|
|
|
/*
|
BACKPORT, FROMGIT: crypto: chacha20-generic - refactor to allow varying number of rounds
In preparation for adding XChaCha12 support, rename/refactor
chacha20-generic to support different numbers of rounds. The
justification for needing XChaCha12 support is explained in more detail
in the patch "crypto: chacha - add XChaCha12 support".
The only difference between ChaCha{8,12,20} are the number of rounds
itself; all other parts of the algorithm are the same. Therefore,
remove the "20" from all definitions, structures, functions, files, etc.
that will be shared by all ChaCha versions.
Also make ->setkey() store the round count in the chacha_ctx (previously
chacha20_ctx). The generic code then passes the round count through to
chacha_block(). There will be a ->setkey() function for each explicitly
allowed round count; the encrypt/decrypt functions will be the same. I
decided not to do it the opposite way (same ->setkey() function for all
round counts, with different encrypt/decrypt functions) because that
would have required more boilerplate code in architecture-specific
implementations of ChaCha and XChaCha.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
(cherry picked from commit 1ca1b917940c24ca3d1f490118c5474168622953
https://git.kernel.org/pub/scm/linux/kernel/git/herbert/cryptodev-2.6.git master)
Conflicts:
arch/arm64/crypto/chacha20-neon-glue.c
arch/x86/crypto/chacha20_glue.c
drivers/crypto/caam/caamalg.c
drivers/crypto/caam/caamalg_qi2.c
drivers/crypto/caam/compat.h
include/crypto/chacha20.h
Bug: 112008522
Test: As series, see Ic61c13b53facfd2173065be715a7ee5f3af8760b
Change-Id: I7fa203ddc7095ce8675a32f49b8a5230cd0cf5f6
Signed-off-by: Eric Biggers <ebiggers@google.com>
6 years ago
|
|
|
* The "hash function" used as the core of the ChaCha stream cipher (RFC7539)
|
|
|
|
*
|
|
|
|
* Copyright (C) 2015 Martin Willi
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/export.h>
|
|
|
|
#include <linux/bitops.h>
|
|
|
|
#include <linux/cryptohash.h>
|
|
|
|
#include <asm/unaligned.h>
|
BACKPORT, FROMGIT: crypto: chacha20-generic - refactor to allow varying number of rounds
In preparation for adding XChaCha12 support, rename/refactor
chacha20-generic to support different numbers of rounds. The
justification for needing XChaCha12 support is explained in more detail
in the patch "crypto: chacha - add XChaCha12 support".
The only difference between ChaCha{8,12,20} are the number of rounds
itself; all other parts of the algorithm are the same. Therefore,
remove the "20" from all definitions, structures, functions, files, etc.
that will be shared by all ChaCha versions.
Also make ->setkey() store the round count in the chacha_ctx (previously
chacha20_ctx). The generic code then passes the round count through to
chacha_block(). There will be a ->setkey() function for each explicitly
allowed round count; the encrypt/decrypt functions will be the same. I
decided not to do it the opposite way (same ->setkey() function for all
round counts, with different encrypt/decrypt functions) because that
would have required more boilerplate code in architecture-specific
implementations of ChaCha and XChaCha.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
(cherry picked from commit 1ca1b917940c24ca3d1f490118c5474168622953
https://git.kernel.org/pub/scm/linux/kernel/git/herbert/cryptodev-2.6.git master)
Conflicts:
arch/arm64/crypto/chacha20-neon-glue.c
arch/x86/crypto/chacha20_glue.c
drivers/crypto/caam/caamalg.c
drivers/crypto/caam/caamalg_qi2.c
drivers/crypto/caam/compat.h
include/crypto/chacha20.h
Bug: 112008522
Test: As series, see Ic61c13b53facfd2173065be715a7ee5f3af8760b
Change-Id: I7fa203ddc7095ce8675a32f49b8a5230cd0cf5f6
Signed-off-by: Eric Biggers <ebiggers@google.com>
6 years ago
|
|
|
#include <crypto/chacha.h>
|
|
|
|
|
BACKPORT, FROMGIT: crypto: chacha20-generic - refactor to allow varying number of rounds
In preparation for adding XChaCha12 support, rename/refactor
chacha20-generic to support different numbers of rounds. The
justification for needing XChaCha12 support is explained in more detail
in the patch "crypto: chacha - add XChaCha12 support".
The only difference between ChaCha{8,12,20} are the number of rounds
itself; all other parts of the algorithm are the same. Therefore,
remove the "20" from all definitions, structures, functions, files, etc.
that will be shared by all ChaCha versions.
