You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
kernel_samsung_sm7125/include/asm-powerpc/pgtable.h

532 lines
17 KiB

#ifndef _ASM_POWERPC_PGTABLE_H
#define _ASM_POWERPC_PGTABLE_H
#ifdef __KERNEL__
#ifndef CONFIG_PPC64
#include <asm-ppc/pgtable.h>
#else
/*
* This file contains the functions and defines necessary to modify and use
* the ppc64 hashed page table.
*/
#ifndef __ASSEMBLY__
#include <linux/stddef.h>
#include <asm/processor.h> /* For TASK_SIZE */
#include <asm/mmu.h>
#include <asm/page.h>
#include <asm/tlbflush.h>
struct mm_struct;
#endif /* __ASSEMBLY__ */
#ifdef CONFIG_PPC_64K_PAGES
#include <asm/pgtable-64k.h>
#else
#include <asm/pgtable-4k.h>
#endif
#define FIRST_USER_ADDRESS 0
/*
* Size of EA range mapped by our pagetables.
*/
#define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
#define PGTABLE_RANGE (1UL << PGTABLE_EADDR_SIZE)
#if TASK_SIZE_USER64 > PGTABLE_RANGE
#error TASK_SIZE_USER64 exceeds pagetable range
#endif
#if TASK_SIZE_USER64 > (1UL << (USER_ESID_BITS + SID_SHIFT))
#error TASK_SIZE_USER64 exceeds user VSID range
#endif
/*
* Define the address range of the vmalloc VM area.
*/
powerpc: Use 64k pages without needing cache-inhibited large pages Some POWER5+ machines can do 64k hardware pages for normal memory but not for cache-inhibited pages. This patch lets us use 64k hardware pages for most user processes on such machines (assuming the kernel has been configured with CONFIG_PPC_64K_PAGES=y). User processes start out using 64k pages and get switched to 4k pages if they use any non-cacheable mappings. With this, we use 64k pages for the vmalloc region and 4k pages for the imalloc region. If anything creates a non-cacheable mapping in the vmalloc region, the vmalloc region will get switched to 4k pages. I don't know of any driver other than the DRM that would do this, though, and these machines don't have AGP. When a region gets switched from 64k pages to 4k pages, we do not have to clear out all the 64k HPTEs from the hash table immediately. We use the _PAGE_COMBO bit in the Linux PTE to indicate whether the page was hashed in as a 64k page or a set of 4k pages. If hash_page is trying to insert a 4k page for a Linux PTE and it sees that it has already been inserted as a 64k page, it first invalidates the 64k HPTE before inserting the 4k HPTE. The hash invalidation routines also use the _PAGE_COMBO bit, to determine whether to look for a 64k HPTE or a set of 4k HPTEs to remove. With those two changes, we can tolerate a mix of 4k and 64k HPTEs in the hash table, and they will all get removed when the address space is torn down. Signed-off-by: Paul Mackerras <paulus@samba.org>
19 years ago
#define VMALLOC_START ASM_CONST(0xD000000000000000)
#define VMALLOC_SIZE ASM_CONST(0x80000000000)
#define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE)
/*
* Define the address range of the imalloc VM area.
