You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
hardware_samsung/ril/libril/ril.cpp

5988 lines
200 KiB

/* //device/libs/telephony/ril.cpp
**
** Copyright 2006, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#define LOG_TAG "RILC"
#include <hardware_legacy/power.h>
#include <telephony/ril.h>
#include <telephony/ril_cdma_sms.h>
#include <cutils/sockets.h>
#include <cutils/jstring.h>
#include <telephony/record_stream.h>
#include <utils/Log.h>
#include <utils/SystemClock.h>
#include <pthread.h>
#include <binder/Parcel.h>
#include <cutils/jstring.h>
#include <sys/types.h>
#include <sys/limits.h>
#include <sys/system_properties.h>
#include <pwd.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <time.h>
#include <errno.h>
#include <assert.h>
#include <ctype.h>
#include <alloca.h>
#include <sys/un.h>
#include <assert.h>
#include <netinet/in.h>
#include <cutils/properties.h>
#include <RilSapSocket.h>
extern "C" void
RIL_onRequestComplete(RIL_Token t, RIL_Errno e, void *response, size_t responselen);
extern "C" void
RIL_onRequestAck(RIL_Token t);
namespace android {
#define PHONE_PROCESS "radio"
#define BLUETOOTH_PROCESS "bluetooth"
#define SOCKET_NAME_RIL "rild"
#define SOCKET2_NAME_RIL "rild2"
#define SOCKET3_NAME_RIL "rild3"
#define SOCKET4_NAME_RIL "rild4"
#define SOCKET_NAME_RIL_DEBUG "rild-debug"
#define ANDROID_WAKE_LOCK_NAME "radio-interface"
#define ANDROID_WAKE_LOCK_SECS 0
#define ANDROID_WAKE_LOCK_USECS 200000
#define PROPERTY_RIL_IMPL "gsm.version.ril-impl"
// match with constant in RIL.java
#define MAX_COMMAND_BYTES (8 * 1024)
// Basically: memset buffers that the client library
// shouldn't be using anymore in an attempt to find
// memory usage issues sooner.
#define MEMSET_FREED 1
#define NUM_ELEMS(a) (sizeof (a) / sizeof (a)[0])
#define MIN(a,b) ((a)<(b) ? (a) : (b))
/* Constants for response types */
#define RESPONSE_SOLICITED 0
#define RESPONSE_UNSOLICITED 1
#define RESPONSE_SOLICITED_ACK 2
#define RESPONSE_SOLICITED_ACK_EXP 3
#define RESPONSE_UNSOLICITED_ACK_EXP 4
/* Negative values for private RIL errno's */
#define RIL_ERRNO_INVALID_RESPONSE -1
#define RIL_ERRNO_NO_MEMORY -12
// request, response, and unsolicited msg print macro
#define PRINTBUF_SIZE 8096
// Enable verbose logging
#define VDBG 0
// Enable RILC log
#define RILC_LOG 0
#if RILC_LOG
#define startRequest sprintf(printBuf, "(")
#define closeRequest sprintf(printBuf, "%s)", printBuf)
#define printRequest(token, req) \
RLOGD("[%04d]> %s %s", token, requestToString(req), printBuf)
#define startResponse sprintf(printBuf, "%s {", printBuf)
#define closeResponse sprintf(printBuf, "%s}", printBuf)
#define printResponse RLOGD("%s", printBuf)
#define clearPrintBuf printBuf[0] = 0
#define removeLastChar printBuf[strlen(printBuf)-1] = 0
#define appendPrintBuf(x...) snprintf(printBuf, PRINTBUF_SIZE, x)
#else
#define startRequest
#define closeRequest
#define printRequest(token, req)
#define startResponse
#define closeResponse
#define printResponse
#define clearPrintBuf
#define removeLastChar
#define appendPrintBuf(x...)
#endif
enum WakeType {DONT_WAKE, WAKE_PARTIAL};
typedef struct {
int requestNumber;
void (*dispatchFunction) (Parcel &p, struct RequestInfo *pRI);
int(*responseFunction) (Parcel &p, void *response, size_t responselen);
} CommandInfo;
typedef struct {
int requestNumber;
int (*responseFunction) (Parcel &p, void *response, size_t responselen);
WakeType wakeType;
} UnsolResponseInfo;
typedef struct RequestInfo {
int32_t token; //this is not RIL_Token
CommandInfo *pCI;
struct RequestInfo *p_next;
char cancelled;
char local; // responses to local commands do not go back to command process
RIL_SOCKET_ID socket_id;
int wasAckSent; // Indicates whether an ack was sent earlier
} RequestInfo;
typedef struct UserCallbackInfo {
RIL_TimedCallback p_callback;
void *userParam;
struct ril_event event;
struct UserCallbackInfo *p_next;
} UserCallbackInfo;
extern "C" const char * requestToString(int request);
extern "C" const char * failCauseToString(RIL_Errno);
extern "C" const char * callStateToString(RIL_CallState);
extern "C" const char * radioStateToString(RIL_RadioState);
extern "C" const char * rilSocketIdToString(RIL_SOCKET_ID socket_id);
extern "C"
char rild[MAX_SOCKET_NAME_LENGTH] = SOCKET_NAME_RIL;
#define RIL_VENDOR_COMMANDS_OFFSET 10000
/*******************************************************************/
RIL_RadioFunctions s_callbacks = {0, NULL, NULL, NULL, NULL, NULL};
static int s_registerCalled = 0;
static pthread_t s_tid_dispatch;
static pthread_t s_tid_reader;
static int s_started = 0;
static int s_fdDebug = -1;
static int s_fdDebug_socket2 = -1;
static int s_fdWakeupRead;
static int s_fdWakeupWrite;
int s_wakelock_count = 0;
static struct ril_event s_commands_event;
static struct ril_event s_wakeupfd_event;
static struct ril_event s_listen_event;
static SocketListenParam s_ril_param_socket;
static pthread_mutex_t s_pendingRequestsMutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t s_writeMutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t s_wakeLockCountMutex = PTHREAD_MUTEX_INITIALIZER;
static RequestInfo *s_pendingRequests = NULL;
#if (SIM_COUNT >= 2)
static struct ril_event s_commands_event_socket2;
static struct ril_event s_listen_event_socket2;
static SocketListenParam s_ril_param_socket2;
static pthread_mutex_t s_pendingRequestsMutex_socket2 = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t s_writeMutex_socket2 = PTHREAD_MUTEX_INITIALIZER;
static RequestInfo *s_pendingRequests_socket2 = NULL;
#endif
#if (SIM_COUNT >= 3)
static struct ril_event s_commands_event_socket3;
static struct ril_event s_listen_event_socket3;
static SocketListenParam s_ril_param_socket3;
static pthread_mutex_t s_pendingRequestsMutex_socket3 = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t s_writeMutex_socket3 = PTHREAD_MUTEX_INITIALIZER;
static RequestInfo *s_pendingRequests_socket3 = NULL;
#endif
#if (SIM_COUNT >= 4)
static struct ril_event s_commands_event_socket4;
static struct ril_event s_listen_event_socket4;
static SocketListenParam s_ril_param_socket4;
static pthread_mutex_t s_pendingRequestsMutex_socket4 = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t s_writeMutex_socket4 = PTHREAD_MUTEX_INITIALIZER;
static RequestInfo *s_pendingRequests_socket4 = NULL;
#endif
static struct ril_event s_wake_timeout_event;
static struct ril_event s_debug_event;
static const struct timeval TIMEVAL_WAKE_TIMEOUT = {ANDROID_WAKE_LOCK_SECS,ANDROID_WAKE_LOCK_USECS};
static pthread_mutex_t s_startupMutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t s_startupCond = PTHREAD_COND_INITIALIZER;
static pthread_mutex_t s_dispatchMutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t s_dispatchCond = PTHREAD_COND_INITIALIZER;
static RequestInfo *s_toDispatchHead = NULL;
static RequestInfo *s_toDispatchTail = NULL;
static UserCallbackInfo *s_last_wake_timeout_info = NULL;
static void *s_lastNITZTimeData = NULL;
static size_t s_lastNITZTimeDataSize;
#if RILC_LOG
static char printBuf[PRINTBUF_SIZE];
#endif
/*******************************************************************/
static int sendResponse (Parcel &p, RIL_SOCKET_ID socket_id);
static void dispatchVoid (Parcel& p, RequestInfo *pRI);
static void dispatchString (Parcel& p, RequestInfo *pRI);
static void dispatchStrings (Parcel& p, RequestInfo *pRI);
static void dispatchInts (Parcel& p, RequestInfo *pRI);
static void dispatchDial (Parcel& p, RequestInfo *pRI);
static void dispatchSIM_IO (Parcel& p, RequestInfo *pRI);
static void dispatchSIM_APDU (Parcel& p, RequestInfo *pRI);
static void dispatchCallForward(Parcel& p, RequestInfo *pRI);
static void dispatchRaw(Parcel& p, RequestInfo *pRI);
static void dispatchSmsWrite (Parcel &p, RequestInfo *pRI);
static void dispatchDataCall (Parcel& p, RequestInfo *pRI);
static void dispatchVoiceRadioTech (Parcel& p, RequestInfo *pRI);
static void dispatchSetInitialAttachApn (Parcel& p, RequestInfo *pRI);
static void dispatchCdmaSubscriptionSource (Parcel& p, RequestInfo *pRI);
static void dispatchCdmaSms(Parcel &p, RequestInfo *pRI);
static void dispatchImsSms(Parcel &p, RequestInfo *pRI);
static void dispatchImsCdmaSms(Parcel &p, RequestInfo *pRI, uint8_t retry, int32_t messageRef);
static void dispatchImsGsmSms(Parcel &p, RequestInfo *pRI, uint8_t retry, int32_t messageRef);
static void dispatchCdmaSmsAck(Parcel &p, RequestInfo *pRI);
static void dispatchGsmBrSmsCnf(Parcel &p, RequestInfo *pRI);
static void dispatchCdmaBrSmsCnf(Parcel &p, RequestInfo *pRI);
static void dispatchRilCdmaSmsWriteArgs(Parcel &p, RequestInfo *pRI);
static void dispatchNVReadItem(Parcel &p, RequestInfo *pRI);
static void dispatchNVWriteItem(Parcel &p, RequestInfo *pRI);
static void dispatchUiccSubscripton(Parcel &p, RequestInfo *pRI);
static void dispatchSimAuthentication(Parcel &p, RequestInfo *pRI);
static void dispatchDataProfile(Parcel &p, RequestInfo *pRI);
static void dispatchRadioCapability(Parcel &p, RequestInfo *pRI);
static int responseInts(Parcel &p, void *response, size_t responselen);
static int responseIntsGetPreferredNetworkType(Parcel &p, void *response, size_t responselen);
static int responseStrings(Parcel &p, void *response, size_t responselen);
static int responseString(Parcel &p, void *response, size_t responselen);
static int responseVoid(Parcel &p, void *response, size_t responselen);
static int responseCallList(Parcel &p, void *response, size_t responselen);
static int responseSMS(Parcel &p, void *response, size_t responselen);
static int responseSIM_IO(Parcel &p, void *response, size_t responselen);
static int responseCallForwards(Parcel &p, void *response, size_t responselen);
static int responseDataCallList(Parcel &p, void *response, size_t responselen);
static int responseSetupDataCall(Parcel &p, void *response, size_t responselen);
static int responseRaw(Parcel &p, void *response, size_t responselen);
static int responseSsn(Parcel &p, void *response, size_t responselen);
static int responseSimStatus(Parcel &p, void *response, size_t responselen);
static int responseGsmBrSmsCnf(Parcel &p, void *response, size_t responselen);
static int responseCdmaBrSmsCnf(Parcel &p, void *response, size_t responselen);
static int responseCdmaSms(Parcel &p, void *response, size_t responselen);
static int responseCellList(Parcel &p, void *response, size_t responselen);
static int responseCdmaInformationRecords(Parcel &p,void *response, size_t responselen);
static int responseRilSignalStrength(Parcel &p,void *response, size_t responselen);
static int responseCallRing(Parcel &p, void *response, size_t responselen);
static int responseCdmaSignalInfoRecord(Parcel &p,void *response, size_t responselen);
static int responseCdmaCallWaiting(Parcel &p,void *response, size_t responselen);
static int responseSimRefresh(Parcel &p, void *response, size_t responselen);
static int responseCellInfoList(Parcel &p, void *response, size_t responselen);
static int responseHardwareConfig(Parcel &p, void *response, size_t responselen);
static int responseDcRtInfo(Parcel &p, void *response, size_t responselen);
static int responseRadioCapability(Parcel &p, void *response, size_t responselen);
static int responseSSData(Parcel &p, void *response, size_t responselen);
static int responseLceStatus(Parcel &p, void *response, size_t responselen);
static int responseLceData(Parcel &p, void *response, size_t responselen);
static int responseActivityData(Parcel &p, void *response, size_t responselen);
static int decodeVoiceRadioTechnology (RIL_RadioState radioState);
static int decodeCdmaSubscriptionSource (RIL_RadioState radioState);
static RIL_RadioState processRadioState(RIL_RadioState newRadioState);
static void grabPartialWakeLock();
static void releaseWakeLock();
static void wakeTimeoutCallback(void *);
static bool isServiceTypeCfQuery(RIL_SsServiceType serType, RIL_SsRequestType reqType);
static bool isDebuggable();
#ifdef RIL_SHLIB
#if defined(ANDROID_MULTI_SIM)
extern "C" void RIL_onUnsolicitedResponse(int unsolResponse, const void *data,
size_t datalen, RIL_SOCKET_ID socket_id);
#else
extern "C" void RIL_onUnsolicitedResponse(int unsolResponse, const void *data,
size_t datalen);
#endif
#endif
#if defined(ANDROID_MULTI_SIM)
#define RIL_UNSOL_RESPONSE(a, b, c, d) RIL_onUnsolicitedResponse((a), (b), (c), (d))
#define CALL_ONREQUEST(a, b, c, d, e) s_callbacks.onRequest((a), (b), (c), (d), (e))
#define CALL_ONSTATEREQUEST(a) s_callbacks.onStateRequest(a)
#else
#define RIL_UNSOL_RESPONSE(a, b, c, d) RIL_onUnsolicitedResponse((a), (b), (c))
#define CALL_ONREQUEST(a, b, c, d, e) s_callbacks.onRequest((a), (b), (c), (d))
#define CALL_ONSTATEREQUEST(a) s_callbacks.onStateRequest()
#endif
static UserCallbackInfo * internalRequestTimedCallback
(RIL_TimedCallback callback, void *param,
const struct timeval *relativeTime);
/** Index == requestNumber */
static CommandInfo s_commands[] = {
#include "ril_commands.h"
};
static UnsolResponseInfo s_unsolResponses[] = {
#include "ril_unsol_commands.h"
};
static CommandInfo s_commands_v[] = {
#include <telephony/ril_commands_vendor.h>
};
static UnsolResponseInfo s_unsolResponses_v[] = {
#include <telephony/ril_unsol_commands_vendor.h>
};
/* For older RILs that do not support new commands RIL_REQUEST_VOICE_RADIO_TECH and
RIL_UNSOL_VOICE_RADIO_TECH_CHANGED messages, decode the voice radio tech from
radio state message and store it. Every time there is a change in Radio State
check to see if voice radio tech changes and notify telephony
*/
int voiceRadioTech = -1;
/* For older RILs that do not support new commands RIL_REQUEST_GET_CDMA_SUBSCRIPTION_SOURCE
and RIL_UNSOL_CDMA_SUBSCRIPTION_SOURCE_CHANGED messages, decode the subscription
source from radio state and store it. Every time there is a change in Radio State
check to see if subscription source changed and notify telephony
*/
int cdmaSubscriptionSource = -1;
/* For older RILs that do not send RIL_UNSOL_RESPONSE_SIM_STATUS_CHANGED, decode the
SIM/RUIM state from radio state and store it. Every time there is a change in Radio State,
check to see if SIM/RUIM status changed and notify telephony
*/
int simRuimStatus = -1;
static char * RIL_getRilSocketName() {
return rild;
}
extern "C"
void RIL_setRilSocketName(const char * s) {
strncpy(rild, s, MAX_SOCKET_NAME_LENGTH);
}
static char *
strdupReadString(Parcel &p) {
size_t stringlen;
const char16_t *s16;
s16 = p.readString16Inplace(&stringlen);
return strndup16to8(s16, stringlen);
}
static status_t
readStringFromParcelInplace(Parcel &p, char *str, size_t maxLen) {
size_t s16Len;
const char16_t *s16;
s16 = p.readString16Inplace(&s16Len);
if (s16 == NULL) {
return NO_MEMORY;
}
size_t strLen = strnlen16to8(s16, s16Len);
if ((strLen + 1) > maxLen) {
return NO_MEMORY;
}
if (strncpy16to8(str, s16, strLen) == NULL) {
return NO_MEMORY;
} else {
return NO_ERROR;
}
}
static void writeStringToParcel(Parcel &p, const char *s) {
char16_t *s16;
size_t s16_len;
s16 = strdup8to16(s, &s16_len);
p.writeString16(s16, s16_len);
free(s16);