Also make ->setkey() store the round count in the chacha_ctx (previously
chacha20_ctx). The generic code then passes the round count through to
chacha_block(). There will be a ->setkey() function for each explicitly
allowed round count; the encrypt/decrypt functions will be the same. I
decided not to do it the opposite way (same ->setkey() function for all
round counts, with different encrypt/decrypt functions) because that
would have required more boilerplate code in architecture-specific
implementations of ChaCha and XChaCha.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
(cherry picked from commit 1ca1b917940c24ca3d1f490118c5474168622953
https://git.kernel.org/pub/scm/linux/kernel/git/herbert/cryptodev-2.6.git master)
Conflicts:
arch/arm64/crypto/chacha20-neon-glue.c
arch/x86/crypto/chacha20_glue.c
drivers/crypto/caam/caamalg.c
drivers/crypto/caam/caamalg_qi2.c
drivers/crypto/caam/compat.h
include/crypto/chacha20.h
Bug: 112008522
Test: As series, see Ic61c13b53facfd2173065be715a7ee5f3af8760b
Change-Id: I7fa203ddc7095ce8675a32f49b8a5230cd0cf5f6
Signed-off-by: Eric Biggers <ebiggers@google.com>
6 years ago
|
|
|
static void chacha_permute(u32 *x, int nrounds)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
BACKPORT, FROMGIT: crypto: chacha20-generic - refactor to allow varying number of rounds
In preparation for adding XChaCha12 support, rename/refactor
chacha20-generic to support different numbers of rounds. The
justification for needing XChaCha12 support is explained in more detail
in the patch "crypto: chacha - add XChaCha12 support".
The only difference between ChaCha{8,12,20} are the number of rounds
itself; all other parts of the algorithm are the same. Therefore,
remove the "20" from all definitions, structures, functions, files, etc.
that will be shared by all ChaCha versions.
Also make ->setkey() store the round count in the chacha_ctx (previously
chacha20_ctx). The generic code then passes the round count through to
chacha_block(). There will be a ->setkey() function for each explicitly
allowed round count; the encrypt/decrypt functions will be the same. I
decided not to do it the opposite way (same ->setkey() function for all
round counts, with different encrypt/decrypt functions) because that
would have required more boilerplate code in architecture-specific
implementations of ChaCha and XChaCha.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
(cherry picked from commit 1ca1b917940c24ca3d1f490118c5474168622953
https://git.kernel.org/pub/scm/linux/kernel/git/herbert/cryptodev-2.6.git master)
Conflicts:
arch/arm64/crypto/chacha20-neon-glue.c
arch/x86/crypto/chacha20_glue.c
drivers/crypto/caam/caamalg.c
drivers/crypto/caam/caamalg_qi2.c
drivers/crypto/caam/compat.h
include/crypto/chacha20.h
Bug: 112008522
Test: As series, see Ic61c13b53facfd2173065be715a7ee5f3af8760b
Change-Id: I7fa203ddc7095ce8675a32f49b8a5230cd0cf5f6
Signed-off-by: Eric Biggers <ebiggers@google.com>
6 years ago
|
|
|
/* whitelist the allowed round counts */
|
BACKPORT, FROMGIT: crypto: chacha - add XChaCha12 support
Now that the generic implementation of ChaCha20 has been refactored to
allow varying the number of rounds, add support for XChaCha12, which is
the XSalsa construction applied to ChaCha12. ChaCha12 is one of the
three ciphers specified by the original ChaCha paper
(https://cr.yp.to/chacha/chacha-20080128.pdf: "ChaCha, a variant of
Salsa20"), alongside ChaCha8 and ChaCha20. ChaCha12 is faster than
ChaCha20 but has a lower, but still large, security margin.
We need XChaCha12 support so that it can be used in the Adiantum
encryption mode, which enables disk/file encryption on low-end mobile
devices where AES-XTS is too slow as the CPUs lack AES instructions.
We'd prefer XChaCha20 (the more popular variant), but it's too slow on
some of our target devices, so at least in some cases we do need the
XChaCha12-based version. In more detail, the problem is that Adiantum
is still much slower than we're happy with, and encryption still has a
quite noticeable effect on the feel of low-end devices. Users and
vendors push back hard against encryption that degrades the user
experience, which always risks encryption being disabled entirely. So
we need to choose the fastest option that gives us a solid margin of
security, and here that's XChaCha12. The best known attack on ChaCha
breaks only 7 rounds and has 2^235 time complexity, so ChaCha12's
security margin is still better than AES-256's. Much has been learned
about cryptanalysis of ARX ciphers since Salsa20 was originally designed
in 2005, and it now seems we can be comfortable with a smaller number of
rounds. The eSTREAM project also suggests the 12-round version of
Salsa20 as providing the best balance among the different variants:
combining very good performance with a "comfortable margin of security".
Note that it would be trivial to add vanilla ChaCha12 in addition to
XChaCha12. However, it's unneeded for now and therefore is omitted.
As discussed in the patch that introduced XChaCha20 support, I
considered splitting the code into separate chacha-common, chacha20,
xchacha20, and xchacha12 modules, so that these algorithms could be
enabled/disabled independently. However, since nearly all the code is
shared anyway, I ultimately decided there would have been little benefit
to the added complexity.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
(cherry picked from commit aa7624093cb7fbf4fea95e612580d8d29a819f67
https://git.kernel.org/pub/scm/linux/kernel/git/herbert/cryptodev-2.6.git master)
(adjusted test vector formatting for old testmgr)
Bug: 112008522
Test: As series, see Ic61c13b53facfd2173065be715a7ee5f3af8760b
Change-Id: I876a5be92e9f583effcd35a4b66a36608ac581f0
Signed-off-by: Eric Biggers <ebiggers@google.com>
6 years ago
|
|
|
WARN_ON_ONCE(nrounds != 20 && nrounds != 12);
|
BACKPORT, FROMGIT: crypto: chacha20-generic - refactor to allow varying number of rounds
In preparation for adding XChaCha12 support, rename/refactor
chacha20-generic to support different numbers of rounds. The
justification for needing XChaCha12 support is explained in more detail
in the patch "crypto: chacha - add XChaCha12 support".