*/
#define PHBS_IO_BASE VMALLOC_END
#define IMALLOC_BASE (PHBS_IO_BASE + 0x80000000ul) /* Reserve 2 gigs for PHBs */
#define IMALLOC_END (VMALLOC_START + PGTABLE_RANGE)
/*
* Region IDs
*/
#define REGION_SHIFT 60UL
#define REGION_MASK (0xfUL << REGION_SHIFT)
#define REGION_ID(ea) (((unsigned long)(ea)) >> REGION_SHIFT)
#define VMALLOC_REGION_ID (REGION_ID(VMALLOC_START))
#define KERNEL_REGION_ID (REGION_ID(PAGE_OFFSET))
#define USER_REGION_ID (0UL)
/*
* Common bits in a linux-style PTE. These match the bits in the
* (hardware-defined) PowerPC PTE as closely as possible. Additional
* bits may be defined in pgtable-*.h
*/
#define _PAGE_PRESENT 0x0001 /* software: pte contains a translation */
#define _PAGE_USER 0x0002 /* matches one of the PP bits */
#define _PAGE_FILE 0x0002 /* (!present only) software: pte holds file offset */
#define _PAGE_EXEC 0x0004 /* No execute on POWER4 and newer (we invert) */
#define _PAGE_GUARDED 0x0008
#define _PAGE_COHERENT 0x0010 /* M: enforce memory coherence (SMP systems) */
#define _PAGE_NO_CACHE 0x0020 /* I: cache inhibit */
#define _PAGE_WRITETHRU 0x0040 /* W: cache write-through */
#define _PAGE_DIRTY 0x0080 /* C: page changed */
#define _PAGE_ACCESSED 0x0100 /* R: page referenced */
#define _PAGE_RW 0x0200 /* software: user write access allowed */
#define _PAGE_HASHPTE 0x0400 /* software: pte has an associated HPTE */
#define _PAGE_BUSY 0x0800 /* software: PTE & hash are busy */
#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT)
#define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY)
/* __pgprot defined in asm-powerpc/page.h */
#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER)
#define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | _PAGE_EXEC)
#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
#define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE)
#define PAGE_KERNEL_CI __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
_PAGE_WRENABLE | _PAGE_NO_CACHE | _PAGE_GUARDED)
#define PAGE_KERNEL_EXEC __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_EXEC)
#define PAGE_AGP __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_NO_CACHE)
#define HAVE_PAGE_AGP
/* PTEIDX nibble */
#define _PTEIDX_SECONDARY 0x8
#define _PTEIDX_GROUP_IX 0x7
/*
* POWER4 and newer have per page execute protection, older chips can only
* do this on a segment (256MB) basis.
*
* Also, write permissions imply read permissions.
* This is the closest we can get..
*
* Note due to the way vm flags are laid out, the bits are XWR
*/
#define __P000 PAGE_NONE
#define __P001 PAGE_READONLY
#define __P010 PAGE_COPY
#define __P011 PAGE_COPY
#define __P100 PAGE_READONLY_X
#define __P101 PAGE_READONLY_X
#define __P110 PAGE_COPY_X
#define __P111 PAGE_COPY_X
#define __S000 PAGE_NONE
#define __S001 PAGE_READONLY
#define __S010 PAGE_SHARED
#define __S011 PAGE_SHARED
#define __S100 PAGE_READONLY_X
#define __S101 PAGE_READONLY_X
#define __S110 PAGE_SHARED_X
#define __S111 PAGE_SHARED_X
#ifndef __ASSEMBLY__
/*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
#endif /* __ASSEMBLY__ */
#ifdef CONFIG_HUGETLB_PAGE
#define HAVE_ARCH_UNMAPPED_AREA
#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
#endif
#ifndef __ASSEMBLY__
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*
* mk_pte takes a (struct page *) as input
*/
#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
{
pte_t pte;
pte_val(pte) = (pfn << PTE_RPN_SHIFT) | pgprot_val(pgprot);
return pte;
}
#define pte_modify(_pte, newprot) \
(__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)))
#define pte_none(pte) ((pte_val(pte) & ~_PAGE_HPTEFLAGS) == 0)
#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
/* pte_clear moved to later in this file */
#define pte_pfn(x) ((unsigned long)((pte_val(x)>>PTE_RPN_SHIFT)))
#define pte_page(x) pfn_to_page(pte_pfn(x))
#define PMD_BAD_BITS (PTE_TABLE_SIZE-1)
#define PUD_BAD_BITS (PMD_TABLE_SIZE-1)
#define pmd_set(pmdp, pmdval) (pmd_val(*(pmdp)) = (pmdval))
#define pmd_none(pmd) (!pmd_val(pmd))
#define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \
|| (pmd_val(pmd) & PMD_BAD_BITS))
#define pmd_present(pmd) (pmd_val(pmd) != 0)
#define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0)
#define pmd_page_vaddr(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS)
#define pmd_page(pmd) virt_to_page(pmd_page_vaddr(pmd))
#define pud_set(pudp, pudval) (pud_val(*(pudp)) = (pudval))
#define pud_none(pud) (!pud_val(pud))
#define pud_bad(pud) (!is_kernel_addr(pud_val(pud)) \
|| (pud_val(pud) & PUD_BAD_BITS))
#define pud_present(pud) (pud_val(pud) != 0)
#define pud_clear(pudp) (pud_val(*(pudp)) = 0)
#define pud_page_vaddr(pud) (pud_val(pud) & ~PUD_MASKED_BITS)
#define pud_page(pud) virt_to_page(pud_page_vaddr(pud))
#define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);})
/*
* Find an entry in a page-table-directory. We combine the address region
* (the high order N bits) and the pgd portion of the address.