}
static void
memsetString (char *s) {
if (s != NULL) {
memset (s, 0, strlen(s));
}
}
void nullParcelReleaseFunction (const uint8_t* data, size_t dataSize,
const size_t* objects, size_t objectsSize,
void* cookie) {
// do nothing -- the data reference lives longer than the Parcel object
}
/**
* To be called from dispatch thread
* Issue a single local request, ensuring that the response
* is not sent back up to the command process
*/
static void
issueLocalRequest(int request, void *data, int len, RIL_SOCKET_ID socket_id) {
RequestInfo *pRI;
int ret;
/* Hook for current context */
/* pendingRequestsMutextHook refer to &s_pendingRequestsMutex */
pthread_mutex_t* pendingRequestsMutexHook = &s_pendingRequestsMutex;
/* pendingRequestsHook refer to &s_pendingRequests */
RequestInfo** pendingRequestsHook = &s_pendingRequests;
#if (SIM_COUNT == 2)
if (socket_id == RIL_SOCKET_2) {
pendingRequestsMutexHook = &s_pendingRequestsMutex_socket2;
pendingRequestsHook = &s_pendingRequests_socket2;
}
#endif
pRI = (RequestInfo *)calloc(1, sizeof(RequestInfo));
if (pRI == NULL) {
RLOGE("Memory allocation failed for request %s", requestToString(request));
return;
}
pRI->local = 1;
pRI->token = 0xffffffff; // token is not used in this context
/* Check vendor commands */
if (request > RIL_VENDOR_COMMANDS_OFFSET) {
pRI->pCI = &(s_commands_v[request - RIL_VENDOR_COMMANDS_OFFSET]);
} else {
pRI->pCI = &(s_commands[request]);
}
pRI->socket_id = socket_id;
ret = pthread_mutex_lock(pendingRequestsMutexHook);
assert (ret == 0);
pRI->p_next = *pendingRequestsHook;
*pendingRequestsHook = pRI;
ret = pthread_mutex_unlock(pendingRequestsMutexHook);
assert (ret == 0);
RLOGD("C[locl]> %s", requestToString(request));
CALL_ONREQUEST(request, data, len, pRI, pRI->socket_id);
}
static int
processCommandBuffer(void *buffer, size_t buflen, RIL_SOCKET_ID socket_id) {
Parcel p;
status_t status;
int32_t request;
int32_t token;
RequestInfo *pRI;
int ret;
/* Hook for current context */
/* pendingRequestsMutextHook refer to &s_pendingRequestsMutex */
pthread_mutex_t* pendingRequestsMutexHook = &s_pendingRequestsMutex;
/* pendingRequestsHook refer to &s_pendingRequests */
RequestInfo** pendingRequestsHook = &s_pendingRequests;
p.setData((uint8_t *) buffer, buflen);
// status checked at end
status = p.readInt32(&request);
status = p.readInt32 (&token);
#if (SIM_COUNT >= 2)
if (socket_id == RIL_SOCKET_2) {
pendingRequestsMutexHook = &s_pendingRequestsMutex_socket2;
pendingRequestsHook = &s_pendingRequests_socket2;
}
#if (SIM_COUNT >= 3)
else if (socket_id == RIL_SOCKET_3) {
pendingRequestsMutexHook = &s_pendingRequestsMutex_socket3;
pendingRequestsHook = &s_pendingRequests_socket3;
}
#endif
#if (SIM_COUNT >= 4)
else if (socket_id == RIL_SOCKET_4) {
pendingRequestsMutexHook = &s_pendingRequestsMutex_socket4;
pendingRequestsHook = &s_pendingRequests_socket4;
}
#endif
#endif
if (status != NO_ERROR) {
RLOGE("invalid request block");
return 0;
}
CommandInfo *pCI = NULL;
if (request > RIL_VENDOR_COMMANDS_OFFSET) {
int index = request - RIL_VENDOR_COMMANDS_OFFSET;
RLOGD("processCommandBuffer: samsung request=%d, index=%d",
request, index);
if (index < (int32_t)NUM_ELEMS(s_commands_v))
pCI = &(s_commands_v[index]);
} else {
if (request < (int32_t)NUM_ELEMS(s_commands))
pCI = &(s_commands[request]);
}
// Received an Ack for the previous result sent to RIL.java,
// so release wakelock and exit
if (request == RIL_RESPONSE_ACKNOWLEDGEMENT) {
releaseWakeLock();
return 0;
}
if (pCI == NULL) {
Parcel pErr;
RLOGE("unsupported request code %d token %d", request, token);
// FIXME this should perhaps return a response
pErr.writeInt32 (RESPONSE_SOLICITED);
pErr.writeInt32 (token);
pErr.writeInt32 (RIL_E_GENERIC_FAILURE);
sendResponse(pErr, socket_id);
return 0;
}
pRI = (RequestInfo *)calloc(1, sizeof(RequestInfo));
if (pRI == NULL) {
RLOGE("Memory allocation failed for request %s", requestToString(request));
return 0;
}
pRI->token = token;
pRI->pCI = pCI;
pRI->socket_id = socket_id;
ret = pthread_mutex_lock(pendingRequestsMutexHook);
assert (ret == 0);
pRI->p_next = *pendingRequestsHook;
*pendingRequestsHook = pRI;
ret = pthread_mutex_unlock(pendingRequestsMutexHook);
assert (ret == 0);
/* sLastDispatchedToken = token; */
pRI->pCI->dispatchFunction(p, pRI);
return 0;
}
static void
invalidCommandBlock (RequestInfo *pRI) {
RLOGE("invalid command block for token %d request %s",
pRI->token, requestToString(pRI->pCI->requestNumber));
}
/** Callee expects NULL */
static void
dispatchVoid (Parcel& p, RequestInfo *pRI) {
clearPrintBuf;
printRequest(pRI->token, pRI->pCI->requestNumber);
CALL_ONREQUEST(pRI->pCI->requestNumber, NULL, 0, pRI, pRI->socket_id);
}
/** Callee expects const char * */
static void
dispatchString (Parcel& p, RequestInfo *pRI) {
status_t status;
size_t datalen;
size_t stringlen;
char *string8 = NULL;
string8 = strdupReadString(p);
startRequest;
appendPrintBuf("%s%s", printBuf, string8);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
CALL_ONREQUEST(pRI->pCI->requestNumber, string8,
sizeof(char *), pRI, pRI->socket_id);
#ifdef MEMSET_FREED
memsetString(string8);
#endif
free(string8);
return;
invalid:
invalidCommandBlock(pRI);
return;
}
/** Callee expects const char ** */
static void
dispatchStrings (Parcel &p, RequestInfo *pRI) {
int32_t countStrings;
status_t status;
size_t datalen;
char **pStrings;
status = p.readInt32 (&countStrings);
if (status != NO_ERROR) {
goto invalid;
}
startRequest;
if (countStrings == 0) {
// just some non-null pointer
pStrings = (char **)alloca(sizeof(char *));
if (pStrings == NULL) {
RLOGE("Memory allocation failed for request %s",
requestToString(pRI->pCI->requestNumber));
closeRequest;
return;
}
datalen = 0;
} else if (((int)countStrings) == -1) {
pStrings = NULL;
datalen = 0;
} else {
datalen = sizeof(char *) * countStrings;
pStrings = (char **)alloca(datalen);
if (pStrings == NULL) {
RLOGE("Memory allocation failed for request %s",
requestToString(pRI->pCI->requestNumber));
closeRequest;
return;
}
for (int i = 0 ; i < countStrings ; i++) {
pStrings[i] = strdupReadString(p);
appendPrintBuf("%s%s,", printBuf, pStrings[i]);
}
}
removeLastChar;
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
CALL_ONREQUEST(pRI->pCI->requestNumber, pStrings, datalen, pRI, pRI->socket_id);
if (pStrings != NULL) {
for (int i = 0 ; i < countStrings ; i++) {
#ifdef MEMSET_FREED
memsetString (pStrings[i]);
#endif
free(pStrings[i]);
}
#ifdef MEMSET_FREED
memset(pStrings, 0, datalen);
#endif
}
return;
invalid:
invalidCommandBlock(pRI);
return;
}
/** Callee expects const int * */
static void
dispatchInts (Parcel &p, RequestInfo *pRI) {
int32_t count;
status_t status;
size_t datalen;
int *pInts;
status = p.readInt32 (&count);
if (status != NO_ERROR || count == 0) {
goto invalid;
}
datalen = sizeof(int) * count;
pInts = (int *)alloca(datalen);
if (pInts == NULL) {
RLOGE("Memory allocation failed for request %s", requestToString(pRI->pCI->requestNumber));
return;
}
startRequest;
for (int i = 0 ; i < count ; i++) {
int32_t t;
status = p.readInt32(&t);
pInts[i] = (int)t;
appendPrintBuf("%s%d,", printBuf, t);
if (status != NO_ERROR) {
goto invalid;
}
}
removeLastChar;
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
CALL_ONREQUEST(pRI->pCI->requestNumber, const_cast<int *>(pInts),
datalen, pRI, pRI->socket_id);
#ifdef MEMSET_FREED
memset(pInts, 0, datalen);
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
/**
* Callee expects const RIL_SMS_WriteArgs *
* Payload is:
* int32_t status
* String pdu
*/
static void
dispatchSmsWrite (Parcel &p, RequestInfo *pRI) {
RIL_SMS_WriteArgs args;
int32_t t;
status_t status;
RLOGD("dispatchSmsWrite");
memset (&args, 0, sizeof(args));
status = p.readInt32(&t);
args.status = (int)t;
args.pdu = strdupReadString(p);
if (status != NO_ERROR || args.pdu == NULL) {
goto invalid;
}
args.smsc = strdupReadString(p);
startRequest;
appendPrintBuf("%s%d,%s,smsc=%s", printBuf, args.status,
(char*)args.pdu, (char*)args.smsc);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
CALL_ONREQUEST(pRI->pCI->requestNumber, &args, sizeof(args), pRI, pRI->socket_id);
#ifdef MEMSET_FREED
memsetString (args.pdu);
#endif
free (args.pdu);
#ifdef MEMSET_FREED
memset(&args, 0, sizeof(args));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
/**
* Callee expects const RIL_Dial *
* Payload is:
* String address
* int32_t clir
*/
static void
dispatchDial (Parcel &p, RequestInfo *pRI) {
RIL_Dial dial;
RIL_UUS_Info uusInfo;
int32_t sizeOfDial;
int32_t t;
int32_t uusPresent;
#ifdef SAMSUNG_NEXT_GEN_MODEM
char *csv;
#endif
status_t status;
RLOGD("dispatchDial");
memset (&dial, 0, sizeof(dial));
dial.address = strdupReadString(p);
status = p.readInt32(&t);
dial.clir = (int)t;
if (status != NO_ERROR || dial.address == NULL) {
goto invalid;
}
#ifdef SAMSUNG_NEXT_GEN_MODEM
/* CallDetails.call_type */
status = p.readInt32(&t);
if (status != NO_ERROR) {
goto invalid;
}
/* CallDetails.call_domain */
p.readInt32(&t);
if (status != NO_ERROR) {
goto invalid;
}
/* CallDetails.getCsvFromExtra */
csv = strdupReadString(p);
if (csv == NULL) {
goto invalid;
}
free(csv);
#endif
if (s_callbacks.version < 3) { // Remove when partners upgrade to version 3
uusPresent = 0;
sizeOfDial = sizeof(dial) - sizeof(RIL_UUS_Info *);
} else {
status = p.readInt32(&uusPresent);
if (status != NO_ERROR) {
goto invalid;
}
if (uusPresent == 0) {
#if defined(MODEM_TYPE_XMM6262) || defined(SAMSUNG_NEXT_GEN_MODEM)
dial.uusInfo = NULL;
#elif defined(MODEM_TYPE_XMM6260)
/* Samsung hack */
memset(&uusInfo, 0, sizeof(RIL_UUS_Info));
uusInfo.uusType = (RIL_UUS_Type) 0;
uusInfo.uusDcs = (RIL_UUS_DCS) 0;
uusInfo.uusData = NULL;
uusInfo.uusLength = 0;
dial.uusInfo = &uusInfo;
#endif
} else {
int32_t len;
memset(&uusInfo, 0, sizeof(RIL_UUS_Info));
status = p.readInt32(&t);
uusInfo.uusType = (RIL_UUS_Type) t;
status = p.readInt32(&t);
uusInfo.uusDcs = (RIL_UUS_DCS) t;
status = p.readInt32(&len);
if (status != NO_ERROR) {
goto invalid;
}
// The java code writes -1 for null arrays
if (((int) len) == -1) {
uusInfo.uusData = NULL;
len = 0;
} else {
uusInfo.uusData = (char*) p.readInplace(len);
}
uusInfo.uusLength = len;
dial.uusInfo = &uusInfo;
}
sizeOfDial = sizeof(dial);
}
startRequest;
appendPrintBuf("%snum=%s,clir=%d", printBuf, dial.address, dial.clir);
if (uusPresent) {
appendPrintBuf("%s,uusType=%d,uusDcs=%d,uusLen=%d", printBuf,
dial.uusInfo->uusType, dial.uusInfo->uusDcs,
dial.uusInfo->uusLength);
}
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
CALL_ONREQUEST(pRI->pCI->requestNumber, &dial, sizeOfDial, pRI, pRI->socket_id);
#ifdef MEMSET_FREED
memsetString (dial.address);
#endif
free (dial.address);
#ifdef MEMSET_FREED
memset(&uusInfo, 0, sizeof(RIL_UUS_Info));
memset(&dial, 0, sizeof(dial));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
/**
* Callee expects const RIL_SIM_IO *
* Payload is:
* int32_t command
* int32_t fileid
* String path
* int32_t p1, p2, p3
* String data
* String pin2
* String aidPtr
*/
static void
dispatchSIM_IO (Parcel &p, RequestInfo *pRI) {
union RIL_SIM_IO {
RIL_SIM_IO_v6 v6;
RIL_SIM_IO_v5 v5;
} simIO;
int32_t t;
int size;
status_t status;
#if VDBG
RLOGD("dispatchSIM_IO");
#endif
memset (&simIO, 0, sizeof(simIO));
// note we only check status at the end
status = p.readInt32(&t);
simIO.v6.command = (int)t;
status = p.readInt32(&t);
simIO.v6.fileid = (int)t;
simIO.v6.path = strdupReadString(p);
status = p.readInt32(&t);
simIO.v6.p1 = (int)t;
status = p.readInt32(&t);
simIO.v6.p2 = (int)t;
status = p.readInt32(&t);
simIO.v6.p3 = (int)t;
simIO.v6.data = strdupReadString(p);
simIO.v6.pin2 = strdupReadString(p);
simIO.v6.aidPtr = strdupReadString(p);
startRequest;
appendPrintBuf("%scmd=0x%X,efid=0x%X,path=%s,%d,%d,%d,%s,pin2=%s,aid=%s", printBuf,
simIO.v6.command, simIO.v6.fileid, (char*)simIO.v6.path,
simIO.v6.p1, simIO.v6.p2, simIO.v6.p3,
(char*)simIO.v6.data, (char*)simIO.v6.pin2, simIO.v6.aidPtr);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
if (status != NO_ERROR) {
goto invalid;
}
size = (s_callbacks.version < 6) ? sizeof(simIO.v5) : sizeof(simIO.v6);
CALL_ONREQUEST(pRI->pCI->requestNumber, &simIO, size, pRI, pRI->socket_id);
#ifdef MEMSET_FREED
memsetString (simIO.v6.path);
memsetString (simIO.v6.data);
memsetString (simIO.v6.pin2);
memsetString (simIO.v6.aidPtr);
#endif
free (simIO.v6.path);
free (simIO.v6.data);
free (simIO.v6.pin2);
free (simIO.v6.aidPtr);
#ifdef MEMSET_FREED
memset(&simIO, 0, sizeof(simIO));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
/**
* Callee expects const RIL_SIM_APDU *
* Payload is:
* int32_t sessionid
* int32_t cla
* int32_t instruction
* int32_t p1, p2, p3
* String data
*/
static void
dispatchSIM_APDU (Parcel &p, RequestInfo *pRI) {
int32_t t;
status_t status;
RIL_SIM_APDU apdu;
#if VDBG
RLOGD("dispatchSIM_APDU");
#endif
memset (&apdu, 0, sizeof(RIL_SIM_APDU));
// Note we only check status at the end. Any single failure leads to
// subsequent reads filing.
status = p.readInt32(&t);
apdu.sessionid = (int)t;
status = p.readInt32(&t);
apdu.cla = (int)t;
status = p.readInt32(&t);
apdu.instruction = (int)t;
status = p.readInt32(&t);
apdu.p1 = (int)t;
status = p.readInt32(&t);
apdu.p2 = (int)t;
status = p.readInt32(&t);
apdu.p3 = (int)t;
apdu.data = strdupReadString(p);
startRequest;
appendPrintBuf("%ssessionid=%d,cla=%d,ins=%d,p1=%d,p2=%d,p3=%d,data=%s",
printBuf, apdu.sessionid, apdu.cla, apdu.instruction, apdu.p1, apdu.p2,
apdu.p3, (char*)apdu.data);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
if (status != NO_ERROR) {
goto invalid;
}
CALL_ONREQUEST(pRI->pCI->requestNumber, &apdu, sizeof(RIL_SIM_APDU), pRI, pRI->socket_id);
#ifdef MEMSET_FREED
memsetString(apdu.data);
#endif
free(apdu.data);
#ifdef MEMSET_FREED
memset(&apdu, 0, sizeof(RIL_SIM_APDU));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
/**
* Callee expects const RIL_CallForwardInfo *
* Payload is:
* int32_t status/action
* int32_t reason
* int32_t serviceCode
* int32_t toa
* String number (0 length -> null)
* int32_t timeSeconds
*/
static void
dispatchCallForward(Parcel &p, RequestInfo *pRI) {
RIL_CallForwardInfo cff;
int32_t t;
status_t status;
RLOGD("dispatchCallForward");
memset (&cff, 0, sizeof(cff));
// note we only check status at the end
status = p.readInt32(&t);
cff.status = (int)t;
status = p.readInt32(&t);
cff.reason = (int)t;
status = p.readInt32(&t);
cff.serviceClass = (int)t;
status = p.readInt32(&t);
cff.toa = (int)t;
cff.number = strdupReadString(p);
status = p.readInt32(&t);
cff.timeSeconds = (int)t;
if (status != NO_ERROR) {
goto invalid;
}
// special case: number 0-length fields is null
if (cff.number != NULL && strlen (cff.number) == 0) {
cff.number = NULL;
}
startRequest;
appendPrintBuf("%sstat=%d,reason=%d,serv=%d,toa=%d,%s,tout=%d", printBuf,
cff.status, cff.reason, cff.serviceClass, cff.toa,
(char*)cff.number, cff.timeSeconds);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
CALL_ONREQUEST(pRI->pCI->requestNumber, &cff, sizeof(cff), pRI, pRI->socket_id);
#ifdef MEMSET_FREED
memsetString(cff.number);