The only difference between ChaCha{8,12,20} are the number of rounds
itself; all other parts of the algorithm are the same. Therefore,
remove the "20" from all definitions, structures, functions, files, etc.
that will be shared by all ChaCha versions.
Also make ->setkey() store the round count in the chacha_ctx (previously
chacha20_ctx). The generic code then passes the round count through to
chacha_block(). There will be a ->setkey() function for each explicitly
allowed round count; the encrypt/decrypt functions will be the same. I
decided not to do it the opposite way (same ->setkey() function for all
round counts, with different encrypt/decrypt functions) because that
would have required more boilerplate code in architecture-specific
implementations of ChaCha and XChaCha.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
(cherry picked from commit 1ca1b917940c24ca3d1f490118c5474168622953
https://git.kernel.org/pub/scm/linux/kernel/git/herbert/cryptodev-2.6.git master)
Conflicts:
arch/arm64/crypto/chacha20-neon-glue.c
arch/x86/crypto/chacha20_glue.c
drivers/crypto/caam/caamalg.c
drivers/crypto/caam/caamalg_qi2.c
drivers/crypto/caam/compat.h
include/crypto/chacha20.h
Bug: 112008522
Test: As series, see Ic61c13b53facfd2173065be715a7ee5f3af8760b
Change-Id: I7fa203ddc7095ce8675a32f49b8a5230cd0cf5f6
Signed-off-by: Eric Biggers <ebiggers@google.com>
6 years ago
|
|
|
|
|
|
|
for (i = 0; i < nrounds; i += 2) {
|
|
|
|
x[0] += x[4]; x[12] = rol32(x[12] ^ x[0], 16);
|
|
|
|
x[1] += x[5]; x[13] = rol32(x[13] ^ x[1], 16);
|
|
|
|
x[2] += x[6]; x[14] = rol32(x[14] ^ x[2], 16);
|
|
|
|
x[3] += x[7]; x[15] = rol32(x[15] ^ x[3], 16);
|
|
|
|
|
|
|
|
x[8] += x[12]; x[4] = rol32(x[4] ^ x[8], 12);
|
|
|
|
x[9] += x[13]; x[5] = rol32(x[5] ^ x[9], 12);
|
|
|
|
x[10] += x[14]; x[6] = rol32(x[6] ^ x[10], 12);
|
|
|
|
x[11] += x[15]; x[7] = rol32(x[7] ^ x[11], 12);
|
|
|
|
|
|
|
|
x[0] += x[4]; x[12] = rol32(x[12] ^ x[0], 8);
|
|
|
|
x[1] += x[5]; x[13] = rol32(x[13] ^ x[1], 8);
|
|
|
|
x[2] += x[6]; x[14] = rol32(x[14] ^ x[2], 8);
|
|
|
|
x[3] += x[7]; x[15] = rol32(x[15] ^ x[3], 8);
|
|
|
|
|
|
|
|
x[8] += x[12]; x[4] = rol32(x[4] ^ x[8], 7);
|
|
|
|
x[9] += x[13]; x[5] = rol32(x[5] ^ x[9], 7);
|
|
|
|
x[10] += x[14]; x[6] = rol32(x[6] ^ x[10], 7);
|
|
|
|
x[11] += x[15]; x[7] = rol32(x[7] ^ x[11], 7);
|
|
|
|
|
|
|
|
x[0] += x[5]; x[15] = rol32(x[15] ^ x[0], 16);
|
|
|
|
x[1] += x[6]; x[12] = rol32(x[12] ^ x[1], 16);
|
|
|
|
x[2] += x[7]; x[13] = rol32(x[13] ^ x[2], 16);
|
|
|
|
x[3] += x[4]; x[14] = rol32(x[14] ^ x[3], 16);
|
|
|
|
|
|
|
|
x[10] += x[15]; x[5] = rol32(x[5] ^ x[10], 12);
|
|
|
|
x[11] += x[12]; x[6] = rol32(x[6] ^ x[11], 12);
|
|
|
|
x[8] += x[13]; x[7] = rol32(x[7] ^ x[8], 12);
|
|
|
|
x[9] += x[14]; x[4] = rol32(x[4] ^ x[9], 12);
|
|
|
|
|
|
|
|
x[0] += x[5]; x[15] = rol32(x[15] ^ x[0], 8);
|
|
|
|
x[1] += x[6]; x[12] = rol32(x[12] ^ x[1], 8);
|
|
|
|
x[2] += x[7]; x[13] = rol32(x[13] ^ x[2], 8);
|
|
|
|
x[3] += x[4]; x[14] = rol32(x[14] ^ x[3], 8);
|
|
|
|
|
|
|
|
x[10] += x[15]; x[5] = rol32(x[5] ^ x[10], 7);
|
|
|
|
x[11] += x[12]; x[6] = rol32(x[6] ^ x[11], 7);
|
|
|
|
x[8] += x[13]; x[7] = rol32(x[7] ^ x[8], 7);
|
|
|
|
x[9] += x[14]; x[4] = rol32(x[4] ^ x[9], 7);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
BACKPORT, FROMGIT: crypto: chacha20-generic - refactor to allow varying number of rounds
In preparation for adding XChaCha12 support, rename/refactor
chacha20-generic to support different numbers of rounds. The
justification for needing XChaCha12 support is explained in more detail
in the patch "crypto: chacha - add XChaCha12 support".
