You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
kernel_samsung_sm7125/arch/arm64/include/asm/kasan.h

50 lines
1.5 KiB

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
7 years ago
/* SPDX-License-Identifier: GPL-2.0 */
9 years ago
#ifndef __ASM_KASAN_H
#define __ASM_KASAN_H
#ifndef __ASSEMBLY__
#include <linux/linkage.h>
9 years ago
#include <asm/memory.h>
arm64: mm: create new fine-grained mappings at boot At boot we may change the granularity of the tables mapping the kernel (by splitting or making sections). This may happen when we create the linear mapping (in __map_memblock), or at any point we try to apply fine-grained permissions to the kernel (e.g. fixup_executable, mark_rodata_ro, fixup_init). Changing the active page tables in this manner may result in multiple entries for the same address being allocated into TLBs, risking problems such as TLB conflict aborts or issues derived from the amalgamation of TLB entries. Generally, a break-before-make (BBM) approach is necessary to avoid conflicts, but we cannot do this for the kernel tables as it risks unmapping text or data being used to do so. Instead, we can create a new set of tables from scratch in the safety of the existing mappings, and subsequently migrate over to these using the new cpu_replace_ttbr1 helper, which avoids the two sets of tables being active simultaneously. To avoid issues when we later modify permissions of the page tables (e.g. in fixup_init), we must create the page tables at a granularity such that later modification does not result in splitting of tables. This patch applies this strategy, creating a new set of fine-grained page tables from scratch, and safely migrating to them. The existing fixmap and kasan shadow page tables are reused in the new fine-grained tables. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Jeremy Linton <jeremy.linton@arm.com> Cc: Laura Abbott <labbott@fedoraproject.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
9 years ago
#include <asm/pgtable-types.h>
9 years ago
#define arch_kasan_set_tag(addr, tag) __tag_set(addr, tag)
#define arch_kasan_reset_tag(addr) __tag_reset(addr)
#define arch_kasan_get_tag(addr) __tag_get(addr)
#ifdef CONFIG_KASAN
9 years ago
/*
* KASAN_SHADOW_START: beginning of the kernel virtual addresses.
* KASAN_SHADOW_END: KASAN_SHADOW_START + 1/N of kernel virtual addresses,
* where N = (1 << KASAN_SHADOW_SCALE_SHIFT).
9 years ago
*/
#define KASAN_SHADOW_START (VA_START)
#define KASAN_SHADOW_END (KASAN_SHADOW_START + KASAN_SHADOW_SIZE)
9 years ago
/*
* This value is used to map an address to the corresponding shadow
* address by the following formula:
* shadow_addr = (address >> KASAN_SHADOW_SCALE_SHIFT) + KASAN_SHADOW_OFFSET
9 years ago
*
* (1 << (64 - KASAN_SHADOW_SCALE_SHIFT)) shadow addresses that lie in range
* [KASAN_SHADOW_OFFSET, KASAN_SHADOW_END) cover all 64-bits of virtual
* addresses. So KASAN_SHADOW_OFFSET should satisfy the following equation:
* KASAN_SHADOW_OFFSET = KASAN_SHADOW_END -
* (1ULL << (64 - KASAN_SHADOW_SCALE_SHIFT))
9 years ago
*/
#define KASAN_SHADOW_OFFSET (KASAN_SHADOW_END - (1ULL << \
(64 - KASAN_SHADOW_SCALE_SHIFT)))
9 years ago
void kasan_init(void);
arm64: mm: create new fine-grained mappings at boot At boot we may change the granularity of the tables mapping the kernel (by splitting or making sections). This may happen when we create the linear mapping (in __map_memblock), or at any point we try to apply fine-grained permissions to the kernel (e.g. fixup_executable, mark_rodata_ro, fixup_init). Changing the active page tables in this manner may result in multiple entries for the same address being allocated into TLBs, risking problems such as TLB conflict aborts or issues derived from the amalgamation of TLB entries. Generally, a break-before-make (BBM) approach is necessary to avoid conflicts, but we cannot do this for the kernel tables as it risks unmapping text or data being used to do so. Instead, we can create a new set of tables from scratch in the safety of the existing mappings, and subsequently migrate over to these using the new cpu_replace_ttbr1 helper, which avoids the two sets of tables being active simultaneously. To avoid issues when we later modify permissions of the page tables (e.g. in fixup_init), we must create the page tables at a granularity such that later modification does not result in splitting of tables. This patch applies this strategy, creating a new set of fine-grained page tables from scratch, and safely migrating to them. The existing fixmap and kasan shadow page tables are reused in the new fine-grained tables. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Jeremy Linton <jeremy.linton@arm.com> Cc: Laura Abbott <labbott@fedoraproject.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
9 years ago
void kasan_copy_shadow(pgd_t *pgdir);
asmlinkage void kasan_early_init(void);
9 years ago
#else
static inline void kasan_init(void) { }
arm64: mm: create new fine-grained mappings at boot At boot we may change the granularity of the tables mapping the kernel (by splitting or making sections). This may happen when we create the linear mapping (in __map_memblock), or at any point we try to apply fine-grained permissions to the kernel (e.g. fixup_executable, mark_rodata_ro, fixup_init). Changing the active page tables in this manner may result in multiple entries for the same address being allocated into TLBs, risking problems such as TLB conflict aborts or issues derived from the amalgamation of TLB entries. Generally, a break-before-make (BBM) approach is necessary to avoid conflicts, but we cannot do this for the kernel tables as it risks unmapping text or data being used to do so. Instead, we can create a new set of tables from scratch in the safety of the existing mappings, and subsequently migrate over to these using the new cpu_replace_ttbr1 helper, which avoids the two sets of tables being active simultaneously. To avoid issues when we later modify permissions of the page tables (e.g. in fixup_init), we must create the page tables at a granularity such that later modification does not result in splitting of tables. This patch applies this strategy, creating a new set of fine-grained page tables from scratch, and safely migrating to them. The existing fixmap and kasan shadow page tables are reused in the new fine-grained tables. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Jeremy Linton <jeremy.linton@arm.com> Cc: Laura Abbott <labbott@fedoraproject.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
9 years ago
static inline void kasan_copy_shadow(pgd_t *pgdir) { }
9 years ago
#endif
#endif
#endif