#endif
free (cff.number);
#ifdef MEMSET_FREED
memset(&cff, 0, sizeof(cff));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void
dispatchRaw(Parcel &p, RequestInfo *pRI) {
int32_t len;
status_t status;
const void *data;
status = p.readInt32(&len);
if (status != NO_ERROR) {
goto invalid;
}
// The java code writes -1 for null arrays
if (((int)len) == -1) {
data = NULL;
len = 0;
}
data = p.readInplace(len);
startRequest;
appendPrintBuf("%sraw_size=%d", printBuf, len);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
CALL_ONREQUEST(pRI->pCI->requestNumber, const_cast<void *>(data), len, pRI, pRI->socket_id);
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static status_t
constructCdmaSms(Parcel &p, RequestInfo *pRI, RIL_CDMA_SMS_Message& rcsm) {
int32_t t;
uint8_t ut;
status_t status;
int32_t digitCount;
int digitLimit;
memset(&rcsm, 0, sizeof(rcsm));
status = p.readInt32(&t);
rcsm.uTeleserviceID = (int) t;
status = p.read(&ut,sizeof(ut));
rcsm.bIsServicePresent = (uint8_t) ut;
status = p.readInt32(&t);
rcsm.uServicecategory = (int) t;
status = p.readInt32(&t);
rcsm.sAddress.digit_mode = (RIL_CDMA_SMS_DigitMode) t;
status = p.readInt32(&t);
rcsm.sAddress.number_mode = (RIL_CDMA_SMS_NumberMode) t;
status = p.readInt32(&t);
rcsm.sAddress.number_type = (RIL_CDMA_SMS_NumberType) t;
status = p.readInt32(&t);
rcsm.sAddress.number_plan = (RIL_CDMA_SMS_NumberPlan) t;
status = p.read(&ut,sizeof(ut));
rcsm.sAddress.number_of_digits= (uint8_t) ut;
digitLimit= MIN((rcsm.sAddress.number_of_digits), RIL_CDMA_SMS_ADDRESS_MAX);
for(digitCount =0 ; digitCount < digitLimit; digitCount ++) {
status = p.read(&ut,sizeof(ut));
rcsm.sAddress.digits[digitCount] = (uint8_t) ut;
}
status = p.readInt32(&t);
rcsm.sSubAddress.subaddressType = (RIL_CDMA_SMS_SubaddressType) t;
status = p.read(&ut,sizeof(ut));
rcsm.sSubAddress.odd = (uint8_t) ut;
status = p.read(&ut,sizeof(ut));
rcsm.sSubAddress.number_of_digits = (uint8_t) ut;
digitLimit= MIN((rcsm.sSubAddress.number_of_digits), RIL_CDMA_SMS_SUBADDRESS_MAX);
for(digitCount =0 ; digitCount < digitLimit; digitCount ++) {
status = p.read(&ut,sizeof(ut));
rcsm.sSubAddress.digits[digitCount] = (uint8_t) ut;
}
status = p.readInt32(&t);
rcsm.uBearerDataLen = (int) t;
digitLimit= MIN((rcsm.uBearerDataLen), RIL_CDMA_SMS_BEARER_DATA_MAX);
for(digitCount =0 ; digitCount < digitLimit; digitCount ++) {
status = p.read(&ut, sizeof(ut));
rcsm.aBearerData[digitCount] = (uint8_t) ut;
}
if (status != NO_ERROR) {
return status;
}
startRequest;
appendPrintBuf("%suTeleserviceID=%d, bIsServicePresent=%d, uServicecategory=%d, \
sAddress.digit_mode=%d, sAddress.Number_mode=%d, sAddress.number_type=%d, ",
printBuf, rcsm.uTeleserviceID,rcsm.bIsServicePresent,rcsm.uServicecategory,
rcsm.sAddress.digit_mode, rcsm.sAddress.number_mode,rcsm.sAddress.number_type);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
return status;
}
static void
dispatchCdmaSms(Parcel &p, RequestInfo *pRI) {
RIL_CDMA_SMS_Message rcsm;
RLOGD("dispatchCdmaSms");
if (NO_ERROR != constructCdmaSms(p, pRI, rcsm)) {
goto invalid;
}
CALL_ONREQUEST(pRI->pCI->requestNumber, &rcsm, sizeof(rcsm),pRI, pRI->socket_id);
#ifdef MEMSET_FREED
memset(&rcsm, 0, sizeof(rcsm));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void
dispatchImsCdmaSms(Parcel &p, RequestInfo *pRI, uint8_t retry, int32_t messageRef) {
RIL_IMS_SMS_Message rism;
RIL_CDMA_SMS_Message rcsm;
RLOGD("dispatchImsCdmaSms: retry=%d, messageRef=%d", retry, messageRef);
if (NO_ERROR != constructCdmaSms(p, pRI, rcsm)) {
goto invalid;
}
memset(&rism, 0, sizeof(rism));
rism.tech = RADIO_TECH_3GPP2;
rism.retry = retry;
rism.messageRef = messageRef;
rism.message.cdmaMessage = &rcsm;
CALL_ONREQUEST(pRI->pCI->requestNumber, &rism,
sizeof(RIL_RadioTechnologyFamily)+sizeof(uint8_t)+sizeof(int32_t)
+sizeof(rcsm),pRI, pRI->socket_id);
#ifdef MEMSET_FREED
memset(&rcsm, 0, sizeof(rcsm));
memset(&rism, 0, sizeof(rism));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void
dispatchImsGsmSms(Parcel &p, RequestInfo *pRI, uint8_t retry, int32_t messageRef) {
RIL_IMS_SMS_Message rism;
int32_t countStrings;
status_t status;
size_t datalen;
char **pStrings;
RLOGD("dispatchImsGsmSms: retry=%d, messageRef=%d", retry, messageRef);
status = p.readInt32 (&countStrings);
if (status != NO_ERROR) {
goto invalid;
}
memset(&rism, 0, sizeof(rism));
rism.tech = RADIO_TECH_3GPP;
rism.retry = retry;
rism.messageRef = messageRef;
startRequest;
appendPrintBuf("%stech=%d, retry=%d, messageRef=%d, ", printBuf,
(int)rism.tech, (int)rism.retry, rism.messageRef);
if (countStrings == 0) {
// just some non-null pointer
pStrings = (char **)alloca(sizeof(char *));
if (pStrings == NULL) {
RLOGE("Memory allocation failed for request %s",
requestToString(pRI->pCI->requestNumber));
closeRequest;
return;
}
datalen = 0;
} else if (((int)countStrings) == -1) {
pStrings = NULL;
datalen = 0;
} else {
datalen = sizeof(char *) * countStrings;
pStrings = (char **)alloca(datalen);
if (pStrings == NULL) {
RLOGE("Memory allocation failed for request %s",
requestToString(pRI->pCI->requestNumber));
closeRequest;
return;
}
for (int i = 0 ; i < countStrings ; i++) {
pStrings[i] = strdupReadString(p);
appendPrintBuf("%s%s,", printBuf, pStrings[i]);
}
}
removeLastChar;
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
rism.message.gsmMessage = pStrings;
CALL_ONREQUEST(pRI->pCI->requestNumber, &rism,
sizeof(RIL_RadioTechnologyFamily)+sizeof(uint8_t)+sizeof(int32_t)
+datalen, pRI, pRI->socket_id);
if (pStrings != NULL) {
for (int i = 0 ; i < countStrings ; i++) {
#ifdef MEMSET_FREED
memsetString (pStrings[i]);
#endif
free(pStrings[i]);
}
#ifdef MEMSET_FREED
memset(pStrings, 0, datalen);
#endif
}
#ifdef MEMSET_FREED
memset(&rism, 0, sizeof(rism));
#endif
return;
invalid:
ALOGE("dispatchImsGsmSms invalid block");
invalidCommandBlock(pRI);
return;
}
static void
dispatchImsSms(Parcel &p, RequestInfo *pRI) {
int32_t t;
status_t status = p.readInt32(&t);
RIL_RadioTechnologyFamily format;
uint8_t retry;
int32_t messageRef;
RLOGD("dispatchImsSms");
if (status != NO_ERROR) {
goto invalid;
}
format = (RIL_RadioTechnologyFamily) t;
// read retry field
status = p.read(&retry,sizeof(retry));
if (status != NO_ERROR) {
goto invalid;
}
// read messageRef field
status = p.read(&messageRef,sizeof(messageRef));
if (status != NO_ERROR) {
goto invalid;
}
if (RADIO_TECH_3GPP == format) {
dispatchImsGsmSms(p, pRI, retry, messageRef);
} else if (RADIO_TECH_3GPP2 == format) {
dispatchImsCdmaSms(p, pRI, retry, messageRef);
} else {
ALOGE("requestImsSendSMS invalid format value =%d", format);
}
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void
dispatchCdmaSmsAck(Parcel &p, RequestInfo *pRI) {
RIL_CDMA_SMS_Ack rcsa;
int32_t t;
status_t status;
int32_t digitCount;
RLOGD("dispatchCdmaSmsAck");
memset(&rcsa, 0, sizeof(rcsa));
status = p.readInt32(&t);
rcsa.uErrorClass = (RIL_CDMA_SMS_ErrorClass) t;
status = p.readInt32(&t);
rcsa.uSMSCauseCode = (int) t;
if (status != NO_ERROR) {
goto invalid;
}
startRequest;
appendPrintBuf("%suErrorClass=%d, uTLStatus=%d, ",
printBuf, rcsa.uErrorClass, rcsa.uSMSCauseCode);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
CALL_ONREQUEST(pRI->pCI->requestNumber, &rcsa, sizeof(rcsa),pRI, pRI->socket_id);
#ifdef MEMSET_FREED
memset(&rcsa, 0, sizeof(rcsa));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void
dispatchGsmBrSmsCnf(Parcel &p, RequestInfo *pRI) {
int32_t t;
status_t status;
int32_t num;
status = p.readInt32(&num);
if (status != NO_ERROR) {
goto invalid;
}
{
RIL_GSM_BroadcastSmsConfigInfo gsmBci[num];
RIL_GSM_BroadcastSmsConfigInfo *gsmBciPtrs[num];
startRequest;
for (int i = 0 ; i < num ; i++ ) {
gsmBciPtrs[i] = &gsmBci[i];
status = p.readInt32(&t);
gsmBci[i].fromServiceId = (int) t;
status = p.readInt32(&t);
gsmBci[i].toServiceId = (int) t;
status = p.readInt32(&t);
gsmBci[i].fromCodeScheme = (int) t;
status = p.readInt32(&t);
gsmBci[i].toCodeScheme = (int) t;
status = p.readInt32(&t);
gsmBci[i].selected = (uint8_t) t;
appendPrintBuf("%s [%d: fromServiceId=%d, toServiceId =%d, \
fromCodeScheme=%d, toCodeScheme=%d, selected =%d]", printBuf, i,
gsmBci[i].fromServiceId, gsmBci[i].toServiceId,
gsmBci[i].fromCodeScheme, gsmBci[i].toCodeScheme,
gsmBci[i].selected);
}
closeRequest;
if (status != NO_ERROR) {
goto invalid;
}
CALL_ONREQUEST(pRI->pCI->requestNumber,
gsmBciPtrs,
num * sizeof(RIL_GSM_BroadcastSmsConfigInfo *),
pRI, pRI->socket_id);
#ifdef MEMSET_FREED
memset(gsmBci, 0, num * sizeof(RIL_GSM_BroadcastSmsConfigInfo));
memset(gsmBciPtrs, 0, num * sizeof(RIL_GSM_BroadcastSmsConfigInfo *));
#endif
}
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void
dispatchCdmaBrSmsCnf(Parcel &p, RequestInfo *pRI) {
int32_t t;
status_t status;
int32_t num;
status = p.readInt32(&num);
if (status != NO_ERROR) {
goto invalid;
}
{
RIL_CDMA_BroadcastSmsConfigInfo cdmaBci[num];
RIL_CDMA_BroadcastSmsConfigInfo *cdmaBciPtrs[num];
startRequest;
for (int i = 0 ; i < num ; i++ ) {
cdmaBciPtrs[i] = &cdmaBci[i];
status = p.readInt32(&t);
cdmaBci[i].service_category = (int) t;
status = p.readInt32(&t);
cdmaBci[i].language = (int) t;
status = p.readInt32(&t);
cdmaBci[i].selected = (uint8_t) t;
appendPrintBuf("%s [%d: service_category=%d, language =%d, \
entries.bSelected =%d]", printBuf, i, cdmaBci[i].service_category,
cdmaBci[i].language, cdmaBci[i].selected);
}
closeRequest;
if (status != NO_ERROR) {
goto invalid;
}
CALL_ONREQUEST(pRI->pCI->requestNumber,
cdmaBciPtrs,
num * sizeof(RIL_CDMA_BroadcastSmsConfigInfo *),
pRI, pRI->socket_id);
#ifdef MEMSET_FREED
memset(cdmaBci, 0, num * sizeof(RIL_CDMA_BroadcastSmsConfigInfo));
memset(cdmaBciPtrs, 0, num * sizeof(RIL_CDMA_BroadcastSmsConfigInfo *));
#endif
}
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void dispatchRilCdmaSmsWriteArgs(Parcel &p, RequestInfo *pRI) {
RIL_CDMA_SMS_WriteArgs rcsw;
int32_t t;
uint32_t ut;
uint8_t uct;
status_t status;
int32_t digitCount;
int32_t digitLimit;
memset(&rcsw, 0, sizeof(rcsw));
status = p.readInt32(&t);
rcsw.status = t;
status = p.readInt32(&t);
rcsw.message.uTeleserviceID = (int) t;
status = p.read(&uct,sizeof(uct));
rcsw.message.bIsServicePresent = (uint8_t) uct;
status = p.readInt32(&t);
rcsw.message.uServicecategory = (int) t;
status = p.readInt32(&t);
rcsw.message.sAddress.digit_mode = (RIL_CDMA_SMS_DigitMode) t;
status = p.readInt32(&t);
rcsw.message.sAddress.number_mode = (RIL_CDMA_SMS_NumberMode) t;
status = p.readInt32(&t);
rcsw.message.sAddress.number_type = (RIL_CDMA_SMS_NumberType) t;
status = p.readInt32(&t);
rcsw.message.sAddress.number_plan = (RIL_CDMA_SMS_NumberPlan) t;
status = p.read(&uct,sizeof(uct));
rcsw.message.sAddress.number_of_digits = (uint8_t) uct;
digitLimit = MIN((rcsw.message.sAddress.number_of_digits), RIL_CDMA_SMS_ADDRESS_MAX);
for(digitCount = 0 ; digitCount < digitLimit; digitCount ++) {
status = p.read(&uct,sizeof(uct));
rcsw.message.sAddress.digits[digitCount] = (uint8_t) uct;
}
status = p.readInt32(&t);
rcsw.message.sSubAddress.subaddressType = (RIL_CDMA_SMS_SubaddressType) t;
status = p.read(&uct,sizeof(uct));
rcsw.message.sSubAddress.odd = (uint8_t) uct;
status = p.read(&uct,sizeof(uct));
rcsw.message.sSubAddress.number_of_digits = (uint8_t) uct;
digitLimit = MIN((rcsw.message.sSubAddress.number_of_digits), RIL_CDMA_SMS_SUBADDRESS_MAX);
for(digitCount = 0 ; digitCount < digitLimit; digitCount ++) {
status = p.read(&uct,sizeof(uct));
rcsw.message.sSubAddress.digits[digitCount] = (uint8_t) uct;
}
status = p.readInt32(&t);
rcsw.message.uBearerDataLen = (int) t;
digitLimit = MIN((rcsw.message.uBearerDataLen), RIL_CDMA_SMS_BEARER_DATA_MAX);
for(digitCount = 0 ; digitCount < digitLimit; digitCount ++) {
status = p.read(&uct, sizeof(uct));
rcsw.message.aBearerData[digitCount] = (uint8_t) uct;
}
if (status != NO_ERROR) {
goto invalid;
}
startRequest;
appendPrintBuf("%sstatus=%d, message.uTeleserviceID=%d, message.bIsServicePresent=%d, \
message.uServicecategory=%d, message.sAddress.digit_mode=%d, \
message.sAddress.number_mode=%d, \
message.sAddress.number_type=%d, ",
printBuf, rcsw.status, rcsw.message.uTeleserviceID, rcsw.message.bIsServicePresent,
rcsw.message.uServicecategory, rcsw.message.sAddress.digit_mode,
rcsw.message.sAddress.number_mode,
rcsw.message.sAddress.number_type);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
CALL_ONREQUEST(pRI->pCI->requestNumber, &rcsw, sizeof(rcsw),pRI, pRI->socket_id);
#ifdef MEMSET_FREED
memset(&rcsw, 0, sizeof(rcsw));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
// For backwards compatibility in RIL_REQUEST_SETUP_DATA_CALL.
// Version 4 of the RIL interface adds a new PDP type parameter to support
// IPv6 and dual-stack PDP contexts. When dealing with a previous version of
// RIL, remove the parameter from the request.
static void dispatchDataCall(Parcel& p, RequestInfo *pRI) {
// In RIL v3, REQUEST_SETUP_DATA_CALL takes 6 parameters.
const int numParamsRilV3 = 6;
// The first bytes of the RIL parcel contain the request number and the
// serial number - see processCommandBuffer(). Copy them over too.
int pos = p.dataPosition();
int numParams = p.readInt32();
if (s_callbacks.version < 4 && numParams > numParamsRilV3) {
Parcel p2;
p2.appendFrom(&p, 0, pos);
p2.writeInt32(numParamsRilV3);
for(int i = 0; i < numParamsRilV3; i++) {
p2.writeString16(p.readString16());
}
p2.setDataPosition(pos);
dispatchStrings(p2, pRI);
} else {
p.setDataPosition(pos);
dispatchStrings(p, pRI);
}
}
// For backwards compatibility with RILs that dont support RIL_REQUEST_VOICE_RADIO_TECH.
// When all RILs handle this request, this function can be removed and
// the request can be sent directly to the RIL using dispatchVoid.
static void dispatchVoiceRadioTech(Parcel& p, RequestInfo *pRI) {
RIL_RadioState state = CALL_ONSTATEREQUEST((RIL_SOCKET_ID)pRI->socket_id);
if ((RADIO_STATE_UNAVAILABLE == state) || (RADIO_STATE_OFF == state)) {
RIL_onRequestComplete(pRI, RIL_E_RADIO_NOT_AVAILABLE, NULL, 0);
}
// RILs that support RADIO_STATE_ON should support this request.
if (RADIO_STATE_ON == state) {
dispatchVoid(p, pRI);
return;
}
// For Older RILs, that do not support RADIO_STATE_ON, assume that they
// will not support this new request either and decode Voice Radio Technology
// from Radio State
voiceRadioTech = decodeVoiceRadioTechnology(state);
if (voiceRadioTech < 0)
RIL_onRequestComplete(pRI, RIL_E_GENERIC_FAILURE, NULL, 0);
else
RIL_onRequestComplete(pRI, RIL_E_SUCCESS, &voiceRadioTech, sizeof(int));
}
// For backwards compatibility in RIL_REQUEST_CDMA_GET_SUBSCRIPTION_SOURCE:.
// When all RILs handle this request, this function can be removed and
// the request can be sent directly to the RIL using dispatchVoid.
static void dispatchCdmaSubscriptionSource(Parcel& p, RequestInfo *pRI) {
RIL_RadioState state = CALL_ONSTATEREQUEST((RIL_SOCKET_ID)pRI->socket_id);
if ((RADIO_STATE_UNAVAILABLE == state) || (RADIO_STATE_OFF == state)) {
RIL_onRequestComplete(pRI, RIL_E_RADIO_NOT_AVAILABLE, NULL, 0);
}
// RILs that support RADIO_STATE_ON should support this request.