The only difference between ChaCha{8,12,20} are the number of rounds
itself; all other parts of the algorithm are the same. Therefore,
remove the "20" from all definitions, structures, functions, files, etc.
that will be shared by all ChaCha versions.
Also make ->setkey() store the round count in the chacha_ctx (previously
chacha20_ctx). The generic code then passes the round count through to
chacha_block(). There will be a ->setkey() function for each explicitly
allowed round count; the encrypt/decrypt functions will be the same. I
decided not to do it the opposite way (same ->setkey() function for all
round counts, with different encrypt/decrypt functions) because that
would have required more boilerplate code in architecture-specific
implementations of ChaCha and XChaCha.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
(cherry picked from commit 1ca1b917940c24ca3d1f490118c5474168622953
https://git.kernel.org/pub/scm/linux/kernel/git/herbert/cryptodev-2.6.git master)
Conflicts:
arch/arm64/crypto/chacha20-neon-glue.c
arch/x86/crypto/chacha20_glue.c
drivers/crypto/caam/caamalg.c
drivers/crypto/caam/caamalg_qi2.c
drivers/crypto/caam/compat.h
include/crypto/chacha20.h
Bug: 112008522
Test: As series, see Ic61c13b53facfd2173065be715a7ee5f3af8760b
Change-Id: I7fa203ddc7095ce8675a32f49b8a5230cd0cf5f6
Signed-off-by: Eric Biggers <ebiggers@google.com>
6 years ago
|
|
|
* chacha_block - generate one keystream block and increment block counter
|
|
|
|
* @state: input state matrix (16 32-bit words)
|
|
|
|
* @stream: output keystream block (64 bytes)
|
BACKPORT, FROMGIT: crypto: chacha - add XChaCha12 support
Now that the generic implementation of ChaCha20 has been refactored to
allow varying the number of rounds, add support for XChaCha12, which is
the XSalsa construction applied to ChaCha12. ChaCha12 is one of the
three ciphers specified by the original ChaCha paper
(https://cr.yp.to/chacha/chacha-20080128.pdf: "ChaCha, a variant of
Salsa20"), alongside ChaCha8 and ChaCha20. ChaCha12 is faster than
ChaCha20 but has a lower, but still large, security margin.
We need XChaCha12 support so that it can be used in the Adiantum
encryption mode, which enables disk/file encryption on low-end mobile
devices where AES-XTS is too slow as the CPUs lack AES instructions.
We'd prefer XChaCha20 (the more popular variant), but it's too slow on
some of our target devices, so at least in some cases we do need the
XChaCha12-based version. In more detail, the problem is that Adiantum
is still much slower than we're happy with, and encryption still has a
quite noticeable effect on the feel of low-end devices. Users and
vendors push back hard against encryption that degrades the user
experience, which always risks encryption being disabled entirely. So
we need to choose the fastest option that gives us a solid margin of
security, and here that's XChaCha12. The best known attack on ChaCha
breaks only 7 rounds and has 2^235 time complexity, so ChaCha12's
security margin is still better than AES-256's. Much has been learned
about cryptanalysis of ARX ciphers since Salsa20 was originally designed
in 2005, and it now seems we can be comfortable with a smaller number of
rounds. The eSTREAM project also suggests the 12-round version of
Salsa20 as providing the best balance among the different variants:
combining very good performance with a "comfortable margin of security".
Note that it would be trivial to add vanilla ChaCha12 in addition to
XChaCha12. However, it's unneeded for now and therefore is omitted.
As discussed in the patch that introduced XChaCha20 support, I
considered splitting the code into separate chacha-common, chacha20,
xchacha20, and xchacha12 modules, so that these algorithms could be
enabled/disabled independently. However, since nearly all the code is
shared anyway, I ultimately decided there would have been little benefit
to the added complexity.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
(cherry picked from commit aa7624093cb7fbf4fea95e612580d8d29a819f67
https://git.kernel.org/pub/scm/linux/kernel/git/herbert/cryptodev-2.6.git master)
(adjusted test vector formatting for old testmgr)
Bug: 112008522
Test: As series, see Ic61c13b53facfd2173065be715a7ee5f3af8760b
Change-Id: I876a5be92e9f583effcd35a4b66a36608ac581f0
Signed-off-by: Eric Biggers <ebiggers@google.com>
6 years ago
|
|
|
* @nrounds: number of rounds (20 or 12; 20 is recommended)
|
|
|
|
*
|
BACKPORT, FROMGIT: crypto: chacha20-generic - refactor to allow varying number of rounds
In preparation for adding XChaCha12 support, rename/refactor
chacha20-generic to support different numbers of rounds. The
justification for needing XChaCha12 support is explained in more detail
in the patch "crypto: chacha - add XChaCha12 support".
