(bus_number, devfn);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Now map the boards.
|
||
|
*/
|
||
|
if (addr_probe)
|
||
|
map_pci_addrs();
|
||
|
}
|
||
|
|
||
|
/* Probe addresses for the specified device. This is a destructive
|
||
|
* operation because it writes the registers.
|
||
|
*/
|
||
|
void
|
||
|
probe_addresses(bus, devfn)
|
||
|
{
|
||
|
int i;
|
||
|
uint pciaddr;
|
||
|
ushort pcicmd;
|
||
|
pci_map_t *pm;
|
||
|
|
||
|
if (pci_dev_cnt >= MAX_PCI_DEVS) {
|
||
|
puts("Too many PCI devices\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
pm = &pci_map[pci_dev_cnt++];
|
||
|
|
||
|
pm->pci_bus = bus;
|
||
|
pm->pci_devfn = devfn;
|
||
|
|
||
|
for (i=0; i<6; i++) {
|
||
|
qs_pci_write_config_dword(bus, devfn, PCI_BASE_ADDRESS_0 + (i * 4), -1);
|
||
|
qs_pci_read_config_dword(bus, devfn, PCI_BASE_ADDRESS_0 + (i * 4),
|
||
|
&pciaddr);
|
||
|
pm->pci_addrs[i] = pciaddr;
|
||
|
qs_pci_read_config_word(bus, devfn, PCI_COMMAND, &pcicmd);
|
||
|
pm->pci_command = pcicmd;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Map the cards into the PCI space. The PCI has separate memory
|
||
|
* and I/O spaces. In addition, some memory devices require mapping
|
||
|
* below 1M. The least significant 4 bits of the address register
|
||
|
* provide information. If this is an I/O device, only the LS bit
|
||
|
* is used to indicate that, so I/O devices can be mapped to a two byte
|
||
|
* boundard. Memory addresses can be mapped to a 32 byte boundary.
|
||
|
* The QSpan implementations usually have a 1Gbyte space for each
|
||
|
* memory and I/O spaces.
|
||
|
*
|
||
|
* This isn't a terribly fancy algorithm. I just map the spaces from
|
||
|
* the top starting with the largest address space. When finished,
|
||
|
* the registers are written and the card enabled.
|
||
|
*
|
||
|
* While the Tundra can map a large address space on most boards, we
|
||
|
* need to be careful because it may overlap other devices (like IMMR).
|
||
|
*/
|
||
|
#define MEMORY_SPACE_SIZE 0x20000000
|
||
|
#define IO_SPACE_SIZE 0x20000000
|
||
|
|
||
|
void
|
||
|
map_pci_addrs()
|
||
|
{
|
||
|
uint pci_mem_top, pci_mem_low;
|
||
|
uint pci_io_top;
|
||
|
uint addr_mask, reg_addr, space;
|
||
|
int i, j;
|
||
|
pci_map_t *pm;
|
||
|
|
||
|
pci_mem_top = MEMORY_SPACE_SIZE;
|
||
|
pci_io_top = IO_SPACE_SIZE;
|
||
|
pci_mem_low = (1 * 1024 * 1024); /* Below one meg addresses */
|
||
|
|
||
|
/* We can't map anything more than the maximum space, but test
|
||
|
* for it anyway to catch devices out of range.
|
||
|
*/
|
||
|
addr_mask = 0x80000000;
|
||
|
|
||
|
do {
|
||
|
space = (~addr_mask) + 1; /* Size of the space */
|
||
|
for (i=0; i<pci_dev_cnt; i++) {
|
||
|
pm = &pci_map[i];
|
||
|
for (j=0; j<6; j++) {
|
||
|
/* If the MS bit is not set, this has either
|
||
|
* already been mapped, or is not used.
|
||
|
*/
|
||
|
reg_addr = pm->pci_addrs[j];
|
||
|
if ((reg_addr & 0x80000000) == 0)
|
||
|
continue;
|
||
|
if (reg_addr & PCI_BASE_ADDRESS_SPACE_IO) {
|
||
|
if ((reg_addr & PCI_BASE_ADDRESS_IO_MASK) != addr_mask)
|
||
|
continue;
|
||
|
if (pci_io_top < space) {
|
||
|
puts("Out of PCI I/O space\n");
|
||
|
}
|
||
|
else {
|
||
|
pci_io_top -= space;
|
||
|
pm->pci_addrs[j] = pci_io_top;
|
||
|
pm->pci_command |= PCI_COMMAND_IO;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
if ((reg_addr & PCI_BASE_ADDRESS_MEM_MASK) != addr_mask)
|
||
|
continue;
|
||
|
|
||
|
/* Memory space. Test if below 1M.
|
||
|
*/
|
||
|
if (reg_addr & PCI_BASE_ADDRESS_MEM_TYPE_1M) {
|
||
|
if (pci_mem_low < space) {
|
||
|
puts("Out of PCI 1M space\n");
|
||
|
}
|
||
|
else {
|
||
|
pci_mem_low -= space;
|
||
|
pm->pci_addrs[j] = pci_mem_low;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
if (pci_mem_top < space) {
|
||
|
puts("Out of PCI Mem space\n");
|
||
|
}
|
||
|
else {
|
||
|
pci_mem_top -= space;
|
||
|
pm->pci_addrs[j] = pci_mem_top;
|
||
|
}
|
||
|
}
|
||
|
pm->pci_command |= PCI_COMMAND_MEMORY;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
addr_mask >>= 1;
|
||
|
addr_mask |= 0x80000000;
|
||
|
} while (addr_mask != 0xfffffffe);
|
||
|
|
||
|
/* Now, run the list one more time and map everything.
|
||
|
*/
|
||
|
for (i=0; i<pci_dev_cnt; i++) {
|
||
|
pm = &pci_map[i];
|
||
|
for (j=0; j<6; j++) {
|
||
|
qs_pci_write_config_dword(pm->pci_bus, pm->pci_devfn,
|
||
|
PCI_BASE_ADDRESS_0 + (j * 4), pm->pci_addrs[j]);
|
||
|
}
|
||
|
|
||
|
/* Enable memory or address mapping.
|
||
|
*/
|
||
|
qs_pci_write_config_word(pm->pci_bus, pm->pci_devfn, PCI_COMMAND,
|
||
|
pm->pci_command);
|
||
|
}
|
||
|
}
|
||
|
|