if (RADIO_STATE_ON == state) {
dispatchVoid(p, pRI);
return;
}
// For Older RILs, that do not support RADIO_STATE_ON, assume that they
// will not support this new request either and decode CDMA Subscription Source
// from Radio State
cdmaSubscriptionSource = decodeCdmaSubscriptionSource(state);
if (cdmaSubscriptionSource < 0)
RIL_onRequestComplete(pRI, RIL_E_GENERIC_FAILURE, NULL, 0);
else
RIL_onRequestComplete(pRI, RIL_E_SUCCESS, &cdmaSubscriptionSource, sizeof(int));
}
static void dispatchSetInitialAttachApn(Parcel &p, RequestInfo *pRI)
{
RIL_InitialAttachApn pf;
int32_t t;
status_t status;
memset(&pf, 0, sizeof(pf));
pf.apn = strdupReadString(p);
pf.protocol = strdupReadString(p);
status = p.readInt32(&t);
pf.authtype = (int) t;
pf.username = strdupReadString(p);
pf.password = strdupReadString(p);
startRequest;
appendPrintBuf("%sapn=%s, protocol=%s, auth_type=%d, username=%s, password=%s",
printBuf, pf.apn, pf.protocol, pf.authtype, pf.username, pf.password);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
if (status != NO_ERROR) {
goto invalid;
}
CALL_ONREQUEST(pRI->pCI->requestNumber, &pf, sizeof(pf), pRI, pRI->socket_id);
#ifdef MEMSET_FREED
memsetString(pf.apn);
memsetString(pf.protocol);
memsetString(pf.username);
memsetString(pf.password);
#endif
free(pf.apn);
free(pf.protocol);
free(pf.username);
free(pf.password);
#ifdef MEMSET_FREED
memset(&pf, 0, sizeof(pf));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void dispatchNVReadItem(Parcel &p, RequestInfo *pRI) {
RIL_NV_ReadItem nvri;
int32_t t;
status_t status;
memset(&nvri, 0, sizeof(nvri));
status = p.readInt32(&t);
nvri.itemID = (RIL_NV_Item) t;
if (status != NO_ERROR) {
goto invalid;
}
startRequest;
appendPrintBuf("%snvri.itemID=%d, ", printBuf, nvri.itemID);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
CALL_ONREQUEST(pRI->pCI->requestNumber, &nvri, sizeof(nvri), pRI, pRI->socket_id);
#ifdef MEMSET_FREED
memset(&nvri, 0, sizeof(nvri));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void dispatchNVWriteItem(Parcel &p, RequestInfo *pRI) {
RIL_NV_WriteItem nvwi;
int32_t t;
status_t status;
memset(&nvwi, 0, sizeof(nvwi));
status = p.readInt32(&t);
nvwi.itemID = (RIL_NV_Item) t;
nvwi.value = strdupReadString(p);
if (status != NO_ERROR || nvwi.value == NULL) {
goto invalid;
}
startRequest;
appendPrintBuf("%snvwi.itemID=%d, value=%s, ", printBuf, nvwi.itemID,
nvwi.value);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
CALL_ONREQUEST(pRI->pCI->requestNumber, &nvwi, sizeof(nvwi), pRI, pRI->socket_id);
#ifdef MEMSET_FREED
memsetString(nvwi.value);
#endif
free(nvwi.value);
#ifdef MEMSET_FREED
memset(&nvwi, 0, sizeof(nvwi));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void dispatchUiccSubscripton(Parcel &p, RequestInfo *pRI) {
RIL_SelectUiccSub uicc_sub;
status_t status;
int32_t t;
memset(&uicc_sub, 0, sizeof(uicc_sub));
status = p.readInt32(&t);
if (status != NO_ERROR) {
goto invalid;
}
uicc_sub.slot = (int) t;
status = p.readInt32(&t);
if (status != NO_ERROR) {
goto invalid;
}
uicc_sub.app_index = (int) t;
status = p.readInt32(&t);
if (status != NO_ERROR) {
goto invalid;
}
uicc_sub.sub_type = (RIL_SubscriptionType) t;
status = p.readInt32(&t);
if (status != NO_ERROR) {
goto invalid;
}
uicc_sub.act_status = (RIL_UiccSubActStatus) t;
startRequest;
appendPrintBuf("slot=%d, app_index=%d, act_status = %d", uicc_sub.slot, uicc_sub.app_index,
uicc_sub.act_status);
RLOGD("dispatchUiccSubscription, slot=%d, app_index=%d, act_status = %d", uicc_sub.slot,
uicc_sub.app_index, uicc_sub.act_status);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
CALL_ONREQUEST(pRI->pCI->requestNumber, &uicc_sub, sizeof(uicc_sub), pRI, pRI->socket_id);
#ifdef MEMSET_FREED
memset(&uicc_sub, 0, sizeof(uicc_sub));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void dispatchSimAuthentication(Parcel &p, RequestInfo *pRI)
{
RIL_SimAuthentication pf;
int32_t t;
status_t status;
memset(&pf, 0, sizeof(pf));
status = p.readInt32(&t);
pf.authContext = (int) t;
pf.authData = strdupReadString(p);
pf.aid = strdupReadString(p);
startRequest;
appendPrintBuf("authContext=%d, authData=%s, aid=%s", pf.authContext, pf.authData, pf.aid);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
if (status != NO_ERROR) {
goto invalid;
}
CALL_ONREQUEST(pRI->pCI->requestNumber, &pf, sizeof(pf), pRI, pRI->socket_id);
#ifdef MEMSET_FREED
memsetString(pf.authData);
memsetString(pf.aid);
#endif
free(pf.authData);
free(pf.aid);
#ifdef MEMSET_FREED
memset(&pf, 0, sizeof(pf));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void dispatchDataProfile(Parcel &p, RequestInfo *pRI) {
int32_t t;
status_t status;
int32_t num;
status = p.readInt32(&num);
if (status != NO_ERROR) {
goto invalid;
}
{
RIL_DataProfileInfo *dataProfiles =
(RIL_DataProfileInfo *)malloc(num * sizeof(RIL_DataProfileInfo));
if (dataProfiles == NULL) {
RLOGE("Memory allocation failed for request %s",
requestToString(pRI->pCI->requestNumber));
return;
}
RIL_DataProfileInfo **dataProfilePtrs =
(RIL_DataProfileInfo **)malloc(num * sizeof(RIL_DataProfileInfo *));
if (dataProfilePtrs == NULL) {
RLOGE("Memory allocation failed for request %s",
requestToString(pRI->pCI->requestNumber));
free(dataProfiles);
return;
}
startRequest;
for (int i = 0 ; i < num ; i++ ) {
dataProfilePtrs[i] = &dataProfiles[i];
status = p.readInt32(&t);
dataProfiles[i].profileId = (int) t;
dataProfiles[i].apn = strdupReadString(p);
dataProfiles[i].protocol = strdupReadString(p);
status = p.readInt32(&t);
dataProfiles[i].authType = (int) t;
dataProfiles[i].user = strdupReadString(p);
dataProfiles[i].password = strdupReadString(p);
status = p.readInt32(&t);
dataProfiles[i].type = (int) t;
status = p.readInt32(&t);
dataProfiles[i].maxConnsTime = (int) t;
status = p.readInt32(&t);
dataProfiles[i].maxConns = (int) t;
status = p.readInt32(&t);
dataProfiles[i].waitTime = (int) t;
status = p.readInt32(&t);
dataProfiles[i].enabled = (int) t;
appendPrintBuf("%s [%d: profileId=%d, apn =%s, protocol =%s, authType =%d, \
user =%s, password =%s, type =%d, maxConnsTime =%d, maxConns =%d, \
waitTime =%d, enabled =%d]", printBuf, i, dataProfiles[i].profileId,
dataProfiles[i].apn, dataProfiles[i].protocol, dataProfiles[i].authType,
dataProfiles[i].user, dataProfiles[i].password, dataProfiles[i].type,
dataProfiles[i].maxConnsTime, dataProfiles[i].maxConns,
dataProfiles[i].waitTime, dataProfiles[i].enabled);
}
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
if (status != NO_ERROR) {
free(dataProfiles);
free(dataProfilePtrs);
goto invalid;
}
CALL_ONREQUEST(pRI->pCI->requestNumber,
dataProfilePtrs,
num * sizeof(RIL_DataProfileInfo *),
pRI, pRI->socket_id);
#ifdef MEMSET_FREED
memset(dataProfiles, 0, num * sizeof(RIL_DataProfileInfo));
memset(dataProfilePtrs, 0, num * sizeof(RIL_DataProfileInfo *));
#endif
free(dataProfiles);
free(dataProfilePtrs);
}
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void dispatchRadioCapability(Parcel &p, RequestInfo *pRI){
RIL_RadioCapability rc;
int32_t t;
status_t status;
memset (&rc, 0, sizeof(RIL_RadioCapability));
status = p.readInt32(&t);
rc.version = (int)t;
if (status != NO_ERROR) {
goto invalid;
}
status = p.readInt32(&t);
rc.session= (int)t;
if (status != NO_ERROR) {
goto invalid;
}
status = p.readInt32(&t);
rc.phase= (int)t;
if (status != NO_ERROR) {
goto invalid;
}
status = p.readInt32(&t);
rc.rat = (int)t;
if (status != NO_ERROR) {
goto invalid;
}
status = readStringFromParcelInplace(p, rc.logicalModemUuid, sizeof(rc.logicalModemUuid));
if (status != NO_ERROR) {
goto invalid;
}
status = p.readInt32(&t);
rc.status = (int)t;
if (status != NO_ERROR) {
goto invalid;
}
startRequest;
appendPrintBuf("%s [version:%d, session:%d, phase:%d, rat:%d, \
logicalModemUuid:%s, status:%d", printBuf, rc.version, rc.session,
rc.phase, rc.rat, rc.logicalModemUuid, rc.status);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
CALL_ONREQUEST(pRI->pCI->requestNumber,
&rc,
sizeof(RIL_RadioCapability),
pRI, pRI->socket_id);
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static int
blockingWrite(int fd, const void *buffer, size_t len) {
size_t writeOffset = 0;
const uint8_t *toWrite;
toWrite = (const uint8_t *)buffer;
while (writeOffset < len) {
ssize_t written;
do {
written = write (fd, toWrite + writeOffset,
len - writeOffset);
} while (written < 0 && ((errno == EINTR) || (errno == EAGAIN)));
if (written >= 0) {
writeOffset += written;
} else { // written < 0
RLOGE ("RIL Response: unexpected error on write errno:%d", errno);
close(fd);
return -1;
}
}
#if VDBG
RLOGE("RIL Response bytes written:%d", writeOffset);
#endif
return 0;
}
static int
sendResponseRaw (const void *data, size_t dataSize, RIL_SOCKET_ID socket_id) {
int fd = s_ril_param_socket.fdCommand;
int ret;
uint32_t header;
pthread_mutex_t * writeMutexHook = &s_writeMutex;
#if VDBG
RLOGD("Send Response to %s", rilSocketIdToString(socket_id));
#endif
#if (SIM_COUNT >= 2)
if (socket_id == RIL_SOCKET_2) {
fd = s_ril_param_socket2.fdCommand;
writeMutexHook = &s_writeMutex_socket2;
}
#if (SIM_COUNT >= 3)
else if (socket_id == RIL_SOCKET_3) {
fd = s_ril_param_socket3.fdCommand;
writeMutexHook = &s_writeMutex_socket3;
}
#endif
#if (SIM_COUNT >= 4)
else if (socket_id == RIL_SOCKET_4) {
fd = s_ril_param_socket4.fdCommand;
writeMutexHook = &s_writeMutex_socket4;
}
#endif
#endif
if (fd < 0) {
return -1;
}
if (dataSize > MAX_COMMAND_BYTES) {
RLOGE("RIL: packet larger than %u (%u)",
MAX_COMMAND_BYTES, (unsigned int )dataSize);
return -1;
}
pthread_mutex_lock(writeMutexHook);
header = htonl(dataSize);
ret = blockingWrite(fd, (void *)&header, sizeof(header));
if (ret < 0) {
pthread_mutex_unlock(writeMutexHook);
return ret;
}
ret = blockingWrite(fd, data, dataSize);
if (ret < 0) {
pthread_mutex_unlock(writeMutexHook);
return ret;
}
pthread_mutex_unlock(writeMutexHook);
return 0;
}
static int
sendResponse (Parcel &p, RIL_SOCKET_ID socket_id) {
printResponse;
return sendResponseRaw(p.data(), p.dataSize(), socket_id);
}
/** response is an int* pointing to an array of ints */
static int
responseInts(Parcel &p, void *response, size_t responselen) {
int numInts;
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof(int) != 0) {
RLOGE("responseInts: invalid response length %d expected multiple of %d\n",
(int)responselen, (int)sizeof(int));
return RIL_ERRNO_INVALID_RESPONSE;
}
int *p_int = (int *) response;
numInts = responselen / sizeof(int);
p.writeInt32 (numInts);
/* each int*/
startResponse;
for (int i = 0 ; i < numInts ; i++) {
appendPrintBuf("%s%d,", printBuf, p_int[i]);
p.writeInt32(p_int[i]);
}
removeLastChar;
closeResponse;
return 0;
}
static int
responseIntsGetPreferredNetworkType(Parcel &p, void *response, size_t responselen) {
int numInts;
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof(int) != 0) {
RLOGE("responseInts: invalid response length %d expected multiple of %d\n",
(int)responselen, (int)sizeof(int));
return RIL_ERRNO_INVALID_RESPONSE;
}
int *p_int = (int *) response;
numInts = responselen / sizeof(int);
p.writeInt32 (numInts);
/* each int*/
startResponse;
for (int i = 0 ; i < numInts ; i++) {
if (i == 0 && p_int[0] == 7) {
RLOGD("REQUEST_GET_PREFERRED_NETWORK_TYPE: NETWORK_MODE_GLOBAL => NETWORK_MODE_WCDMA_PREF");
p_int[0] = 0;
}
appendPrintBuf("%s%d,", printBuf, p_int[i]);
p.writeInt32(p_int[i]);
}
removeLastChar;
closeResponse;
return 0;
}
/** response is a char **, pointing to an array of char *'s
The parcel will begin with the version */
static int responseStringsWithVersion(int version, Parcel &p, void *response, size_t responselen) {
p.writeInt32(version);
return responseStrings(p, response, responselen);
}
/** response is a char **, pointing to an array of char *'s */
static int responseStrings(Parcel &p, void *response, size_t responselen) {
int numStrings;
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof(char *) != 0) {
RLOGE("responseStrings: invalid response length %d expected multiple of %d\n",
(int)responselen, (int)sizeof(char *));
return RIL_ERRNO_INVALID_RESPONSE;
}
if (response == NULL) {
p.writeInt32 (0);
} else {
char **p_cur = (char **) response;
numStrings = responselen / sizeof(char *);
p.writeInt32 (numStrings);
/* each string*/
startResponse;
for (int i = 0 ; i < numStrings ; i++) {
appendPrintBuf("%s%s,", printBuf, (char*)p_cur[i]);
writeStringToParcel (p, p_cur[i]);
}
removeLastChar;
closeResponse;
}
return 0;
}
/**
* NULL strings are accepted
* FIXME currently ignores responselen
*/
static int responseString(Parcel &p, void *response, size_t responselen) {
/* one string only */
startResponse;
appendPrintBuf("%s%s", printBuf, (char*)response);
closeResponse;
writeStringToParcel(p, (const char *)response);
return 0;
}
static int responseVoid(Parcel &p, void *response, size_t responselen) {
startResponse;
removeLastChar;
return 0;
}
static int responseCallList(Parcel &p, void *response, size_t responselen) {
int num;
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof (RIL_Call *) != 0) {
RLOGE("responseCallList: invalid response length %d expected multiple of %d\n",
(int)responselen, (int)sizeof (RIL_Call *));
return RIL_ERRNO_INVALID_RESPONSE;
}
startResponse;
/* number of call info's */
num = responselen / sizeof(RIL_Call *);
p.writeInt32(num);
for (int i = 0 ; i < num ; i++) {
RIL_Call *p_cur = ((RIL_Call **) response)[i];
/* each call info */
p.writeInt32(p_cur->state);
p.writeInt32(p_cur->index);
p.writeInt32(p_cur->toa);
p.writeInt32(p_cur->isMpty);
p.writeInt32(p_cur->isMT);
p.writeInt32(p_cur->als);
p.writeInt32(p_cur->isVoice);
#ifdef NEEDS_VIDEO_CALL_FIELD
p.writeInt32(p_cur->isVideo);
#endif
#ifdef SAMSUNG_NEXT_GEN_MODEM
/* Pass CallDetails */
p.writeInt32(0);
p.writeInt32(0);
writeStringToParcel(p, "");
#endif
p.writeInt32(p_cur->isVoicePrivacy);
writeStringToParcel(p, p_cur->number);
p.writeInt32(p_cur->numberPresentation);
writeStringToParcel(p, p_cur->name);
p.writeInt32(p_cur->namePresentation);
// Remove when partners upgrade to version 3
if ((s_callbacks.version < 3) || (p_cur->uusInfo == NULL || p_cur->uusInfo->uusData == NULL)) {
p.writeInt32(0); /* UUS Information is absent */
} else {
RIL_UUS_Info *uusInfo = p_cur->uusInfo;
p.writeInt32(1); /* UUS Information is present */
p.writeInt32(uusInfo->uusType);
p.writeInt32(uusInfo->uusDcs);
p.writeInt32(uusInfo->uusLength);
p.write(uusInfo->uusData, uusInfo->uusLength);
}
appendPrintBuf("%s[id=%d,%s,toa=%d,",
printBuf,
p_cur->index,
callStateToString(p_cur->state),
p_cur->toa);
appendPrintBuf("%s%s,%s,als=%d,%s,%s,",
printBuf,
(p_cur->isMpty)?"conf":"norm",
(p_cur->isMT)?"mt":"mo",
p_cur->als,
(p_cur->isVoice)?"voc":"nonvoc",
(p_cur->isVoicePrivacy)?"evp":"noevp");
#ifdef SAMSUNG_NEXT_GEN_MODEM
appendPrintBuf("%s,%s,",
printBuf,
(p_cur->isVideo) ? "vid" : "novid");
#endif
appendPrintBuf("%s%s,cli=%d,name='%s',%d]",
printBuf,
p_cur->number,
p_cur->numberPresentation,
p_cur->name,
p_cur->namePresentation);
}
removeLastChar;
closeResponse;
return 0;
}
static int responseSMS(Parcel &p, void *response, size_t responselen) {
if (response == NULL) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen != sizeof (RIL_SMS_Response) ) {
RLOGE("invalid response length %d expected %d",
(int)responselen, (int)sizeof (RIL_SMS_Response));
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_SMS_Response *p_cur = (RIL_SMS_Response *) response;
p.writeInt32(p_cur->messageRef);
writeStringToParcel(p, p_cur->ackPDU);
p.writeInt32(p_cur->errorCode);
startResponse;
appendPrintBuf("%s%d,%s,%d", printBuf, p_cur->messageRef,
(char*)p_cur->ackPDU, p_cur->errorCode);
closeResponse;
return 0;
}
static int responseDataCallListV4(Parcel &p, void *response, size_t responselen)
{
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof(RIL_Data_Call_Response_v4) != 0) {
RLOGE("responseDataCallListV4: invalid response length %d expected multiple of %d",
(int)responselen, (int)sizeof(RIL_Data_Call_Response_v4));
return RIL_ERRNO_INVALID_RESPONSE;
}
// Write version
p.writeInt32(4);
int num = responselen / sizeof(RIL_Data_Call_Response_v4);
p.writeInt32(num);
RIL_Data_Call_Response_v4 *p_cur = (RIL_Data_Call_Response_v4 *) response;
startResponse;
int i;
for (i = 0; i < num; i++) {
p.writeInt32(p_cur[i].cid);
p.writeInt32(p_cur[i].active);
writeStringToParcel(p, p_cur[i].type);
// apn is not used, so don't send.
writeStringToParcel(p, p_cur[i].address);
appendPrintBuf("%s[cid=%d,%s,%s,%s],", printBuf,
p_cur[i].cid,
(p_cur[i].active==0)?"down":"up",
(char*)p_cur[i].type,
(char*)p_cur[i].address);
}
removeLastChar;
closeResponse;
return 0;
}
static int responseDataCallListV6(Parcel &p, void *response, size_t responselen)
{
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof(RIL_Data_Call_Response_v6) != 0) {
RLOGE("responseDataCallListV6: invalid response length %d expected multiple of %d",
(int)responselen, (int)sizeof(RIL_Data_Call_Response_v6));
return RIL_ERRNO_INVALID_RESPONSE;
}
// Write version
p.writeInt32(6);
int num = responselen / sizeof(RIL_Data_Call_Response_v6);
p.writeInt32(num);
RIL_Data_Call_Response_v6 *p_cur = (RIL_Data_Call_Response_v6 *) response;
startResponse;
int i;
for (i = 0; i < num; i++) {
p.writeInt32((int)p_cur[i].status);
p.writeInt32(p_cur[i].suggestedRetryTime);
p.writeInt32(p_cur[i].cid);
p.writeInt32(p_cur[i].active);
writeStringToParcel(p, p_cur[i].type);
writeStringToParcel(p, p_cur[i].ifname);
writeStringToParcel(p, p_cur[i].addresses);
writeStringToParcel(p, p_cur[i].dnses);
writeStringToParcel(p, p_cur[i].addresses);
appendPrintBuf("%s[status=%d,retry=%d,cid=%d,%s,%s,%s,%s,%s,%s],", printBuf,
p_cur[i].status,
p_cur[i].suggestedRetryTime,
p_cur[i].cid,
(p_cur[i].active==0)?"down":"up",
(char*)p_cur[i].type,
(char*)p_cur[i].ifname,
(char*)p_cur[i].addresses,
(char*)p_cur[i].dnses,
(char*)p_cur[i].addresses);
}
removeLastChar;
closeResponse;
return 0;
}
static int responseDataCallListV9(Parcel &p, void *response, size_t responselen)
{
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof(RIL_Data_Call_Response_v9) != 0) {
RLOGE("responseDataCallListV9: invalid response length %d expected multiple of %d",
(int)responselen, (int)sizeof(RIL_Data_Call_Response_v9));
return RIL_ERRNO_INVALID_RESPONSE;
}
// Write version
p.writeInt32(10);
int num = responselen / sizeof(RIL_Data_Call_Response_v9);
p.writeInt32(num);
RIL_Data_Call_Response_v9 *p_cur = (RIL_Data_Call_Response_v9 *) response;
startResponse;
int i;
for (i = 0; i < num; i++) {
p.writeInt32((int)p_cur[i].status);
p.writeInt32(p_cur[i].suggestedRetryTime);
p.writeInt32(p_cur[i].cid);
p.writeInt32(p_cur[i].active);
writeStringToParcel(p, p_cur[i].type);
writeStringToParcel(p, p_cur[i].ifname);
writeStringToParcel(p, p_cur[i].addresses);
writeStringToParcel(p, p_cur[i].dnses);
writeStringToParcel(p, p_cur[i].gateways);
writeStringToParcel(p, p_cur[i].pcscf);
appendPrintBuf("%s[status=%d,retry=%d,cid=%d,%s,%s,%s,%s,%s,%s,%s],", printBuf,
p_cur[i].status,
p_cur[i].suggestedRetryTime,
p_cur[i].cid,
(p_cur[i].active==0)?"down":"up",
(char*)p_cur[i].type,
(char*)p_cur[i].ifname,
(char*)p_cur[i].addresses,
(char*)p_cur[i].dnses,
(char*)p_cur[i].gateways,
(char*)p_cur[i].pcscf);
}
removeLastChar;
closeResponse;
return 0;
}
static int responseDataCallListV11(Parcel &p, void *response, size_t responselen) {
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof(RIL_Data_Call_Response_v11) != 0) {
RLOGE("invalid response length %d expected multiple of %d",
(int)responselen, (int)sizeof(RIL_Data_Call_Response_v11));
return RIL_ERRNO_INVALID_RESPONSE;
}
// Write version
p.writeInt32(11);
int num = responselen / sizeof(RIL_Data_Call_Response_v11);
p.writeInt32(num);
RIL_Data_Call_Response_v11 *p_cur = (RIL_Data_Call_Response_v11 *) response;
startResponse;
int i;
for (i = 0; i < num; i++) {
p.writeInt32((int)p_cur[i].status);
p.writeInt32(p_cur[i].suggestedRetryTime);
p.writeInt32(p_cur[i].cid);
p.writeInt32(p_cur[i].active);
writeStringToParcel(p, p_cur[i].type);
writeStringToParcel(p, p_cur[i].ifname);
writeStringToParcel(p, p_cur[i].addresses);
writeStringToParcel(p, p_cur[i].dnses);
writeStringToParcel(p, p_cur[i].gateways);
writeStringToParcel(p, p_cur[i].pcscf);
p.writeInt32(p_cur[i].mtu);
appendPrintBuf("%s[status=%d,retry=%d,cid=%d,%s,%s,%s,%s,%s,%s,%s,mtu=%d],", printBuf,
p_cur[i].status,
p_cur[i].suggestedRetryTime,
p_cur[i].cid,
(p_cur[i].active==0)?"down":"up",
(char*)p_cur[i].type,
(char*)p_cur[i].ifname,
(char*)p_cur[i].addresses,
(char*)p_cur[i].dnses,
(char*)p_cur[i].gateways,
(char*)p_cur[i].pcscf,
p_cur[i].mtu);
}
removeLastChar;
closeResponse;
return 0;
}
static int responseDataCallList(Parcel &p, void *response, size_t responselen)
{
if (s_callbacks.version <= LAST_IMPRECISE_RIL_VERSION) {
if (s_callbacks.version < 5) {
RLOGD("responseDataCallList: v4");
return responseDataCallListV4(p, response, responselen);
} else if (responselen % sizeof(RIL_Data_Call_Response_v6) == 0) {
return responseDataCallListV6(p, response, responselen);
} else if (responselen % sizeof(RIL_Data_Call_Response_v9) == 0) {
return responseDataCallListV9(p, response, responselen);
} else {
return responseDataCallListV11(p, response, responselen);
}
} else { // RIL version >= 13
if (responselen % sizeof(RIL_Data_Call_Response_v11) != 0) {
RLOGE("Data structure expected is RIL_Data_Call_Response_v11");
if (!isDebuggable()) {
return RIL_ERRNO_INVALID_RESPONSE;
} else {
assert(0);
}
}
return responseDataCallListV11(p, response, responselen);
}
}
static int responseSetupDataCall(Parcel &p, void *response, size_t responselen)
{
if (s_callbacks.version < 5) {
return responseStringsWithVersion(s_callbacks.version, p, response, responselen);
} else {
return responseDataCallList(p, response, responselen);
}
}
static int responseRaw(Parcel &p, void *response, size_t responselen) {
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL with responselen != 0");
return RIL_ERRNO_INVALID_RESPONSE;
}
// The java code reads -1 size as null byte array
if (response == NULL) {
p.writeInt32(-1);
} else {
p.writeInt32(responselen);
p.write(response, responselen);
}
return 0;
}
static int responseSIM_IO(Parcel &p, void *response, size_t responselen) {
if (response == NULL) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen != sizeof (RIL_SIM_IO_Response) ) {
RLOGE("invalid response length was %d expected %d",
(int)responselen, (int)sizeof (RIL_SIM_IO_Response));
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_SIM_IO_Response *p_cur = (RIL_SIM_IO_Response *) response;
p.writeInt32(p_cur->sw1);
p.writeInt32(p_cur->sw2);
writeStringToParcel(p, p_cur->simResponse);
startResponse;
appendPrintBuf("%ssw1=0x%X,sw2=0x%X,%s", printBuf, p_cur->sw1, p_cur->sw2,
(char*)p_cur->simResponse);
closeResponse;
return 0;
}
static int responseCallForwards(Parcel &p, void *response, size_t responselen) {
int num;
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof(RIL_CallForwardInfo *) != 0) {
RLOGE("responseCallForwards: invalid response length %d expected multiple of %d",
(int)responselen, (int)sizeof(RIL_CallForwardInfo *));
return RIL_ERRNO_INVALID_RESPONSE;
}
/* number of call info's */
num = responselen / sizeof(RIL_CallForwardInfo *);
p.writeInt32(num);
startResponse;
for (int i = 0 ; i < num ; i++) {
RIL_CallForwardInfo *p_cur = ((RIL_CallForwardInfo **) response)[i];
p.writeInt32(p_cur->status);
p.writeInt32(p_cur->reason);
p.writeInt32(p_cur->serviceClass);
p.writeInt32(p_cur->toa);
writeStringToParcel(p, p_cur->number);
p.writeInt32(p_cur->timeSeconds);
appendPrintBuf("%s[%s,reason=%d,cls=%d,toa=%d,%s,tout=%d],", printBuf,
(p_cur->status==1)?"enable":"disable",
p_cur->reason, p_cur->serviceClass, p_cur->toa,
(char*)p_cur->number,
p_cur->timeSeconds);
}
removeLastChar;
closeResponse;
return 0;
}
static int responseSsn(Parcel &p, void *response, size_t responselen) {
if (response == NULL) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen != sizeof(RIL_SuppSvcNotification)) {
RLOGE("invalid response length was %d expected %d",
(int)responselen, (int)sizeof (RIL_SuppSvcNotification));
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_SuppSvcNotification *p_cur = (RIL_SuppSvcNotification *) response;
p.writeInt32(p_cur->notificationType);
p.writeInt32(p_cur->code);
p.writeInt32(p_cur->index);
p.writeInt32(p_cur->type);
writeStringToParcel(p, p_cur->number);
startResponse;
appendPrintBuf("%s%s,code=%d,id=%d,type=%d,%s", printBuf,
(p_cur->notificationType==0)?"mo":"mt",
p_cur->code, p_cur->index, p_cur->type,
(char*)p_cur->number);
closeResponse;
return 0;
}
static int responseCellList(Parcel &p, void *response, size_t responselen) {
int num;
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof (RIL_NeighboringCell *) != 0) {
RLOGE("responseCellList: invalid response length %d expected multiple of %d\n",
(int)responselen, (int)sizeof (RIL_NeighboringCell *));
return RIL_ERRNO_INVALID_RESPONSE;
}
startResponse;
/* number of records */
num = responselen / sizeof(RIL_NeighboringCell *);
p.writeInt32(num);
for (int i = 0 ; i < num ; i++) {
RIL_NeighboringCell *p_cur = ((RIL_NeighboringCell **) response)[i];
p.writeInt32(p_cur->rssi);
writeStringToParcel (p, p_cur->cid);
appendPrintBuf("%s[cid=%s,rssi=%d],", printBuf,
p_cur->cid, p_cur->rssi);
}
removeLastChar;
closeResponse;
return 0;
}
/**
* Marshall the signalInfoRecord into the parcel if it exists.