The only difference between ChaCha{8,12,20} are the number of rounds
itself; all other parts of the algorithm are the same. Therefore,
remove the "20" from all definitions, structures, functions, files, etc.
that will be shared by all ChaCha versions.
Also make ->setkey() store the round count in the chacha_ctx (previously
chacha20_ctx). The generic code then passes the round count through to
chacha_block(). There will be a ->setkey() function for each explicitly
allowed round count; the encrypt/decrypt functions will be the same. I
decided not to do it the opposite way (same ->setkey() function for all
round counts, with different encrypt/decrypt functions) because that
would have required more boilerplate code in architecture-specific
implementations of ChaCha and XChaCha.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
(cherry picked from commit 1ca1b917940c24ca3d1f490118c5474168622953
https://git.kernel.org/pub/scm/linux/kernel/git/herbert/cryptodev-2.6.git master)
Conflicts:
arch/arm64/crypto/chacha20-neon-glue.c
arch/x86/crypto/chacha20_glue.c
drivers/crypto/caam/caamalg.c
drivers/crypto/caam/caamalg_qi2.c
drivers/crypto/caam/compat.h
include/crypto/chacha20.h
Bug: 112008522
Test: As series, see Ic61c13b53facfd2173065be715a7ee5f3af8760b
Change-Id: I7fa203ddc7095ce8675a32f49b8a5230cd0cf5f6
Signed-off-by: Eric Biggers <ebiggers@google.com>
6 years ago
|
|
|
* This is the ChaCha core, a function from 64-byte strings to 64-byte strings.
|
|
|
|
* The caller has already converted the endianness of the input. This function
|
|
|
|
* also handles incrementing the block counter in the input matrix.
|
|
|
|
*/
|
BACKPORT, FROMGIT: crypto: chacha20-generic - refactor to allow varying number of rounds
In preparation for adding XChaCha12 support, rename/refactor
chacha20-generic to support different numbers of rounds. The
justification for needing XChaCha12 support is explained in more detail
in the patch "crypto: chacha - add XChaCha12 support".
The only difference between ChaCha{8,12,20} are the number of rounds
itself; all other parts of the algorithm are the same. Therefore,
remove the "20" from all definitions, structures, functions, files, etc.
that will be shared by all ChaCha versions.
Also make ->setkey() store the round count in the chacha_ctx (previously
chacha20_ctx). The generic code then passes the round count through to
chacha_block(). There will be a ->setkey() function for each explicitly
allowed round count; the encrypt/decrypt functions will be the same. I
decided not to do it the opposite way (same ->setkey() function for all
round counts, with different encrypt/decrypt functions) because that
would have required more boilerplate code in architecture-specific
implementations of ChaCha and XChaCha.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
(cherry picked from commit 1ca1b917940c24ca3d1f490118c5474168622953
https://git.kernel.org/pub/scm/linux/kernel/git/herbert/cryptodev-2.6.git master)
Conflicts:
arch/arm64/crypto/chacha20-neon-glue.c
arch/x86/crypto/chacha20_glue.c
drivers/crypto/caam/caamalg.c
drivers/crypto/caam/caamalg_qi2.c
drivers/crypto/caam/compat.h
include/crypto/chacha20.h
Bug: 112008522
Test: As series, see Ic61c13b53facfd2173065be715a7ee5f3af8760b
Change-Id: I7fa203ddc7095ce8675a32f49b8a5230cd0cf5f6
Signed-off-by: Eric Biggers <ebiggers@google.com>
6 years ago
|
|
|
void chacha_block(u32 *state, u8 *stream, int nrounds)
|
|
|
|
{
|
|
|
|
u32 x[16];
|
|
|
|
int i;
|
|
|
|
|
|
|
|
memcpy(x, state, 64);
|
|
|
|
|
BACKPORT, FROMGIT: crypto: chacha20-generic - refactor to allow varying number of rounds
In preparation for adding XChaCha12 support, rename/refactor
chacha20-generic to support different numbers of rounds. The
justification for needing XChaCha12 support is explained in more detail
in the patch "crypto: chacha - add XChaCha12 support".
The only difference between ChaCha{8,12,20} are the number of rounds
itself; all other parts of the algorithm are the same. Therefore,
remove the "20" from all definitions, structures, functions, files, etc.
that will be shared by all ChaCha versions.