*/
/* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */
#define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x1ff)
#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
#define pmd_offset(pudp,addr) \
(((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
#define pte_offset_kernel(dir,addr) \
(((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
#define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
#define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr))
#define pte_unmap(pte) do { } while(0)
#define pte_unmap_nested(pte) do { } while(0)
/* to find an entry in a kernel page-table-directory */
/* This now only contains the vmalloc pages */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
/*
* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER;}
static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW;}
static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC;}
static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY;}
static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED;}
static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE;}
static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; }
static inline pte_t pte_rdprotect(pte_t pte) {
pte_val(pte) &= ~_PAGE_USER; return pte; }
static inline pte_t pte_exprotect(pte_t pte) {
pte_val(pte) &= ~_PAGE_EXEC; return pte; }
static inline pte_t pte_wrprotect(pte_t pte) {
pte_val(pte) &= ~(_PAGE_RW); return pte; }
static inline pte_t pte_mkclean(pte_t pte) {
pte_val(pte) &= ~(_PAGE_DIRTY); return pte; }
static inline pte_t pte_mkold(pte_t pte) {
pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
static inline pte_t pte_mkread(pte_t pte) {
pte_val(pte) |= _PAGE_USER; return pte; }
static inline pte_t pte_mkexec(pte_t pte) {
pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
static inline pte_t pte_mkwrite(pte_t pte) {
pte_val(pte) |= _PAGE_RW; return pte; }
static inline pte_t pte_mkdirty(pte_t pte) {
pte_val(pte) |= _PAGE_DIRTY; return pte; }
static inline pte_t pte_mkyoung(pte_t pte) {
pte_val(pte) |= _PAGE_ACCESSED; return pte; }
static inline pte_t pte_mkhuge(pte_t pte) {
return pte; }
/* Atomic PTE updates */
static inline unsigned long pte_update(pte_t *p, unsigned long clr)
{
unsigned long old, tmp;
__asm__ __volatile__(
"1: ldarx %0,0,%3 # pte_update\n\
andi. %1,%0,%6\n\
bne- 1b \n\
andc %1,%0,%4 \n\
stdcx. %1,0,%3 \n\
bne- 1b"
: "=&r" (old), "=&r" (tmp), "=m" (*p)
: "r" (p), "r" (clr), "m" (*p), "i" (_PAGE_BUSY)
: "cc" );
return old;
}
/* PTE updating functions, this function puts the PTE in the
* batch, doesn't actually triggers the hash flush immediately,
* you need to call flush_tlb_pending() to do that.
* Pass -1 for "normal" size (4K or 64K)
*/
extern void hpte_update(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, unsigned long pte, int huge);
static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
unsigned long old;
if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
return 0;
old = pte_update(ptep, _PAGE_ACCESSED);
if (old & _PAGE_HASHPTE) {
hpte_update(mm, addr, ptep, old, 0);
flush_tlb_pending();
}
return (old & _PAGE_ACCESSED) != 0;
}
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
({ \
int __r; \
__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
__r; \
})
/*
* On RW/DIRTY bit transitions we can avoid flushing the hpte. For the
* moment we always flush but we need to fix hpte_update and test if the
* optimisation is worth it.
*/
static inline int __ptep_test_and_clear_dirty(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
unsigned long old;
if ((pte_val(*ptep) & _PAGE_DIRTY) == 0)
return 0;
old = pte_update(ptep, _PAGE_DIRTY);
if (old & _PAGE_HASHPTE)
hpte_update(mm, addr, ptep, old, 0);
return (old & _PAGE_DIRTY) != 0;
}
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
#define ptep_test_and_clear_dirty(__vma, __addr, __ptep) \
({ \
int __r; \
__r = __ptep_test_and_clear_dirty((__vma)->vm_mm, __addr, __ptep); \
__r; \
})
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
unsigned long old;
if ((pte_val(*ptep) & _PAGE_RW) == 0)
return;
old = pte_update(ptep, _PAGE_RW);
if (old & _PAGE_HASHPTE)
hpte_update(mm, addr, ptep, old, 0);
}
/*
* We currently remove entries from the hashtable regardless of whether
* the entry was young or dirty. The generic routines only flush if the
* entry was young or dirty which is not good enough.