*/
static void marshallSignalInfoRecord(Parcel &p,
RIL_CDMA_SignalInfoRecord &p_signalInfoRecord) {
p.writeInt32(p_signalInfoRecord.isPresent);
p.writeInt32(p_signalInfoRecord.signalType);
p.writeInt32(p_signalInfoRecord.alertPitch);
p.writeInt32(p_signalInfoRecord.signal);
}
static int responseCdmaInformationRecords(Parcel &p,
void *response, size_t responselen) {
int num;
char* string8 = NULL;
int buffer_lenght;
RIL_CDMA_InformationRecord *infoRec;
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen != sizeof (RIL_CDMA_InformationRecords)) {
RLOGE("responseCdmaInformationRecords: invalid response length %d expected multiple of %d\n",
(int)responselen, (int)sizeof (RIL_CDMA_InformationRecords *));
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_CDMA_InformationRecords *p_cur =
(RIL_CDMA_InformationRecords *) response;
num = MIN(p_cur->numberOfInfoRecs, RIL_CDMA_MAX_NUMBER_OF_INFO_RECS);
startResponse;
p.writeInt32(num);
for (int i = 0 ; i < num ; i++) {
infoRec = &p_cur->infoRec[i];
p.writeInt32(infoRec->name);
switch (infoRec->name) {
case RIL_CDMA_DISPLAY_INFO_REC:
case RIL_CDMA_EXTENDED_DISPLAY_INFO_REC:
if (infoRec->rec.display.alpha_len >
CDMA_ALPHA_INFO_BUFFER_LENGTH) {
RLOGE("invalid display info response length %d \
expected not more than %d\n",
(int)infoRec->rec.display.alpha_len,
CDMA_ALPHA_INFO_BUFFER_LENGTH);
return RIL_ERRNO_INVALID_RESPONSE;
}
string8 = (char*) malloc((infoRec->rec.display.alpha_len + 1)
* sizeof(char) );
if (string8 == NULL) {
RLOGE("Memory allocation failed for responseCdmaInformationRecords");
closeRequest;
return RIL_ERRNO_NO_MEMORY;
}
for (int i = 0 ; i < infoRec->rec.display.alpha_len ; i++) {
string8[i] = infoRec->rec.display.alpha_buf[i];
}
string8[(int)infoRec->rec.display.alpha_len] = '\0';
writeStringToParcel(p, (const char*)string8);
free(string8);
string8 = NULL;
break;
case RIL_CDMA_CALLED_PARTY_NUMBER_INFO_REC:
case RIL_CDMA_CALLING_PARTY_NUMBER_INFO_REC:
case RIL_CDMA_CONNECTED_NUMBER_INFO_REC:
if (infoRec->rec.number.len > CDMA_NUMBER_INFO_BUFFER_LENGTH) {
RLOGE("invalid display info response length %d \
expected not more than %d\n",
(int)infoRec->rec.number.len,
CDMA_NUMBER_INFO_BUFFER_LENGTH);
return RIL_ERRNO_INVALID_RESPONSE;
}
string8 = (char*) malloc((infoRec->rec.number.len + 1)
* sizeof(char) );
if (string8 == NULL) {
RLOGE("Memory allocation failed for responseCdmaInformationRecords");
closeRequest;
return RIL_ERRNO_NO_MEMORY;
}
for (int i = 0 ; i < infoRec->rec.number.len; i++) {
string8[i] = infoRec->rec.number.buf[i];
}
string8[(int)infoRec->rec.number.len] = '\0';
writeStringToParcel(p, (const char*)string8);
free(string8);
string8 = NULL;
p.writeInt32(infoRec->rec.number.number_type);
p.writeInt32(infoRec->rec.number.number_plan);
p.writeInt32(infoRec->rec.number.pi);
p.writeInt32(infoRec->rec.number.si);
break;
case RIL_CDMA_SIGNAL_INFO_REC:
p.writeInt32(infoRec->rec.signal.isPresent);
p.writeInt32(infoRec->rec.signal.signalType);
p.writeInt32(infoRec->rec.signal.alertPitch);
p.writeInt32(infoRec->rec.signal.signal);
appendPrintBuf("%sisPresent=%X, signalType=%X, \
alertPitch=%X, signal=%X, ",
printBuf, (int)infoRec->rec.signal.isPresent,
(int)infoRec->rec.signal.signalType,
(int)infoRec->rec.signal.alertPitch,
(int)infoRec->rec.signal.signal);
removeLastChar;
break;
case RIL_CDMA_REDIRECTING_NUMBER_INFO_REC:
if (infoRec->rec.redir.redirectingNumber.len >
CDMA_NUMBER_INFO_BUFFER_LENGTH) {
RLOGE("invalid display info response length %d \
expected not more than %d\n",
(int)infoRec->rec.redir.redirectingNumber.len,
CDMA_NUMBER_INFO_BUFFER_LENGTH);
return RIL_ERRNO_INVALID_RESPONSE;
}
string8 = (char*) malloc((infoRec->rec.redir.redirectingNumber
.len + 1) * sizeof(char) );
if (string8 == NULL) {
RLOGE("Memory allocation failed for responseCdmaInformationRecords");
closeRequest;
return RIL_ERRNO_NO_MEMORY;
}
for (int i = 0;
i < infoRec->rec.redir.redirectingNumber.len;
i++) {
string8[i] = infoRec->rec.redir.redirectingNumber.buf[i];
}
string8[(int)infoRec->rec.redir.redirectingNumber.len] = '\0';
writeStringToParcel(p, (const char*)string8);
free(string8);
string8 = NULL;
p.writeInt32(infoRec->rec.redir.redirectingNumber.number_type);
p.writeInt32(infoRec->rec.redir.redirectingNumber.number_plan);
p.writeInt32(infoRec->rec.redir.redirectingNumber.pi);
p.writeInt32(infoRec->rec.redir.redirectingNumber.si);
p.writeInt32(infoRec->rec.redir.redirectingReason);
break;
case RIL_CDMA_LINE_CONTROL_INFO_REC:
p.writeInt32(infoRec->rec.lineCtrl.lineCtrlPolarityIncluded);
p.writeInt32(infoRec->rec.lineCtrl.lineCtrlToggle);
p.writeInt32(infoRec->rec.lineCtrl.lineCtrlReverse);
p.writeInt32(infoRec->rec.lineCtrl.lineCtrlPowerDenial);
appendPrintBuf("%slineCtrlPolarityIncluded=%d, \
lineCtrlToggle=%d, lineCtrlReverse=%d, \
lineCtrlPowerDenial=%d, ", printBuf,
(int)infoRec->rec.lineCtrl.lineCtrlPolarityIncluded,
(int)infoRec->rec.lineCtrl.lineCtrlToggle,
(int)infoRec->rec.lineCtrl.lineCtrlReverse,
(int)infoRec->rec.lineCtrl.lineCtrlPowerDenial);
removeLastChar;
break;
case RIL_CDMA_T53_CLIR_INFO_REC:
p.writeInt32((int)(infoRec->rec.clir.cause));
appendPrintBuf("%scause%d", printBuf, infoRec->rec.clir.cause);
removeLastChar;
break;
case RIL_CDMA_T53_AUDIO_CONTROL_INFO_REC:
p.writeInt32(infoRec->rec.audioCtrl.upLink);
p.writeInt32(infoRec->rec.audioCtrl.downLink);
appendPrintBuf("%supLink=%d, downLink=%d, ", printBuf,
infoRec->rec.audioCtrl.upLink,
infoRec->rec.audioCtrl.downLink);
removeLastChar;
break;
case RIL_CDMA_T53_RELEASE_INFO_REC:
// TODO(Moto): See David Krause, he has the answer:)
RLOGE("RIL_CDMA_T53_RELEASE_INFO_REC: return INVALID_RESPONSE");
return RIL_ERRNO_INVALID_RESPONSE;
default:
RLOGE("Incorrect name value");
return RIL_ERRNO_INVALID_RESPONSE;
}
}
closeResponse;
return 0;
}
static void responseRilSignalStrengthV5(Parcel &p, RIL_SignalStrength_v10 *p_cur) {
int gsmSignalStrength;
int cdmaDbm;
int evdoDbm;
gsmSignalStrength = p_cur->GW_SignalStrength.signalStrength & 0xFF;
#ifdef MODEM_TYPE_XMM6260
if (gsmSignalStrength < 0 ||
(gsmSignalStrength > 31 && p_cur->GW_SignalStrength.signalStrength != 99)) {
gsmSignalStrength = p_cur->CDMA_SignalStrength.dbm;
}
#else
if (gsmSignalStrength < 0) {
gsmSignalStrength = 99;
} else if (gsmSignalStrength > 31 && gsmSignalStrength != 99) {
gsmSignalStrength = 31;
}
#endif
p.writeInt32(gsmSignalStrength);
p.writeInt32(p_cur->GW_SignalStrength.bitErrorRate);
#if defined(MODEM_TYPE_XMM6262) || defined(SAMSUNG_NEXT_GEN_MODEM)
cdmaDbm = p_cur->CDMA_SignalStrength.dbm & 0xFF;
if (cdmaDbm < 0) {
cdmaDbm = 99;
} else if (cdmaDbm > 31 && cdmaDbm != 99) {
cdmaDbm = 31;
}
#else
cdmaDbm = p_cur->CDMA_SignalStrength.dbm;
#endif
p.writeInt32(cdmaDbm);
p.writeInt32(p_cur->CDMA_SignalStrength.ecio);
#if defined(MODEM_TYPE_XMM6262) || defined(SAMSUNG_NEXT_GEN_MODEM)
evdoDbm = p_cur->EVDO_SignalStrength.dbm & 0xFF;
if (evdoDbm < 0) {
evdoDbm = 99;
} else if (evdoDbm > 31 && evdoDbm != 99) {
evdoDbm = 31;
}
#else
evdoDbm = p_cur->EVDO_SignalStrength.dbm;
#endif
p.writeInt32(evdoDbm);
p.writeInt32(p_cur->EVDO_SignalStrength.ecio);
p.writeInt32(p_cur->EVDO_SignalStrength.signalNoiseRatio);
}
static void responseRilSignalStrengthV6Extra(Parcel &p, RIL_SignalStrength_v10 *p_cur) {
/*
* Fixup LTE for backwards compatibility
*/
// signalStrength: -1 -> 99
if (p_cur->LTE_SignalStrength.signalStrength == -1) {
p_cur->LTE_SignalStrength.signalStrength = 99;
}
// rsrp: -1 -> INT_MAX all other negative value to positive.