Also make ->setkey() store the round count in the chacha_ctx (previously
chacha20_ctx). The generic code then passes the round count through to
chacha_block(). There will be a ->setkey() function for each explicitly
allowed round count; the encrypt/decrypt functions will be the same. I
decided not to do it the opposite way (same ->setkey() function for all
round counts, with different encrypt/decrypt functions) because that
would have required more boilerplate code in architecture-specific
implementations of ChaCha and XChaCha.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
(cherry picked from commit 1ca1b917940c24ca3d1f490118c5474168622953
https://git.kernel.org/pub/scm/linux/kernel/git/herbert/cryptodev-2.6.git master)
Conflicts:
arch/arm64/crypto/chacha20-neon-glue.c
arch/x86/crypto/chacha20_glue.c
drivers/crypto/caam/caamalg.c
drivers/crypto/caam/caamalg_qi2.c
drivers/crypto/caam/compat.h
include/crypto/chacha20.h
Bug: 112008522
Test: As series, see Ic61c13b53facfd2173065be715a7ee5f3af8760b
Change-Id: I7fa203ddc7095ce8675a32f49b8a5230cd0cf5f6
Signed-off-by: Eric Biggers <ebiggers@google.com>
6 years ago
|
|
|
chacha_permute(x, nrounds);
|
|
|
|
|
|
|
|
for (i = 0; i < ARRAY_SIZE(x); i++)
|
|
|
|
put_unaligned_le32(x[i] + state[i], &stream[i * sizeof(u32)]);
|
|
|
|
|
|
|
|
state[12]++;
|
|
|
|
}
|
BACKPORT, FROMGIT: crypto: chacha20-generic - refactor to allow varying number of rounds
In preparation for adding XChaCha12 support, rename/refactor
chacha20-generic to support different numbers of rounds. The
justification for needing XChaCha12 support is explained in more detail
in the patch "crypto: chacha - add XChaCha12 support".
The only difference between ChaCha{8,12,20} are the number of rounds
itself; all other parts of the algorithm are the same. Therefore,
remove the "20" from all definitions, structures, functions, files, etc.
that will be shared by all ChaCha versions.
Also make ->setkey() store the round count in the chacha_ctx (previously
chacha20_ctx). The generic code then passes the round count through to
chacha_block(). There will be a ->setkey() function for each explicitly
allowed round count; the encrypt/decrypt functions will be the same. I
decided not to do it the opposite way (same ->setkey() function for all
round counts, with different encrypt/decrypt functions) because that
would have required more boilerplate code in architecture-specific
implementations of ChaCha and XChaCha.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
(cherry picked from commit 1ca1b917940c24ca3d1f490118c5474168622953
https://git.kernel.org/pub/scm/linux/kernel/git/herbert/cryptodev-2.6.git master)
Conflicts:
arch/arm64/crypto/chacha20-neon-glue.c
arch/x86/crypto/chacha20_glue.c
drivers/crypto/caam/caamalg.c
drivers/crypto/caam/caamalg_qi2.c
drivers/crypto/caam/compat.h
include/crypto/chacha20.h
Bug: 112008522
Test: As series, see Ic61c13b53facfd2173065be715a7ee5f3af8760b
Change-Id: I7fa203ddc7095ce8675a32f49b8a5230cd0cf5f6
Signed-off-by: Eric Biggers <ebiggers@google.com>
6 years ago
|
|
|
EXPORT_SYMBOL(chacha_block);
|
|
|
|
|
|
|
|
/**
|
BACKPORT, FROMGIT: crypto: chacha20-generic - refactor to allow varying number of rounds
In preparation for adding XChaCha12 support, rename/refactor
chacha20-generic to support different numbers of rounds. The
justification for needing XChaCha12 support is explained in more detail
in the patch "crypto: chacha - add XChaCha12 support".
The only difference between ChaCha{8,12,20} are the number of rounds
itself; all other parts of the algorithm are the same. Therefore,
remove the "20" from all definitions, structures, functions, files, etc.
that will be shared by all ChaCha versions.
Also make ->setkey() store the round count in the chacha_ctx (previously
chacha20_ctx). The generic code then passes the round count through to
chacha_block(). There will be a ->setkey() function for each explicitly
allowed round count; the encrypt/decrypt functions will be the same. I
decided not to do it the opposite way (same ->setkey() function for all
round counts, with different encrypt/decrypt functions) because that
would have required more boilerplate code in architecture-specific
implementations of ChaCha and XChaCha.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
(cherry picked from commit 1ca1b917940c24ca3d1f490118c5474168622953
https://git.kernel.org/pub/scm/linux/kernel/git/herbert/cryptodev-2.6.git master)
Conflicts:
arch/arm64/crypto/chacha20-neon-glue.c
arch/x86/crypto/chacha20_glue.c
drivers/crypto/caam/caamalg.c
drivers/crypto/caam/caamalg_qi2.c
drivers/crypto/caam/compat.h
include/crypto/chacha20.h
Bug: 112008522
Test: As series, see Ic61c13b53facfd2173065be715a7ee5f3af8760b
Change-Id: I7fa203ddc7095ce8675a32f49b8a5230cd0cf5f6
Signed-off-by: Eric Biggers <ebiggers@google.com>
6 years ago
|
|
|
* hchacha_block - abbreviated ChaCha core, for XChaCha
|
|
|
|
* @in: input state matrix (16 32-bit words)
|
|
|
|
* @out: output (8 32-bit words)
|
BACKPORT, FROMGIT: crypto: chacha - add XChaCha12 support
Now that the generic implementation of ChaCha20 has been refactored to
allow varying the number of rounds, add support for XChaCha12, which is
the XSalsa construction applied to ChaCha12. ChaCha12 is one of the
three ciphers specified by the original ChaCha paper
(https://cr.yp.to/chacha/chacha-20080128.pdf: "ChaCha, a variant of
Salsa20"), alongside ChaCha8 and ChaCha20. ChaCha12 is faster than
ChaCha20 but has a lower, but still large, security margin.