*
* We should be more intelligent about this but for the moment we override
* these functions and force a tlb flush unconditionally
*/
#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
#define ptep_clear_flush_young(__vma, __address, __ptep) \
({ \
int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
__ptep); \
__young; \
})
#define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH
#define ptep_clear_flush_dirty(__vma, __address, __ptep) \
({ \
int __dirty = __ptep_test_and_clear_dirty((__vma)->vm_mm, __address, \
__ptep); \
flush_tlb_page(__vma, __address); \
__dirty; \
})
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
unsigned long old = pte_update(ptep, ~0UL);
if (old & _PAGE_HASHPTE)
hpte_update(mm, addr, ptep, old, 0);
return __pte(old);
}
static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
pte_t * ptep)
{
unsigned long old = pte_update(ptep, ~0UL);
if (old & _PAGE_HASHPTE)
hpte_update(mm, addr, ptep, old, 0);
}
/*
* set_pte stores a linux PTE into the linux page table.
*/
static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte)
{
if (pte_present(*ptep)) {
pte_clear(mm, addr, ptep);
flush_tlb_pending();
}
pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
*ptep = pte;
}
/* Set the dirty and/or accessed bits atomically in a linux PTE, this
* function doesn't need to flush the hash entry
*/
#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty)
{
unsigned long bits = pte_val(entry) &
(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
unsigned long old, tmp;
__asm__ __volatile__(
"1: ldarx %0,0,%4\n\
andi. %1,%0,%6\n\
bne- 1b \n\
or %0,%3,%0\n\
stdcx. %0,0,%4\n\
bne- 1b"
:"=&r" (old), "=&r" (tmp), "=m" (*ptep)
:"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
:"cc");
}
#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
do { \
__ptep_set_access_flags(__ptep, __entry, __dirty); \
flush_tlb_page_nohash(__vma, __address); \
} while(0)
/*
* Macro to mark a page protection value as "uncacheable".
*/
#define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED))
struct file;
extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
unsigned long size, pgprot_t vma_prot);
#define __HAVE_PHYS_MEM_ACCESS_PROT
#define __HAVE_ARCH_PTE_SAME
#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
#define pte_ERROR(e) \
printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
#define pmd_ERROR(e) \
printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
#define pgd_ERROR(e) \
printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
extern pgd_t swapper_pg_dir[];
extern void paging_init(void);
/*
* This gets called at the end of handling a page fault, when
* the kernel has put a new PTE into the page table for the process.
* We use it to put a corresponding HPTE into the hash table
* ahead of time, instead of waiting for the inevitable extra
* hash-table miss exception.
*/
struct vm_area_struct;
extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t);
/* Encode and de-code a swap entry */
#define __swp_type(entry) (((entry).val >> 1) & 0x3f)
#define __swp_offset(entry) ((entry).val >> 8)
#define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)})
#define __pte_to_swp_entry(pte) ((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT})
#define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_RPN_SHIFT })
#define pte_to_pgoff(pte) (pte_val(pte) >> PTE_RPN_SHIFT)
#define pgoff_to_pte(off) ((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE})
#define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_RPN_SHIFT)
/*
* kern_addr_valid is intended to indicate whether an address is a valid
* kernel address. Most 32-bit archs define it as always true (like this)
* but most 64-bit archs actually perform a test. What should we do here?
* The only use is in fs/ncpfs/dir.c
*/
#define kern_addr_valid(addr) (1)
#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
remap_pfn_range(vma, vaddr, pfn, size, prot)
void pgtable_cache_init(void);
/*
* find_linux_pte returns the address of a linux pte for a given
* effective address and directory. If not found, it returns zero.
*/static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea)
{
pgd_t *pg;
pud_t *pu;
pmd_t *pm;
pte_t *pt = NULL;
pg = pgdir + pgd_index(ea);
if (!pgd_none(*pg)) {
pu = pud_offset(pg, ea);
if (!pud_none(*pu)) {
pm = pmd_offset(pu, ea);
if (pmd_present(*pm))
pt = pte_offset_kernel(pm, ea);
}
}
return pt;
}
#include <asm-generic/pgtable.h>
#endif /* __ASSEMBLY__ */
#endif /* CONFIG_PPC64 */
#endif /* __KERNEL__ */
#endif /* _ASM_POWERPC_PGTABLE_H */