// So remap here
if (p_cur->LTE_SignalStrength.rsrp == -1) {
p_cur->LTE_SignalStrength.rsrp = INT_MAX;
} else if (p_cur->LTE_SignalStrength.rsrp < -1) {
p_cur->LTE_SignalStrength.rsrp = -p_cur->LTE_SignalStrength.rsrp;
}
// rsrq: -1 -> INT_MAX
if (p_cur->LTE_SignalStrength.rsrq == -1) {
p_cur->LTE_SignalStrength.rsrq = INT_MAX;
}
// Not remapping rssnr is already using INT_MAX
// cqi: -1 -> INT_MAX
if (p_cur->LTE_SignalStrength.cqi == -1) {
p_cur->LTE_SignalStrength.cqi = INT_MAX;
}
p.writeInt32(p_cur->LTE_SignalStrength.signalStrength);
p.writeInt32(p_cur->LTE_SignalStrength.rsrp);
p.writeInt32(p_cur->LTE_SignalStrength.rsrq);
p.writeInt32(p_cur->LTE_SignalStrength.rssnr);
p.writeInt32(p_cur->LTE_SignalStrength.cqi);
}
static void responseRilSignalStrengthV10(Parcel &p, RIL_SignalStrength_v10 *p_cur) {
responseRilSignalStrengthV5(p, p_cur);
responseRilSignalStrengthV6Extra(p, p_cur);
p.writeInt32(p_cur->TD_SCDMA_SignalStrength.rscp);
}
static int responseRilSignalStrength(Parcel &p,
void *response, size_t responselen) {
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_SignalStrength_v10 *p_cur;
if (s_callbacks.version <= LAST_IMPRECISE_RIL_VERSION) {
if (responselen >= sizeof (RIL_SignalStrength_v5)) {
p_cur = ((RIL_SignalStrength_v10 *) response);
responseRilSignalStrengthV5(p, p_cur);
if (responselen >= sizeof (RIL_SignalStrength_v6)) {
responseRilSignalStrengthV6Extra(p, p_cur);
if (responselen >= sizeof (RIL_SignalStrength_v10)) {
p.writeInt32(p_cur->TD_SCDMA_SignalStrength.rscp);
} else {
p.writeInt32(INT_MAX);
}
} else {
p.writeInt32(99);
p.writeInt32(INT_MAX);
p.writeInt32(INT_MAX);
p.writeInt32(INT_MAX);
p.writeInt32(INT_MAX);
p.writeInt32(INT_MAX);
}
} else {
RLOGE("invalid response length");
return RIL_ERRNO_INVALID_RESPONSE;
}
} else { // RIL version >= 13
if (responselen % sizeof(RIL_SignalStrength_v10) != 0) {
RLOGE("Data structure expected is RIL_SignalStrength_v10");
if (!isDebuggable()) {
return RIL_ERRNO_INVALID_RESPONSE;
} else {
assert(0);
}
}
p_cur = ((RIL_SignalStrength_v10 *) response);
responseRilSignalStrengthV10(p, p_cur);
}
startResponse;
appendPrintBuf("%s[signalStrength=%d,bitErrorRate=%d,\
CDMA_SS.dbm=%d,CDMA_SSecio=%d,\
EVDO_SS.dbm=%d,EVDO_SS.ecio=%d,\
EVDO_SS.signalNoiseRatio=%d,\
LTE_SS.signalStrength=%d,LTE_SS.rsrp=%d,LTE_SS.rsrq=%d,\
LTE_SS.rssnr=%d,LTE_SS.cqi=%d,TDSCDMA_SS.rscp=%d]",
printBuf,
gsmSignalStrength,
p_cur->GW_SignalStrength.bitErrorRate,
cdmaDbm,
p_cur->CDMA_SignalStrength.ecio,
evdoDbm,
p_cur->EVDO_SignalStrength.ecio,
p_cur->EVDO_SignalStrength.signalNoiseRatio,
p_cur->LTE_SignalStrength.signalStrength,
p_cur->LTE_SignalStrength.rsrp,
p_cur->LTE_SignalStrength.rsrq,
p_cur->LTE_SignalStrength.rssnr,
p_cur->LTE_SignalStrength.cqi,
p_cur->TD_SCDMA_SignalStrength.rscp);
closeResponse;
return 0;
}
static int responseCallRing(Parcel &p, void *response, size_t responselen) {
if ((response == NULL) || (responselen == 0)) {
return responseVoid(p, response, responselen);
} else {
return responseCdmaSignalInfoRecord(p, response, responselen);
}
}
static int responseCdmaSignalInfoRecord(Parcel &p, void *response, size_t responselen) {
if (response == NULL || responselen == 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen != sizeof (RIL_CDMA_SignalInfoRecord)) {
RLOGE("invalid response length %d expected sizeof (RIL_CDMA_SignalInfoRecord) of %d\n",
(int)responselen, (int)sizeof (RIL_CDMA_SignalInfoRecord));
return RIL_ERRNO_INVALID_RESPONSE;
}
startResponse;
RIL_CDMA_SignalInfoRecord *p_cur = ((RIL_CDMA_SignalInfoRecord *) response);
marshallSignalInfoRecord(p, *p_cur);
appendPrintBuf("%s[isPresent=%d,signalType=%d,alertPitch=%d\
signal=%d]",
printBuf,
p_cur->isPresent,
p_cur->signalType,
p_cur->alertPitch,
p_cur->signal);
closeResponse;
return 0;
}
static int responseCdmaCallWaiting(Parcel &p, void *response,
size_t responselen) {
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen < sizeof(RIL_CDMA_CallWaiting_v6)) {
RLOGW("Upgrade to ril version %d\n", RIL_VERSION);
}
RIL_CDMA_CallWaiting_v6 *p_cur = ((RIL_CDMA_CallWaiting_v6 *) response);
writeStringToParcel(p, p_cur->number);
p.writeInt32(p_cur->numberPresentation);
writeStringToParcel(p, p_cur->name);
marshallSignalInfoRecord(p, p_cur->signalInfoRecord);
if (s_callbacks.version <= LAST_IMPRECISE_RIL_VERSION) {
if (responselen >= sizeof(RIL_CDMA_CallWaiting_v6)) {
p.writeInt32(p_cur->number_type);
p.writeInt32(p_cur->number_plan);
} else {
p.writeInt32(0);
p.writeInt32(0);
}
} else { // RIL version >= 13
if (responselen % sizeof(RIL_CDMA_CallWaiting_v6) != 0) {
RLOGE("Data structure expected is RIL_CDMA_CallWaiting_v6");
if (!isDebuggable()) {
return RIL_ERRNO_INVALID_RESPONSE;
} else {
assert(0);
}
}
p.writeInt32(p_cur->number_type);
p.writeInt32(p_cur->number_plan);
}
startResponse;
appendPrintBuf("%snumber=%s,numberPresentation=%d, name=%s,\
signalInfoRecord[isPresent=%d,signalType=%d,alertPitch=%d\
signal=%d,number_type=%d,number_plan=%d]",
printBuf,
p_cur->number,
p_cur->numberPresentation,
p_cur->name,
p_cur->signalInfoRecord.isPresent,
p_cur->signalInfoRecord.signalType,
p_cur->signalInfoRecord.alertPitch,
p_cur->signalInfoRecord.signal,
p_cur->number_type,
p_cur->number_plan);
closeResponse;
return 0;
}
static void responseSimRefreshV7(Parcel &p, void *response) {
RIL_SimRefreshResponse_v7 *p_cur = ((RIL_SimRefreshResponse_v7 *) response);
p.writeInt32(p_cur->result);
p.writeInt32(p_cur->ef_id);
writeStringToParcel(p, p_cur->aid);
appendPrintBuf("%sresult=%d, ef_id=%d, aid=%s",
printBuf,
p_cur->result,
p_cur->ef_id,
p_cur->aid);
}
static int responseSimRefresh(Parcel &p, void *response, size_t responselen) {
if (response == NULL && responselen != 0) {
RLOGE("responseSimRefresh: invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
startResponse;
if (s_callbacks.version <= LAST_IMPRECISE_RIL_VERSION) {
if (s_callbacks.version >= 7) {
responseSimRefreshV7(p, response);
} else {
int *p_cur = ((int *) response);
p.writeInt32(p_cur[0]);
p.writeInt32(p_cur[1]);
writeStringToParcel(p, NULL);
appendPrintBuf("%sresult=%d, ef_id=%d",
printBuf,
p_cur[0],
p_cur[1]);
}
} else { // RIL version >= 13
if (responselen % sizeof(RIL_SimRefreshResponse_v7) != 0) {
RLOGE("Data structure expected is RIL_SimRefreshResponse_v7");
if (!isDebuggable()) {
return RIL_ERRNO_INVALID_RESPONSE;
} else {
assert(0);
}
}
responseSimRefreshV7(p, response);
}
closeResponse;
return 0;
}
static int responseCellInfoListV6(Parcel &p, void *response, size_t responselen) {
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof(RIL_CellInfo) != 0) {
RLOGE("responseCellInfoList: invalid response length %d expected multiple of %d",
(int)responselen, (int)sizeof(RIL_CellInfo));
return RIL_ERRNO_INVALID_RESPONSE;
}
int num = responselen / sizeof(RIL_CellInfo);
p.writeInt32(num);
RIL_CellInfo *p_cur = (RIL_CellInfo *) response;
startResponse;
int i;
for (i = 0; i < num; i++) {
appendPrintBuf("%s[%d: type=%d,registered=%d,timeStampType=%d,timeStamp=%lld", printBuf, i,
p_cur->cellInfoType, p_cur->registered, p_cur->timeStampType, p_cur->timeStamp);
p.writeInt32((int)p_cur->cellInfoType);
p.writeInt32(p_cur->registered);
p.writeInt32(p_cur->timeStampType);
p.writeInt64(p_cur->timeStamp);
switch(p_cur->cellInfoType) {
case RIL_CELL_INFO_TYPE_GSM: {
appendPrintBuf("%s GSM id: mcc=%d,mnc=%d,lac=%d,cid=%d,", printBuf,
p_cur->CellInfo.gsm.cellIdentityGsm.mcc,
p_cur->CellInfo.gsm.cellIdentityGsm.mnc,
p_cur->CellInfo.gsm.cellIdentityGsm.lac,
p_cur->CellInfo.gsm.cellIdentityGsm.cid);
appendPrintBuf("%s gsmSS: ss=%d,ber=%d],", printBuf,
p_cur->CellInfo.gsm.signalStrengthGsm.signalStrength,
p_cur->CellInfo.gsm.signalStrengthGsm.bitErrorRate);
p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.mcc);
p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.mnc);
p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.lac);
p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.cid);
p.writeInt32(p_cur->CellInfo.gsm.signalStrengthGsm.signalStrength);
p.writeInt32(p_cur->CellInfo.gsm.signalStrengthGsm.bitErrorRate);
break;
}
case RIL_CELL_INFO_TYPE_WCDMA: {
appendPrintBuf("%s WCDMA id: mcc=%d,mnc=%d,lac=%d,cid=%d,psc=%d,", printBuf,
p_cur->CellInfo.wcdma.cellIdentityWcdma.mcc,
p_cur->CellInfo.wcdma.cellIdentityWcdma.mnc,
p_cur->CellInfo.wcdma.cellIdentityWcdma.lac,
p_cur->CellInfo.wcdma.cellIdentityWcdma.cid,
p_cur->CellInfo.wcdma.cellIdentityWcdma.psc);
appendPrintBuf("%s wcdmaSS: ss=%d,ber=%d],", printBuf,
p_cur->CellInfo.wcdma.signalStrengthWcdma.signalStrength,
p_cur->CellInfo.wcdma.signalStrengthWcdma.bitErrorRate);
p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.mcc);
p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.mnc);
p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.lac);
p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.cid);
p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.psc);
p.writeInt32(p_cur->CellInfo.wcdma.signalStrengthWcdma.signalStrength);
p.writeInt32(p_cur->CellInfo.wcdma.signalStrengthWcdma.bitErrorRate);
break;
}
case RIL_CELL_INFO_TYPE_CDMA: {
appendPrintBuf("%s CDMA id: nId=%d,sId=%d,bsId=%d,long=%d,lat=%d", printBuf,
p_cur->CellInfo.cdma.cellIdentityCdma.networkId,
p_cur->CellInfo.cdma.cellIdentityCdma.systemId,
p_cur->CellInfo.cdma.cellIdentityCdma.basestationId,
p_cur->CellInfo.cdma.cellIdentityCdma.longitude,
p_cur->CellInfo.cdma.cellIdentityCdma.latitude);
p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.networkId);
p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.systemId);
p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.basestationId);
p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.longitude);
p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.latitude);
appendPrintBuf("%s cdmaSS: dbm=%d ecio=%d evdoSS: dbm=%d,ecio=%d,snr=%d", printBuf,
p_cur->CellInfo.cdma.signalStrengthCdma.dbm,
p_cur->CellInfo.cdma.signalStrengthCdma.ecio,
p_cur->CellInfo.cdma.signalStrengthEvdo.dbm,
p_cur->CellInfo.cdma.signalStrengthEvdo.ecio,
p_cur->CellInfo.cdma.signalStrengthEvdo.signalNoiseRatio);
p.writeInt32(p_cur->CellInfo.cdma.signalStrengthCdma.dbm);
p.writeInt32(p_cur->CellInfo.cdma.signalStrengthCdma.ecio);
p.writeInt32(p_cur->CellInfo.cdma.signalStrengthEvdo.dbm);
p.writeInt32(p_cur->CellInfo.cdma.signalStrengthEvdo.ecio);
p.writeInt32(p_cur->CellInfo.cdma.signalStrengthEvdo.signalNoiseRatio);
break;
}
case RIL_CELL_INFO_TYPE_LTE: {
appendPrintBuf("%s LTE id: mcc=%d,mnc=%d,ci=%d,pci=%d,tac=%d", printBuf,
p_cur->CellInfo.lte.cellIdentityLte.mcc,
p_cur->CellInfo.lte.cellIdentityLte.mnc,
p_cur->CellInfo.lte.cellIdentityLte.ci,
p_cur->CellInfo.lte.cellIdentityLte.pci,
p_cur->CellInfo.lte.cellIdentityLte.tac);
p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.mcc);
p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.mnc);
p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.ci);
p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.pci);
p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.tac);
appendPrintBuf("%s lteSS: ss=%d,rsrp=%d,rsrq=%d,rssnr=%d,cqi=%d,ta=%d", printBuf,
p_cur->CellInfo.lte.signalStrengthLte.signalStrength,
p_cur->CellInfo.lte.signalStrengthLte.rsrp,
p_cur->CellInfo.lte.signalStrengthLte.rsrq,
p_cur->CellInfo.lte.signalStrengthLte.rssnr,
p_cur->CellInfo.lte.signalStrengthLte.cqi,
p_cur->CellInfo.lte.signalStrengthLte.timingAdvance);
p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.signalStrength);
p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.rsrp);
p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.rsrq);
p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.rssnr);
p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.cqi);
p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.timingAdvance);
break;
}
case RIL_CELL_INFO_TYPE_TD_SCDMA: {
appendPrintBuf("%s TDSCDMA id: mcc=%d,mnc=%d,lac=%d,cid=%d,cpid=%d,", printBuf,
p_cur->CellInfo.tdscdma.cellIdentityTdscdma.mcc,
p_cur->CellInfo.tdscdma.cellIdentityTdscdma.mnc,
p_cur->CellInfo.tdscdma.cellIdentityTdscdma.lac,
p_cur->CellInfo.tdscdma.cellIdentityTdscdma.cid,
p_cur->CellInfo.tdscdma.cellIdentityTdscdma.cpid);
appendPrintBuf("%s tdscdmaSS: rscp=%d],", printBuf,
p_cur->CellInfo.tdscdma.signalStrengthTdscdma.rscp);
p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.mcc);
p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.mnc);
p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.lac);
p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.cid);
p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.cpid);
p.writeInt32(p_cur->CellInfo.tdscdma.signalStrengthTdscdma.rscp);
break;
}
}
p_cur += 1;
}
removeLastChar;
closeResponse;
return 0;
}
static int responseCellInfoListV12(Parcel &p, void *response, size_t responselen) {
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof(RIL_CellInfo_v12) != 0) {
RLOGE("responseCellInfoList: invalid response length %d expected multiple of %d",
(int)responselen, (int)sizeof(RIL_CellInfo_v12));
return RIL_ERRNO_INVALID_RESPONSE;
}
int num = responselen / sizeof(RIL_CellInfo_v12);
p.writeInt32(num);
RIL_CellInfo_v12 *p_cur = (RIL_CellInfo_v12 *) response;
startResponse;
int i;
for (i = 0; i < num; i++) {
appendPrintBuf("%s[%d: type=%d,registered=%d,timeStampType=%d,timeStamp=%lld", printBuf, i,
p_cur->cellInfoType, p_cur->registered, p_cur->timeStampType, p_cur->timeStamp);
RLOGE("[%d: type=%d,registered=%d,timeStampType=%d,timeStamp=%lld", i,
p_cur->cellInfoType, p_cur->registered, p_cur->timeStampType, p_cur->timeStamp);
p.writeInt32((int)p_cur->cellInfoType);
p.writeInt32(p_cur->registered);
p.writeInt32(p_cur->timeStampType);
p.writeInt64(p_cur->timeStamp);
switch(p_cur->cellInfoType) {
case RIL_CELL_INFO_TYPE_GSM: {
appendPrintBuf("%s GSM id: mcc=%d,mnc=%d,lac=%d,cid=%d,arfcn=%d,bsic=%x", printBuf,
p_cur->CellInfo.gsm.cellIdentityGsm.mcc,
p_cur->CellInfo.gsm.cellIdentityGsm.mnc,
p_cur->CellInfo.gsm.cellIdentityGsm.lac,
p_cur->CellInfo.gsm.cellIdentityGsm.cid,
p_cur->CellInfo.gsm.cellIdentityGsm.arfcn,
p_cur->CellInfo.gsm.cellIdentityGsm.bsic);
RLOGE("GSM id: mcc=%d,mnc=%d,lac=%d,cid=%d,arfcn=%d,bsic=%x",
p_cur->CellInfo.gsm.cellIdentityGsm.mcc,
p_cur->CellInfo.gsm.cellIdentityGsm.mnc,
p_cur->CellInfo.gsm.cellIdentityGsm.lac,
p_cur->CellInfo.gsm.cellIdentityGsm.cid,
p_cur->CellInfo.gsm.cellIdentityGsm.arfcn,
p_cur->CellInfo.gsm.cellIdentityGsm.bsic);
RLOGE("gsmSS: ss=%d,ber=%d, ta=%d],",
p_cur->CellInfo.gsm.signalStrengthGsm.signalStrength,
p_cur->CellInfo.gsm.signalStrengthGsm.bitErrorRate,
p_cur->CellInfo.gsm.signalStrengthGsm.timingAdvance);
appendPrintBuf("%s gsmSS: ss=%d,ber=%d, ta=%d],", printBuf,
p_cur->CellInfo.gsm.signalStrengthGsm.signalStrength,
p_cur->CellInfo.gsm.signalStrengthGsm.bitErrorRate,
p_cur->CellInfo.gsm.signalStrengthGsm.timingAdvance);
p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.mcc);
p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.mnc);
p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.lac);
p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.cid);
p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.arfcn);
p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.bsic);
p.writeInt32(p_cur->CellInfo.gsm.signalStrengthGsm.signalStrength);
p.writeInt32(p_cur->CellInfo.gsm.signalStrengthGsm.bitErrorRate);
p.writeInt32(p_cur->CellInfo.gsm.signalStrengthGsm.timingAdvance);
break;
}
case RIL_CELL_INFO_TYPE_WCDMA: {
RLOGE("WCDMA id: mcc=%d,mnc=%d,lac=%d,cid=%d,psc=%d,uarfcn=%d",
p_cur->CellInfo.wcdma.cellIdentityWcdma.mcc,
p_cur->CellInfo.wcdma.cellIdentityWcdma.mnc,
p_cur->CellInfo.wcdma.cellIdentityWcdma.lac,
p_cur->CellInfo.wcdma.cellIdentityWcdma.cid,
p_cur->CellInfo.wcdma.cellIdentityWcdma.psc,
p_cur->CellInfo.wcdma.cellIdentityWcdma.uarfcn);
RLOGE("wcdmaSS: ss=%d,ber=%d],",
p_cur->CellInfo.wcdma.signalStrengthWcdma.signalStrength,
p_cur->CellInfo.wcdma.signalStrengthWcdma.bitErrorRate);
appendPrintBuf("%s WCDMA id: mcc=%d,mnc=%d,lac=%d,cid=%d,psc=%d,uarfcn=%d", printBuf,
p_cur->CellInfo.wcdma.cellIdentityWcdma.mcc,
p_cur->CellInfo.wcdma.cellIdentityWcdma.mnc,
p_cur->CellInfo.wcdma.cellIdentityWcdma.lac,
p_cur->CellInfo.wcdma.cellIdentityWcdma.cid,
p_cur->CellInfo.wcdma.cellIdentityWcdma.psc,
p_cur->CellInfo.wcdma.cellIdentityWcdma.uarfcn);
appendPrintBuf("%s wcdmaSS: ss=%d,ber=%d],", printBuf,
p_cur->CellInfo.wcdma.signalStrengthWcdma.signalStrength,
p_cur->CellInfo.wcdma.signalStrengthWcdma.bitErrorRate);
p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.mcc);
p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.mnc);
p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.lac);
p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.cid);
p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.psc);
p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.uarfcn);
p.writeInt32(p_cur->CellInfo.wcdma.signalStrengthWcdma.signalStrength);
p.writeInt32(p_cur->CellInfo.wcdma.signalStrengthWcdma.bitErrorRate);
break;
}
case RIL_CELL_INFO_TYPE_CDMA: {
RLOGE("CDMA id: nId=%d,sId=%d,bsId=%d,long=%d,lat=%d",
p_cur->CellInfo.cdma.cellIdentityCdma.networkId,
p_cur->CellInfo.cdma.cellIdentityCdma.systemId,
p_cur->CellInfo.cdma.cellIdentityCdma.basestationId,
p_cur->CellInfo.cdma.cellIdentityCdma.longitude,
p_cur->CellInfo.cdma.cellIdentityCdma.latitude);