We need XChaCha12 support so that it can be used in the Adiantum
encryption mode, which enables disk/file encryption on low-end mobile
devices where AES-XTS is too slow as the CPUs lack AES instructions.
We'd prefer XChaCha20 (the more popular variant), but it's too slow on
some of our target devices, so at least in some cases we do need the
XChaCha12-based version. In more detail, the problem is that Adiantum
is still much slower than we're happy with, and encryption still has a
quite noticeable effect on the feel of low-end devices. Users and
vendors push back hard against encryption that degrades the user
experience, which always risks encryption being disabled entirely. So
we need to choose the fastest option that gives us a solid margin of
security, and here that's XChaCha12. The best known attack on ChaCha
breaks only 7 rounds and has 2^235 time complexity, so ChaCha12's
security margin is still better than AES-256's. Much has been learned
about cryptanalysis of ARX ciphers since Salsa20 was originally designed
in 2005, and it now seems we can be comfortable with a smaller number of
rounds. The eSTREAM project also suggests the 12-round version of
Salsa20 as providing the best balance among the different variants:
combining very good performance with a "comfortable margin of security".
Note that it would be trivial to add vanilla ChaCha12 in addition to
XChaCha12. However, it's unneeded for now and therefore is omitted.
As discussed in the patch that introduced XChaCha20 support, I
considered splitting the code into separate chacha-common, chacha20,
xchacha20, and xchacha12 modules, so that these algorithms could be
enabled/disabled independently. However, since nearly all the code is
shared anyway, I ultimately decided there would have been little benefit
to the added complexity.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
(cherry picked from commit aa7624093cb7fbf4fea95e612580d8d29a819f67
https://git.kernel.org/pub/scm/linux/kernel/git/herbert/cryptodev-2.6.git master)
(adjusted test vector formatting for old testmgr)
Bug: 112008522
Test: As series, see Ic61c13b53facfd2173065be715a7ee5f3af8760b
Change-Id: I876a5be92e9f583effcd35a4b66a36608ac581f0
Signed-off-by: Eric Biggers <ebiggers@google.com>
6 years ago
|
|
|
* @nrounds: number of rounds (20 or 12; 20 is recommended)
|
|
|
|
*
|
BACKPORT, FROMGIT: crypto: chacha20-generic - refactor to allow varying number of rounds
In preparation for adding XChaCha12 support, rename/refactor
chacha20-generic to support different numbers of rounds. The
justification for needing XChaCha12 support is explained in more detail
in the patch "crypto: chacha - add XChaCha12 support".
The only difference between ChaCha{8,12,20} are the number of rounds
itself; all other parts of the algorithm are the same. Therefore,
remove the "20" from all definitions, structures, functions, files, etc.
that will be shared by all ChaCha versions.
Also make ->setkey() store the round count in the chacha_ctx (previously
chacha20_ctx). The generic code then passes the round count through to
chacha_block(). There will be a ->setkey() function for each explicitly
allowed round count; the encrypt/decrypt functions will be the same. I
decided not to do it the opposite way (same ->setkey() function for all
round counts, with different encrypt/decrypt functions) because that
would have required more boilerplate code in architecture-specific
implementations of ChaCha and XChaCha.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
(cherry picked from commit 1ca1b917940c24ca3d1f490118c5474168622953
https://git.kernel.org/pub/scm/linux/kernel/git/herbert/cryptodev-2.6.git master)
Conflicts:
arch/arm64/crypto/chacha20-neon-glue.c
arch/x86/crypto/chacha20_glue.c
drivers/crypto/caam/caamalg.c
drivers/crypto/caam/caamalg_qi2.c
drivers/crypto/caam/compat.h
include/crypto/chacha20.h
Bug: 112008522
Test: As series, see Ic61c13b53facfd2173065be715a7ee5f3af8760b
Change-Id: I7fa203ddc7095ce8675a32f49b8a5230cd0cf5f6
Signed-off-by: Eric Biggers <ebiggers@google.com>
6 years ago
|
|
|
* HChaCha is the ChaCha equivalent of HSalsa and is an intermediate step
|
|
|
|
* towards XChaCha (see https://cr.yp.to/snuffle/xsalsa-20081128.pdf). HChaCha
|
|
|
|
* skips the final addition of the initial state, and outputs only certain words
|
|
|
|
* of the state. It should not be used for streaming directly.
|
|
|
|
*/
|
BACKPORT, FROMGIT: crypto: chacha20-generic - refactor to allow varying number of rounds
In preparation for adding XChaCha12 support, rename/refactor
chacha20-generic to support different numbers of rounds. The
justification for needing XChaCha12 support is explained in more detail
in the patch "crypto: chacha - add XChaCha12 support".
The only difference between ChaCha{8,12,20} are the number of rounds
itself; all other parts of the algorithm are the same. Therefore,
remove the "20" from all definitions, structures, functions, files, etc.
that will be shared by all ChaCha versions.