appendPrintBuf("%s CDMA id: nId=%d,sId=%d,bsId=%d,long=%d,lat=%d", printBuf,
p_cur->CellInfo.cdma.cellIdentityCdma.networkId,
p_cur->CellInfo.cdma.cellIdentityCdma.systemId,
p_cur->CellInfo.cdma.cellIdentityCdma.basestationId,
p_cur->CellInfo.cdma.cellIdentityCdma.longitude,
p_cur->CellInfo.cdma.cellIdentityCdma.latitude);
p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.networkId);
p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.systemId);
p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.basestationId);
p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.longitude);
p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.latitude);
RLOGE("cdmaSS: dbm=%d ecio=%d evdoSS: dbm=%d,ecio=%d,snr=%d",
p_cur->CellInfo.cdma.signalStrengthCdma.dbm,
p_cur->CellInfo.cdma.signalStrengthCdma.ecio,
p_cur->CellInfo.cdma.signalStrengthEvdo.dbm,
p_cur->CellInfo.cdma.signalStrengthEvdo.ecio,
p_cur->CellInfo.cdma.signalStrengthEvdo.signalNoiseRatio);
appendPrintBuf("%s cdmaSS: dbm=%d ecio=%d evdoSS: dbm=%d,ecio=%d,snr=%d", printBuf,
p_cur->CellInfo.cdma.signalStrengthCdma.dbm,
p_cur->CellInfo.cdma.signalStrengthCdma.ecio,
p_cur->CellInfo.cdma.signalStrengthEvdo.dbm,
p_cur->CellInfo.cdma.signalStrengthEvdo.ecio,
p_cur->CellInfo.cdma.signalStrengthEvdo.signalNoiseRatio);
p.writeInt32(p_cur->CellInfo.cdma.signalStrengthCdma.dbm);
p.writeInt32(p_cur->CellInfo.cdma.signalStrengthCdma.ecio);
p.writeInt32(p_cur->CellInfo.cdma.signalStrengthEvdo.dbm);
p.writeInt32(p_cur->CellInfo.cdma.signalStrengthEvdo.ecio);
p.writeInt32(p_cur->CellInfo.cdma.signalStrengthEvdo.signalNoiseRatio);
break;
}
case RIL_CELL_INFO_TYPE_LTE: {
RLOGE("LTE id: mcc=%d,mnc=%d,ci=%d,pci=%d,tac=%d,earfcn=%d",
p_cur->CellInfo.lte.cellIdentityLte.mcc,
p_cur->CellInfo.lte.cellIdentityLte.mnc,
p_cur->CellInfo.lte.cellIdentityLte.ci,
p_cur->CellInfo.lte.cellIdentityLte.pci,
p_cur->CellInfo.lte.cellIdentityLte.tac,
p_cur->CellInfo.lte.cellIdentityLte.earfcn);
appendPrintBuf("%s LTE id: mcc=%d,mnc=%d,ci=%d,pci=%d,tac=%d,earfcn=%d", printBuf,
p_cur->CellInfo.lte.cellIdentityLte.mcc,
p_cur->CellInfo.lte.cellIdentityLte.mnc,
p_cur->CellInfo.lte.cellIdentityLte.ci,
p_cur->CellInfo.lte.cellIdentityLte.pci,
p_cur->CellInfo.lte.cellIdentityLte.tac,
p_cur->CellInfo.lte.cellIdentityLte.earfcn);
p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.mcc);
p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.mnc);
p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.ci);
p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.pci);
p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.tac);
p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.earfcn);
RLOGE("lteSS: ss=%d,rsrp=%d,rsrq=%d,rssnr=%d,cqi=%d,ta=%d",
p_cur->CellInfo.lte.signalStrengthLte.signalStrength,
p_cur->CellInfo.lte.signalStrengthLte.rsrp,
p_cur->CellInfo.lte.signalStrengthLte.rsrq,
p_cur->CellInfo.lte.signalStrengthLte.rssnr,
p_cur->CellInfo.lte.signalStrengthLte.cqi,
p_cur->CellInfo.lte.signalStrengthLte.timingAdvance);
appendPrintBuf("%s lteSS: ss=%d,rsrp=%d,rsrq=%d,rssnr=%d,cqi=%d,ta=%d", printBuf,
p_cur->CellInfo.lte.signalStrengthLte.signalStrength,
p_cur->CellInfo.lte.signalStrengthLte.rsrp,
p_cur->CellInfo.lte.signalStrengthLte.rsrq,
p_cur->CellInfo.lte.signalStrengthLte.rssnr,
p_cur->CellInfo.lte.signalStrengthLte.cqi,
p_cur->CellInfo.lte.signalStrengthLte.timingAdvance);
p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.signalStrength);
p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.rsrp);
p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.rsrq);
p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.rssnr);
p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.cqi);
p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.timingAdvance);
break;
}
case RIL_CELL_INFO_TYPE_TD_SCDMA: {
appendPrintBuf("%s TDSCDMA id: mcc=%d,mnc=%d,lac=%d,cid=%d,cpid=%d,", printBuf,
p_cur->CellInfo.tdscdma.cellIdentityTdscdma.mcc,
p_cur->CellInfo.tdscdma.cellIdentityTdscdma.mnc,
p_cur->CellInfo.tdscdma.cellIdentityTdscdma.lac,
p_cur->CellInfo.tdscdma.cellIdentityTdscdma.cid,
p_cur->CellInfo.tdscdma.cellIdentityTdscdma.cpid);
appendPrintBuf("%s tdscdmaSS: rscp=%d],", printBuf,
p_cur->CellInfo.tdscdma.signalStrengthTdscdma.rscp);
p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.mcc);
p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.mnc);
p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.lac);
p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.cid);
p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.cpid);
p.writeInt32(p_cur->CellInfo.tdscdma.signalStrengthTdscdma.rscp);
break;
}
}
p_cur += 1;
}
removeLastChar;
closeResponse;
return 0;
}
static int responseCellInfoList(Parcel &p, void *response, size_t responselen)
{
if (s_callbacks.version <= LAST_IMPRECISE_RIL_VERSION) {
if (s_callbacks.version < 12) {
RLOGD("responseCellInfoList: v6");
return responseCellInfoListV6(p, response, responselen);
} else {
RLOGD("responseCellInfoList: v12");
return responseCellInfoListV12(p, response, responselen);
}
} else { // RIL version >= 13
if (responselen % sizeof(RIL_CellInfo_v12) != 0) {
RLOGE("Data structure expected is RIL_CellInfo_v12");
if (!isDebuggable()) {
return RIL_ERRNO_INVALID_RESPONSE;
} else {
assert(0);
}
}
return responseCellInfoListV12(p, response, responselen);
}
return 0;
}
static int responseHardwareConfig(Parcel &p, void *response, size_t responselen)
{
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof(RIL_HardwareConfig) != 0) {
RLOGE("responseHardwareConfig: invalid response length %d expected multiple of %d",
(int)responselen, (int)sizeof(RIL_HardwareConfig));
return RIL_ERRNO_INVALID_RESPONSE;
}
int num = responselen / sizeof(RIL_HardwareConfig);
int i;
RIL_HardwareConfig *p_cur = (RIL_HardwareConfig *) response;
p.writeInt32(num);
startResponse;
for (i = 0; i < num; i++) {
switch (p_cur[i].type) {
case RIL_HARDWARE_CONFIG_MODEM: {
writeStringToParcel(p, p_cur[i].uuid);
p.writeInt32((int)p_cur[i].state);
p.writeInt32(p_cur[i].cfg.modem.rat);
p.writeInt32(p_cur[i].cfg.modem.maxVoice);
p.writeInt32(p_cur[i].cfg.modem.maxData);
p.writeInt32(p_cur[i].cfg.modem.maxStandby);
appendPrintBuf("%s modem: uuid=%s,state=%d,rat=%08x,maxV=%d,maxD=%d,maxS=%d", printBuf,
p_cur[i].uuid, (int)p_cur[i].state, p_cur[i].cfg.modem.rat,
p_cur[i].cfg.modem.maxVoice, p_cur[i].cfg.modem.maxData, p_cur[i].cfg.modem.maxStandby);
break;
}
case RIL_HARDWARE_CONFIG_SIM: {
writeStringToParcel(p, p_cur[i].uuid);
p.writeInt32((int)p_cur[i].state);
writeStringToParcel(p, p_cur[i].cfg.sim.modemUuid);
appendPrintBuf("%s sim: uuid=%s,state=%d,modem-uuid=%s", printBuf,
p_cur[i].uuid, (int)p_cur[i].state, p_cur[i].cfg.sim.modemUuid);
break;
}
}
}
removeLastChar;
closeResponse;
return 0;
}
static int responseRadioCapability(Parcel &p, void *response, size_t responselen) {
if (response == NULL) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen != sizeof (RIL_RadioCapability) ) {
RLOGE("invalid response length was %d expected %d",
(int)responselen, (int)sizeof (RIL_SIM_IO_Response));
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_RadioCapability *p_cur = (RIL_RadioCapability *) response;
p.writeInt32(p_cur->version);
p.writeInt32(p_cur->session);
p.writeInt32(p_cur->phase);
p.writeInt32(p_cur->rat);
writeStringToParcel(p, p_cur->logicalModemUuid);
p.writeInt32(p_cur->status);
startResponse;
appendPrintBuf("%s[version=%d,session=%d,phase=%d,\
rat=%d,logicalModemUuid=%s,status=%d]",
printBuf,
p_cur->version,
p_cur->session,
p_cur->phase,
p_cur->rat,
p_cur->logicalModemUuid,
p_cur->status);
closeResponse;
return 0;
}
static int responseSSData(Parcel &p, void *response, size_t responselen) {
RLOGD("In responseSSData");
int num;
if (response == NULL && responselen != 0) {
RLOGE("invalid response length was %d expected %d",
(int)responselen, (int)sizeof (RIL_SIM_IO_Response));
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen != sizeof(RIL_StkCcUnsolSsResponse)) {
RLOGE("invalid response length %d, expected %d",
(int)responselen, (int)sizeof(RIL_StkCcUnsolSsResponse));
return RIL_ERRNO_INVALID_RESPONSE;
}
startResponse;
RIL_StkCcUnsolSsResponse *p_cur = (RIL_StkCcUnsolSsResponse *) response;
p.writeInt32(p_cur->serviceType);
p.writeInt32(p_cur->requestType);
p.writeInt32(p_cur->teleserviceType);
p.writeInt32(p_cur->serviceClass);
p.writeInt32(p_cur->result);
if (isServiceTypeCfQuery(p_cur->serviceType, p_cur->requestType)) {
RLOGD("responseSSData CF type, num of Cf elements %d", p_cur->cfData.numValidIndexes);
if (p_cur->cfData.numValidIndexes > NUM_SERVICE_CLASSES) {
RLOGE("numValidIndexes is greater than max value %d, "
"truncating it to max value", NUM_SERVICE_CLASSES);
p_cur->cfData.numValidIndexes = NUM_SERVICE_CLASSES;
}
/* number of call info's */
p.writeInt32(p_cur->cfData.numValidIndexes);
for (int i = 0; i < p_cur->cfData.numValidIndexes; i++) {
RIL_CallForwardInfo cf = p_cur->cfData.cfInfo[i];
p.writeInt32(cf.status);
p.writeInt32(cf.reason);
p.writeInt32(cf.serviceClass);
p.writeInt32(cf.toa);
writeStringToParcel(p, cf.number);
p.writeInt32(cf.timeSeconds);
appendPrintBuf("%s[%s,reason=%d,cls=%d,toa=%d,%s,tout=%d],", printBuf,
(cf.status==1)?"enable":"disable", cf.reason, cf.serviceClass, cf.toa,
(char*)cf.number, cf.timeSeconds);
RLOGD("Data: %d,reason=%d,cls=%d,toa=%d,num=%s,tout=%d],", cf.status,
cf.reason, cf.serviceClass, cf.toa, (char*)cf.number, cf.timeSeconds);
}
} else {
p.writeInt32 (SS_INFO_MAX);
/* each int*/
for (int i = 0; i < SS_INFO_MAX; i++) {
appendPrintBuf("%s%d,", printBuf, p_cur->ssInfo[i]);
RLOGD("Data: %d",p_cur->ssInfo[i]);
p.writeInt32(p_cur->ssInfo[i]);
}
}
removeLastChar;
closeResponse;
return 0;
}
static bool isServiceTypeCfQuery(RIL_SsServiceType serType, RIL_SsRequestType reqType) {
if ((reqType == SS_INTERROGATION) &&
(serType == SS_CFU ||
serType == SS_CF_BUSY ||
serType == SS_CF_NO_REPLY ||
serType == SS_CF_NOT_REACHABLE ||
serType == SS_CF_ALL ||
serType == SS_CF_ALL_CONDITIONAL)) {
return true;
}
return false;
}
static void triggerEvLoop() {
int ret;
if (!pthread_equal(pthread_self(), s_tid_dispatch)) {
/* trigger event loop to wakeup. No reason to do this,
* if we're in the event loop thread */
do {
ret = write (s_fdWakeupWrite, " ", 1);
} while (ret < 0 && errno == EINTR);
}
}
static void rilEventAddWakeup(struct ril_event *ev) {
ril_event_add(ev);
triggerEvLoop();
}
static void sendSimStatusAppInfo(Parcel &p, int num_apps, RIL_AppStatus appStatus[]) {
p.writeInt32(num_apps);
startResponse;
for (int i = 0; i < num_apps; i++) {
p.writeInt32(appStatus[i].app_type);
p.writeInt32(appStatus[i].app_state);
p.writeInt32(appStatus[i].perso_substate);
writeStringToParcel(p, (const char*)(appStatus[i].aid_ptr));
writeStringToParcel(p, (const char*)
(appStatus[i].app_label_ptr));
p.writeInt32(appStatus[i].pin1_replaced);
p.writeInt32(appStatus[i].pin1);
p.writeInt32(appStatus[i].pin2);
appendPrintBuf("%s[app_type=%d,app_state=%d,perso_substate=%d,\
aid_ptr=%s,app_label_ptr=%s,pin1_replaced=%d,pin1=%d,pin2=%d],",
printBuf,
appStatus[i].app_type,
appStatus[i].app_state,
appStatus[i].perso_substate,
appStatus[i].aid_ptr,
appStatus[i].app_label_ptr,
appStatus[i].pin1_replaced,
appStatus[i].pin1,
appStatus[i].pin2);
}
closeResponse;
}
static void responseSimStatusV5(Parcel &p, void *response) {
RIL_CardStatus_v5 *p_cur = ((RIL_CardStatus_v5 *) response);
p.writeInt32(p_cur->card_state);
p.writeInt32(p_cur->universal_pin_state);
p.writeInt32(p_cur->gsm_umts_subscription_app_index);
p.writeInt32(p_cur->cdma_subscription_app_index);
p.writeInt32(-1);
sendSimStatusAppInfo(p, p_cur->num_applications, p_cur->applications);
}
static void responseSimStatusV6(Parcel &p, void *response) {
RIL_CardStatus_v6 *p_cur = ((RIL_CardStatus_v6 *) response);
p.writeInt32(p_cur->card_state);
p.writeInt32(p_cur->universal_pin_state);
p.writeInt32(p_cur->gsm_umts_subscription_app_index);
p.writeInt32(p_cur->cdma_subscription_app_index);
p.writeInt32(p_cur->ims_subscription_app_index);
sendSimStatusAppInfo(p, p_cur->num_applications, p_cur->applications);
}
static int responseSimStatus(Parcel &p, void *response, size_t responselen) {
int i;
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (s_callbacks.version <= LAST_IMPRECISE_RIL_VERSION) {
if (responselen == sizeof (RIL_CardStatus_v6)) {
responseSimStatusV6(p, response);
} else if (responselen == sizeof (RIL_CardStatus_v5)) {
responseSimStatusV5(p, response);
} else {
RLOGE("responseSimStatus: A RilCardStatus_v6 or _v5 expected\n");
return RIL_ERRNO_INVALID_RESPONSE;
}
} else { // RIL version >= 13
if (responselen % sizeof(RIL_CardStatus_v6) != 0) {
RLOGE("Data structure expected is RIL_CardStatus_v6");
if (!isDebuggable()) {
return RIL_ERRNO_INVALID_RESPONSE;
} else {
assert(0);
}
}
responseSimStatusV6(p, response);
}
return 0;
}
static int responseGsmBrSmsCnf(Parcel &p, void *response, size_t responselen) {
int num = responselen / sizeof(RIL_GSM_BroadcastSmsConfigInfo *);
p.writeInt32(num);
startResponse;
RIL_GSM_BroadcastSmsConfigInfo **p_cur =
(RIL_GSM_BroadcastSmsConfigInfo **) response;
for (int i = 0; i < num; i++) {
p.writeInt32(p_cur[i]->fromServiceId);
p.writeInt32(p_cur[i]->toServiceId);
p.writeInt32(p_cur[i]->fromCodeScheme);
p.writeInt32(p_cur[i]->toCodeScheme);
p.writeInt32(p_cur[i]->selected);
appendPrintBuf("%s [%d: fromServiceId=%d, toServiceId=%d, \
fromCodeScheme=%d, toCodeScheme=%d, selected =%d]",
printBuf, i, p_cur[i]->fromServiceId, p_cur[i]->toServiceId,
p_cur[i]->fromCodeScheme, p_cur[i]->toCodeScheme,
p_cur[i]->selected);
}
closeResponse;
return 0;
}
static int responseCdmaBrSmsCnf(Parcel &p, void *response, size_t responselen) {
RIL_CDMA_BroadcastSmsConfigInfo **p_cur =
(RIL_CDMA_BroadcastSmsConfigInfo **) response;
int num = responselen / sizeof (RIL_CDMA_BroadcastSmsConfigInfo *);
p.writeInt32(num);
startResponse;
for (int i = 0 ; i < num ; i++ ) {
p.writeInt32(p_cur[i]->service_category);
p.writeInt32(p_cur[i]->language);
p.writeInt32(p_cur[i]->selected);
appendPrintBuf("%s [%d: srvice_category=%d, language =%d, \
selected =%d], ",
printBuf, i, p_cur[i]->service_category, p_cur[i]->language,
p_cur[i]->selected);
}
closeResponse;
return 0;
}
static int responseCdmaSms(Parcel &p, void *response, size_t responselen) {
int num;
int digitCount;
int digitLimit;
uint8_t uct;
void* dest;
RLOGD("Inside responseCdmaSms");
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen != sizeof(RIL_CDMA_SMS_Message)) {
RLOGE("invalid response length was %d expected %d",
(int)responselen, (int)sizeof(RIL_CDMA_SMS_Message));
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_CDMA_SMS_Message *p_cur = (RIL_CDMA_SMS_Message *) response;
p.writeInt32(p_cur->uTeleserviceID);
p.write(&(p_cur->bIsServicePresent),sizeof(uct));
p.writeInt32(p_cur->uServicecategory);
p.writeInt32(p_cur->sAddress.digit_mode);
p.writeInt32(p_cur->sAddress.number_mode);
p.writeInt32(p_cur->sAddress.number_type);
p.writeInt32(p_cur->sAddress.number_plan);
p.write(&(p_cur->sAddress.number_of_digits), sizeof(uct));
digitLimit= MIN((p_cur->sAddress.number_of_digits), RIL_CDMA_SMS_ADDRESS_MAX);
for(digitCount =0 ; digitCount < digitLimit; digitCount ++) {
p.write(&(p_cur->sAddress.digits[digitCount]),sizeof(uct));
}
p.writeInt32(p_cur->sSubAddress.subaddressType);
p.write(&(p_cur->sSubAddress.odd),sizeof(uct));
p.write(&(p_cur->sSubAddress.number_of_digits),sizeof(uct));
digitLimit= MIN((p_cur->sSubAddress.number_of_digits), RIL_CDMA_SMS_SUBADDRESS_MAX);
for(digitCount =0 ; digitCount < digitLimit; digitCount ++) {
p.write(&(p_cur->sSubAddress.digits[digitCount]),sizeof(uct));
}
digitLimit= MIN((p_cur->uBearerDataLen), RIL_CDMA_SMS_BEARER_DATA_MAX);
p.writeInt32(p_cur->uBearerDataLen);
for(digitCount =0 ; digitCount < digitLimit; digitCount ++) {
p.write(&(p_cur->aBearerData[digitCount]), sizeof(uct));
}
startResponse;
appendPrintBuf("%suTeleserviceID=%d, bIsServicePresent=%d, uServicecategory=%d, \
sAddress.digit_mode=%d, sAddress.number_mode=%d, sAddress.number_type=%d, ",
printBuf, p_cur->uTeleserviceID,p_cur->bIsServicePresent,p_cur->uServicecategory,
p_cur->sAddress.digit_mode, p_cur->sAddress.number_mode,p_cur->sAddress.number_type);
closeResponse;
return 0;
}
static int responseDcRtInfo(Parcel &p, void *response, size_t responselen)
{
int num = responselen / sizeof(RIL_DcRtInfo);
if ((responselen % sizeof(RIL_DcRtInfo) != 0) || (num != 1)) {
RLOGE("responseDcRtInfo: invalid response length %d expected multiple of %d",
(int)responselen, (int)sizeof(RIL_DcRtInfo));
return RIL_ERRNO_INVALID_RESPONSE;
}
startResponse;
RIL_DcRtInfo *pDcRtInfo = (RIL_DcRtInfo *)response;
p.writeInt64(pDcRtInfo->time);
p.writeInt32(pDcRtInfo->powerState);
appendPrintBuf("%s[time=%d,powerState=%d]", printBuf,
pDcRtInfo->time,
(int)pDcRtInfo->powerState);
closeResponse;
return 0;
}
static int responseLceStatus(Parcel &p, void *response, size_t responselen) {
if (response == NULL || responselen != sizeof(RIL_LceStatusInfo)) {
if (response == NULL) {
RLOGE("invalid response: NULL");
}
else {
RLOGE("responseLceStatus: invalid response length %d expecting len: d%",
sizeof(RIL_LceStatusInfo), responselen);
}
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_LceStatusInfo *p_cur = (RIL_LceStatusInfo *)response;
p.write((void *)p_cur, 1); // p_cur->lce_status takes one byte.