Also make ->setkey() store the round count in the chacha_ctx (previously
chacha20_ctx). The generic code then passes the round count through to
chacha_block(). There will be a ->setkey() function for each explicitly
allowed round count; the encrypt/decrypt functions will be the same. I
decided not to do it the opposite way (same ->setkey() function for all
round counts, with different encrypt/decrypt functions) because that
would have required more boilerplate code in architecture-specific
implementations of ChaCha and XChaCha.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
(cherry picked from commit 1ca1b917940c24ca3d1f490118c5474168622953
https://git.kernel.org/pub/scm/linux/kernel/git/herbert/cryptodev-2.6.git master)
Conflicts:
arch/arm64/crypto/chacha20-neon-glue.c
arch/x86/crypto/chacha20_glue.c
drivers/crypto/caam/caamalg.c
drivers/crypto/caam/caamalg_qi2.c
drivers/crypto/caam/compat.h
include/crypto/chacha20.h
Bug: 112008522
Test: As series, see Ic61c13b53facfd2173065be715a7ee5f3af8760b
Change-Id: I7fa203ddc7095ce8675a32f49b8a5230cd0cf5f6
Signed-off-by: Eric Biggers <ebiggers@google.com>
6 years ago
|
|
|
void hchacha_block(const u32 *in, u32 *out, int nrounds)
|
|
|
|
{
|
|
|
|
u32 x[16];
|
|
|
|
|
|
|
|
memcpy(x, in, 64);
|
|
|
|
|
BACKPORT, FROMGIT: crypto: chacha20-generic - refactor to allow varying number of rounds
In preparation for adding XChaCha12 support, rename/refactor
chacha20-generic to support different numbers of rounds. The
justification for needing XChaCha12 support is explained in more detail
in the patch "crypto: chacha - add XChaCha12 support".
The only difference between ChaCha{8,12,20} are the number of rounds
itself; all other parts of the algorithm are the same. Therefore,
remove the "20" from all definitions, structures, functions, files, etc.
that will be shared by all ChaCha versions.
Also make ->setkey() store the round count in the chacha_ctx (previously
chacha20_ctx). The generic code then passes the round count through to
chacha_block(). There will be a ->setkey() function for each explicitly
allowed round count; the encrypt/decrypt functions will be the same. I
decided not to do it the opposite way (same ->setkey() function for all
round counts, with different encrypt/decrypt functions) because that
would have required more boilerplate code in architecture-specific
implementations of ChaCha and XChaCha.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
(cherry picked from commit 1ca1b917940c24ca3d1f490118c5474168622953
https://git.kernel.org/pub/scm/linux/kernel/git/herbert/cryptodev-2.6.git master)
Conflicts:
arch/arm64/crypto/chacha20-neon-glue.c
arch/x86/crypto/chacha20_glue.c
drivers/crypto/caam/caamalg.c
drivers/crypto/caam/caamalg_qi2.c
drivers/crypto/caam/compat.h
include/crypto/chacha20.h
Bug: 112008522
Test: As series, see Ic61c13b53facfd2173065be715a7ee5f3af8760b
Change-Id: I7fa203ddc7095ce8675a32f49b8a5230cd0cf5f6
Signed-off-by: Eric Biggers <ebiggers@google.com>
6 years ago
|
|
|
chacha_permute(x, nrounds);
|
|
|
|
|
|
|
|
memcpy(&out[0], &x[0], 16);
|
|
|
|
memcpy(&out[4], &x[12], 16);
|
|
|
|
}
|
BACKPORT, FROMGIT: crypto: chacha20-generic - refactor to allow varying number of rounds
In preparation for adding XChaCha12 support, rename/refactor
chacha20-generic to support different numbers of rounds. The
justification for needing XChaCha12 support is explained in more detail
in the patch "crypto: chacha - add XChaCha12 support".
The only difference between ChaCha{8,12,20} are the number of rounds
itself; all other parts of the algorithm are the same. Therefore,
remove the "20" from all definitions, structures, functions, files, etc.
that will be shared by all ChaCha versions.
Also make ->setkey() store the round count in the chacha_ctx (previously
chacha20_ctx). The generic code then passes the round count through to
chacha_block(). There will be a ->setkey() function for each explicitly
allowed round count; the encrypt/decrypt functions will be the same. I
decided not to do it the opposite way (same ->setkey() function for all
round counts, with different encrypt/decrypt functions) because that
would have required more boilerplate code in architecture-specific
implementations of ChaCha and XChaCha.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
(cherry picked from commit 1ca1b917940c24ca3d1f490118c5474168622953
https://git.kernel.org/pub/scm/linux/kernel/git/herbert/cryptodev-2.6.git master)
Conflicts:
arch/arm64/crypto/chacha20-neon-glue.c
arch/x86/crypto/chacha20_glue.c
drivers/crypto/caam/caamalg.c
drivers/crypto/caam/caamalg_qi2.c
drivers/crypto/caam/compat.h
include/crypto/chacha20.h
Bug: 112008522
Test: As series, see Ic61c13b53facfd2173065be715a7ee5f3af8760b
Change-Id: I7fa203ddc7095ce8675a32f49b8a5230cd0cf5f6
Signed-off-by: Eric Biggers <ebiggers@google.com>
6 years ago
|
|
|
EXPORT_SYMBOL(hchacha_block);
|