p.writeInt32(p_cur->actual_interval_ms);
startResponse;
appendPrintBuf("LCE Status: %d, actual_interval_ms: %d",
p_cur->lce_status, p_cur->actual_interval_ms);
closeResponse;
return 0;
}
static int responseLceData(Parcel &p, void *response, size_t responselen) {
if (response == NULL || responselen != sizeof(RIL_LceDataInfo)) {
if (response == NULL) {
RLOGE("invalid response: NULL");
}
else {
RLOGE("responseLceData: invalid response length %d expecting len: d%",
sizeof(RIL_LceDataInfo), responselen);
}
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_LceDataInfo *p_cur = (RIL_LceDataInfo *)response;
p.writeInt32(p_cur->last_hop_capacity_kbps);
/* p_cur->confidence_level and p_cur->lce_suspended take 1 byte each.*/
p.write((void *)&(p_cur->confidence_level), 1);
p.write((void *)&(p_cur->lce_suspended), 1);
startResponse;
appendPrintBuf("LCE info received: capacity %d confidence level %d \
and suspended %d",
p_cur->last_hop_capacity_kbps, p_cur->confidence_level,
p_cur->lce_suspended);
closeResponse;
return 0;
}
static int responseActivityData(Parcel &p, void *response, size_t responselen) {
if (response == NULL || responselen != sizeof(RIL_ActivityStatsInfo)) {
if (response == NULL) {
RLOGE("invalid response: NULL");
}
else {
RLOGE("responseActivityData: invalid response length %d expecting len: d%",
sizeof(RIL_ActivityStatsInfo), responselen);
}
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_ActivityStatsInfo *p_cur = (RIL_ActivityStatsInfo *)response;
p.writeInt32(p_cur->sleep_mode_time_ms);
p.writeInt32(p_cur->idle_mode_time_ms);
for(int i = 0; i < RIL_NUM_TX_POWER_LEVELS; i++) {
p.writeInt32(p_cur->tx_mode_time_ms[i]);
}
p.writeInt32(p_cur->rx_mode_time_ms);
startResponse;
appendPrintBuf("Modem activity info received: sleep_mode_time_ms %d idle_mode_time_ms %d \
tx_mode_time_ms %d %d %d %d %d and rx_mode_time_ms %d",
p_cur->sleep_mode_time_ms, p_cur->idle_mode_time_ms, p_cur->tx_mode_time_ms[0],
p_cur->tx_mode_time_ms[1], p_cur->tx_mode_time_ms[2], p_cur->tx_mode_time_ms[3],
p_cur->tx_mode_time_ms[4], p_cur->rx_mode_time_ms);
closeResponse;
return 0;
}
/**
* A write on the wakeup fd is done just to pop us out of select()
* We empty the buffer here and then ril_event will reset the timers on the
* way back down
*/
static void processWakeupCallback(int fd, short flags, void *param) {
char buff[16];
int ret;
RLOGV("processWakeupCallback");
/* empty our wakeup socket out */
do {
ret = read(s_fdWakeupRead, &buff, sizeof(buff));
} while (ret > 0 || (ret < 0 && errno == EINTR));
}
static void onCommandsSocketClosed(RIL_SOCKET_ID socket_id) {
int ret;
RequestInfo *p_cur;
/* Hook for current context
pendingRequestsMutextHook refer to &s_pendingRequestsMutex */
pthread_mutex_t * pendingRequestsMutexHook = &s_pendingRequestsMutex;
/* pendingRequestsHook refer to &s_pendingRequests */
RequestInfo ** pendingRequestsHook = &s_pendingRequests;
#if (SIM_COUNT >= 2)
if (socket_id == RIL_SOCKET_2) {
pendingRequestsMutexHook = &s_pendingRequestsMutex_socket2;
pendingRequestsHook = &s_pendingRequests_socket2;
}
#if (SIM_COUNT >= 3)
else if (socket_id == RIL_SOCKET_3) {
pendingRequestsMutexHook = &s_pendingRequestsMutex_socket3;
pendingRequestsHook = &s_pendingRequests_socket3;
}
#endif
#if (SIM_COUNT >= 4)
else if (socket_id == RIL_SOCKET_4) {
pendingRequestsMutexHook = &s_pendingRequestsMutex_socket4;
pendingRequestsHook = &s_pendingRequests_socket4;
}
#endif
#endif
/* mark pending requests as "cancelled" so we dont report responses */
ret = pthread_mutex_lock(pendingRequestsMutexHook);
assert (ret == 0);
p_cur = *pendingRequestsHook;
for (p_cur = *pendingRequestsHook
; p_cur != NULL
; p_cur = p_cur->p_next
) {
p_cur->cancelled = 1;
}
ret = pthread_mutex_unlock(pendingRequestsMutexHook);
assert (ret == 0);
}
static void processCommandsCallback(int fd, short flags, void *param) {
RecordStream *p_rs;
void *p_record;
size_t recordlen;
int ret;
SocketListenParam *p_info = (SocketListenParam *)param;
assert(fd == p_info->fdCommand);
p_rs = p_info->p_rs;
for (;;) {
/* loop until EAGAIN/EINTR, end of stream, or other error */
ret = record_stream_get_next(p_rs, &p_record, &recordlen);
if (ret == 0 && p_record == NULL) {
/* end-of-stream */
break;
} else if (ret < 0) {
break;
} else if (ret == 0) { /* && p_record != NULL */
processCommandBuffer(p_record, recordlen, p_info->socket_id);
}
}
if (ret == 0 || !(errno == EAGAIN || errno == EINTR)) {
/* fatal error or end-of-stream */
if (ret != 0) {
RLOGE("error on reading command socket errno:%d\n", errno);
} else {
RLOGW("EOS. Closing command socket.");
}
close(fd);
p_info->fdCommand = -1;
ril_event_del(p_info->commands_event);
record_stream_free(p_rs);
/* start listening for new connections again */
rilEventAddWakeup(&s_listen_event);
onCommandsSocketClosed(p_info->socket_id);
}
}
static void onNewCommandConnect(RIL_SOCKET_ID socket_id) {
// Inform we are connected and the ril version
int rilVer = s_callbacks.version;
RIL_UNSOL_RESPONSE(RIL_UNSOL_RIL_CONNECTED,
&rilVer, sizeof(rilVer), socket_id);
// implicit radio state changed
RIL_UNSOL_RESPONSE(RIL_UNSOL_RESPONSE_RADIO_STATE_CHANGED,
NULL, 0, socket_id);
// Send last NITZ time data, in case it was missed
if (s_lastNITZTimeData != NULL) {
sendResponseRaw(s_lastNITZTimeData, s_lastNITZTimeDataSize, socket_id);
free(s_lastNITZTimeData);
s_lastNITZTimeData = NULL;
}
// Get version string
if (s_callbacks.getVersion != NULL) {
const char *version;
version = s_callbacks.getVersion();
RLOGI("RIL Daemon version: %s\n", version);
property_set(PROPERTY_RIL_IMPL, version);
} else {
RLOGI("RIL Daemon version: unavailable\n");
property_set(PROPERTY_RIL_IMPL, "unavailable");
}
}
static void listenCallback (int fd, short flags, void *param) {
int ret;
int err;
int is_phone_socket;
int fdCommand = -1;
char* processName;
RecordStream *p_rs;
MySocketListenParam* listenParam;
RilSocket *sapSocket = NULL;
socketClient *sClient = NULL;
SocketListenParam *p_info = (SocketListenParam *)param;
if(RIL_SAP_SOCKET == p_info->type) {
listenParam = (MySocketListenParam *)param;
sapSocket = listenParam->socket;
}
struct sockaddr_un peeraddr;
socklen_t socklen = sizeof (peeraddr);
struct ucred creds;
socklen_t szCreds = sizeof(creds);
struct passwd *pwd = NULL;
if(NULL == sapSocket) {
assert (*p_info->fdCommand < 0);
assert (fd == *p_info->fdListen);
processName = PHONE_PROCESS;
} else {
assert (sapSocket->commandFd < 0);
assert (fd == sapSocket->listenFd);
processName = BLUETOOTH_PROCESS;
}
fdCommand = accept(fd, (sockaddr *) &peeraddr, &socklen);
if (fdCommand < 0 ) {
RLOGE("Error on accept() errno:%d", errno);
/* start listening for new connections again */
if(NULL == sapSocket) {
rilEventAddWakeup(p_info->listen_event);
} else {
rilEventAddWakeup(sapSocket->getListenEvent());
}
return;
}
/* check the credential of the other side and only accept socket from
* phone process
*/
errno = 0;
is_phone_socket = 0;
err = getsockopt(fdCommand, SOL_SOCKET, SO_PEERCRED, &creds, &szCreds);
if (err == 0 && szCreds > 0) {
errno = 0;
pwd = getpwuid(creds.uid);
if (pwd != NULL) {
if (strcmp(pwd->pw_name, processName) == 0) {
is_phone_socket = 1;
} else {
RLOGE("RILD can't accept socket from process %s", pwd->pw_name);
}
} else {
RLOGE("Error on getpwuid() errno: %d", errno);
}
} else {
RLOGD("Error on getsockopt() errno: %d", errno);
}
if (!is_phone_socket) {
RLOGE("RILD must accept socket from %s", processName);
close(fdCommand);
fdCommand = -1;
if(NULL == sapSocket) {
onCommandsSocketClosed(p_info->socket_id);
/* start listening for new connections again */
rilEventAddWakeup(p_info->listen_event);
} else {
sapSocket->onCommandsSocketClosed();
/* start listening for new connections again */
rilEventAddWakeup(sapSocket->getListenEvent());
}
return;
}
ret = fcntl(fdCommand, F_SETFL, O_NONBLOCK);
if (ret < 0) {
RLOGE ("Error setting O_NONBLOCK errno:%d", errno);
}
if(NULL == sapSocket) {
RLOGI("libril: new connection to %s", rilSocketIdToString(p_info->socket_id));
p_info->fdCommand = fdCommand;
p_rs = record_stream_new(p_info->fdCommand, MAX_COMMAND_BYTES);
p_info->p_rs = p_rs;
ril_event_set (p_info->commands_event, p_info->fdCommand, 1,
p_info->processCommandsCallback, p_info);
rilEventAddWakeup (p_info->commands_event);
onNewCommandConnect(p_info->socket_id);
} else {
RLOGI("libril: new connection");
sapSocket->setCommandFd(fdCommand);
p_rs = record_stream_new(sapSocket->getCommandFd(), MAX_COMMAND_BYTES);
sClient = new socketClient(sapSocket,p_rs);
ril_event_set (sapSocket->getCallbackEvent(), sapSocket->getCommandFd(), 1,
sapSocket->getCommandCb(), sClient);
rilEventAddWakeup(sapSocket->getCallbackEvent());
sapSocket->onNewCommandConnect();
}
}
static void freeDebugCallbackArgs(int number, char **args) {
for (int i = 0; i < number; i++) {
if (args[i] != NULL) {
free(args[i]);
}
}
free(args);
}
static void debugCallback (int fd, short flags, void *param) {
int acceptFD, option;
struct sockaddr_un peeraddr;
socklen_t socklen = sizeof (peeraddr);
int data;
unsigned int qxdm_data[6];
const char *deactData[1] = {"1"};
char *actData[1];
RIL_Dial dialData;
int hangupData[1] = {1};
int number;
char **args;
RIL_SOCKET_ID socket_id = RIL_SOCKET_1;
int sim_id = 0;
RLOGI("debugCallback for socket %s", rilSocketIdToString(socket_id));
acceptFD = accept (fd, (sockaddr *) &peeraddr, &socklen);
if (acceptFD < 0) {
RLOGE ("error accepting on debug port: %d\n", errno);
return;
}
if (recv(acceptFD, &number, sizeof(int), 0) != sizeof(int)) {
RLOGE ("error reading on socket: number of Args: \n");
close(acceptFD);
return;
}
args = (char **) malloc(sizeof(char*) * number);
if (args == NULL) {
RLOGE("Memory allocation failed for debug args");
close(acceptFD);
return;
}
for (int i = 0; i < number; i++) {
int len;
if (recv(acceptFD, &len, sizeof(int), 0) != sizeof(int)) {
RLOGE ("error reading on socket: Len of Args: \n");
freeDebugCallbackArgs(i, args);
close(acceptFD);
return;
}
// +1 for null-term
args[i] = (char *) malloc((sizeof(char) * len) + 1);
if (args[i] == NULL) {
RLOGE("Memory allocation failed for debug args");
freeDebugCallbackArgs(i, args);
close(acceptFD);
return;
}
if (recv(acceptFD, args[i], sizeof(char) * len, 0)
!= (int)sizeof(char) * len) {
RLOGE ("error reading on socket: Args[%d] \n", i);
freeDebugCallbackArgs(i, args);
close(acceptFD);
return;
}
char * buf = args[i];
buf[len] = 0;
if ((i+1) == number) {
/* The last argument should be sim id 0(SIM1)~3(SIM4) */
sim_id = atoi(args[i]);
switch (sim_id) {
case 0:
socket_id = RIL_SOCKET_1;
break;
#if (SIM_COUNT >= 2)
case 1:
socket_id = RIL_SOCKET_2;
break;
#endif
#if (SIM_COUNT >= 3)
case 2:
socket_id = RIL_SOCKET_3;
break;
#endif
#if (SIM_COUNT >= 4)
case 3:
socket_id = RIL_SOCKET_4;
break;
#endif
default:
socket_id = RIL_SOCKET_1;
break;
}
}
}
switch (atoi(args[0])) {
case 0:
RLOGI ("Connection on debug port: issuing reset.");
issueLocalRequest(RIL_REQUEST_RESET_RADIO, NULL, 0, socket_id);
break;
case 1:
RLOGI ("Connection on debug port: issuing radio power off.");
data = 0;
issueLocalRequest(RIL_REQUEST_RADIO_POWER, &data, sizeof(int), socket_id);
// Close the socket
if (socket_id == RIL_SOCKET_1 && s_ril_param_socket.fdCommand > 0) {
close(s_ril_param_socket.fdCommand);
s_ril_param_socket.fdCommand = -1;
}
#if (SIM_COUNT == 2)
else if (socket_id == RIL_SOCKET_2 && s_ril_param_socket2.fdCommand > 0) {
close(s_ril_param_socket2.fdCommand);
s_ril_param_socket2.fdCommand = -1;
}
#endif
break;
case 2:
RLOGI ("Debug port: issuing unsolicited voice network change.");
RIL_UNSOL_RESPONSE(RIL_UNSOL_RESPONSE_VOICE_NETWORK_STATE_CHANGED, NULL, 0, socket_id);
break;
case 3:
RLOGI ("Debug port: QXDM log enable.");
qxdm_data[0] = 65536; // head.func_tag
qxdm_data[1] = 16; // head.len
qxdm_data[2] = 1; // mode: 1 for 'start logging'
qxdm_data[3] = 32; // log_file_size: 32megabytes
qxdm_data[4] = 0; // log_mask
qxdm_data[5] = 8; // log_max_fileindex
issueLocalRequest(RIL_REQUEST_OEM_HOOK_RAW, qxdm_data,
6 * sizeof(int), socket_id);
break;
case 4:
RLOGI ("Debug port: QXDM log disable.");
qxdm_data[0] = 65536;
qxdm_data[1] = 16;
qxdm_data[2] = 0; // mode: 0 for 'stop logging'
qxdm_data[3] = 32;
qxdm_data[4] = 0;
qxdm_data[5] = 8;
issueLocalRequest(RIL_REQUEST_OEM_HOOK_RAW, qxdm_data,
6 * sizeof(int), socket_id);
break;
case 5:
RLOGI("Debug port: Radio On");
data = 1;
issueLocalRequest(RIL_REQUEST_RADIO_POWER, &data, sizeof(int), socket_id);
sleep(2);
// Set network selection automatic.
issueLocalRequest(RIL_REQUEST_SET_NETWORK_SELECTION_AUTOMATIC, NULL, 0, socket_id);
break;
case 6:
RLOGI("Debug port: Setup Data Call, Apn :%s\n", args[1]);
actData[0] = args[1];
issueLocalRequest(RIL_REQUEST_SETUP_DATA_CALL, &actData,
sizeof(actData), socket_id);
break;
case 7:
RLOGI("Debug port: Deactivate Data Call");
issueLocalRequest(RIL_REQUEST_DEACTIVATE_DATA_CALL, &deactData,
sizeof(deactData), socket_id);
break;
case 8:
RLOGI("Debug port: Dial Call");
dialData.clir = 0;
dialData.address = args[1];
issueLocalRequest(RIL_REQUEST_DIAL, &dialData, sizeof(dialData), socket_id);
break;
case 9:
RLOGI("Debug port: Answer Call");
issueLocalRequest(RIL_REQUEST_ANSWER, NULL, 0, socket_id);
break;
case 10:
RLOGI("Debug port: End Call");
issueLocalRequest(RIL_REQUEST_HANGUP, &hangupData,
sizeof(hangupData), socket_id);
break;
default:
RLOGE ("Invalid request");
break;
}
freeDebugCallbackArgs(number, args);
close(acceptFD);
}
static void userTimerCallback (int fd, short flags, void *param) {
UserCallbackInfo *p_info;
p_info = (UserCallbackInfo *)param;
p_info->p_callback(p_info->userParam);
// FIXME generalize this...there should be a cancel mechanism
if (s_last_wake_timeout_info != NULL && s_last_wake_timeout_info == p_info) {
s_last_wake_timeout_info = NULL;
}
free(p_info);
}
static void *
eventLoop(void *param) {
int ret;
int filedes[2];
ril_event_init();
pthread_mutex_lock(&s_startupMutex);
s_started = 1;
pthread_cond_broadcast(&s_startupCond);
pthread_mutex_unlock(&s_startupMutex);
ret = pipe(filedes);
if (ret < 0) {
RLOGE("Error in pipe() errno:%d", errno);
return NULL;
}
s_fdWakeupRead = filedes[0];
s_fdWakeupWrite = filedes[1];
fcntl(s_fdWakeupRead, F_SETFL, O_NONBLOCK);
ril_event_set (&s_wakeupfd_event, s_fdWakeupRead, true,
processWakeupCallback, NULL);
rilEventAddWakeup (&s_wakeupfd_event);
// Only returns on error
ril_event_loop();
RLOGE ("error in event_loop_base errno:%d", errno);
// kill self to restart on error
kill(0, SIGKILL);
return NULL;
}
extern "C" void
RIL_startEventLoop(void) {
/* spin up eventLoop thread and wait for it to get started */
s_started = 0;
pthread_mutex_lock(&s_startupMutex);
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
int result = pthread_create(&s_tid_dispatch, &attr, eventLoop, NULL);
if (result != 0) {
RLOGE("Failed to create dispatch thread: %s", strerror(result));
goto done;
}
while (s_started == 0) {
pthread_cond_wait(&s_startupCond, &s_startupMutex);
}
done:
pthread_mutex_unlock(&s_startupMutex);
}
// Used for testing purpose only.
extern "C" void RIL_setcallbacks (const RIL_RadioFunctions *callbacks) {
memcpy(&s_callbacks, callbacks, sizeof (RIL_RadioFunctions));
}
static void startListen(RIL_SOCKET_ID socket_id, SocketListenParam* socket_listen_p) {
int fdListen = -1;
int ret;
char socket_name[10];
memset(socket_name, 0, sizeof(char)*10);
switch(socket_id) {
case RIL_SOCKET_1:
strncpy(socket_name, RIL_getRilSocketName(), 9);
break;
#if (SIM_COUNT >= 2)
case RIL_SOCKET_2:
strncpy(socket_name, SOCKET2_NAME_RIL, 9);
break;
#endif
#if (SIM_COUNT >= 3)
case RIL_SOCKET_3:
strncpy(socket_name, SOCKET3_NAME_RIL, 9);
break;
#endif
#if (SIM_COUNT >= 4)
case RIL_SOCKET_4:
strncpy(socket_name, SOCKET4_NAME_RIL, 9);
break;
#endif
default:
RLOGE("Socket id is wrong!!");
return;
}
RLOGI("Start to listen %s", rilSocketIdToString(socket_id));
fdListen = android_get_control_socket(socket_name);
if (fdListen < 0) {
RLOGE("Failed to get socket %s", socket_name);
exit(-1);
}
ret = listen(fdListen, 4);
if (ret < 0) {
RLOGE("Failed to listen on control socket '%d': %s",
fdListen, strerror(errno));
exit(-1);
}
socket_listen_p->fdListen = fdListen;
/* note: non-persistent so we can accept only one connection at a time */
ril_event_set (socket_listen_p->listen_event, fdListen, false,
listenCallback, socket_listen_p);
rilEventAddWakeup (socket_listen_p->listen_event);
}
extern "C" void
RIL_register (const RIL_RadioFunctions *callbacks) {
int ret;
int flags;
RLOGI("SIM_COUNT: %d", SIM_COUNT);
if (callbacks == NULL) {
RLOGE("RIL_register: RIL_RadioFunctions * null");
return;
}
if (callbacks->version < RIL_VERSION_MIN) {
RLOGE("RIL_register: version %d is to old, min version is %d",
callbacks->version, RIL_VERSION_MIN);
return;
}
RLOGE("RIL_register: RIL version %d", callbacks->version);
if (s_registerCalled > 0) {
RLOGE("RIL_register has been called more than once. "
"Subsequent call ignored");
return;
}
memcpy(&s_callbacks, callbacks, sizeof (RIL_RadioFunctions));
/* Initialize socket1 parameters */
s_ril_param_socket = {
RIL_SOCKET_1, /* socket_id */
-1, /* fdListen */
-1, /* fdCommand */
PHONE_PROCESS, /* processName */
&s_commands_event, /* commands_event */
&s_listen_event, /* listen_event */
processCommandsCallback, /* processCommandsCallback */
NULL /* p_rs */
};
#if (SIM_COUNT >= 2)
s_ril_param_socket2 = {
RIL_SOCKET_2, /* socket_id */
-1, /* fdListen */
-1, /* fdCommand */
PHONE_PROCESS, /* processName */
&s_commands_event_socket2, /* commands_event */
&s_listen_event_socket2, /* listen_event */
processCommandsCallback, /* processCommandsCallback */
NULL /* p_rs */
};
#endif
#if (SIM_COUNT >= 3)
s_ril_param_socket3 = {
RIL_SOCKET_3, /* socket_id */
-1, /* fdListen */
-1, /* fdCommand */
PHONE_PROCESS, /* processName */
&s_commands_event_socket3, /* commands_event */
&s_listen_event_socket3, /* listen_event */
processCommandsCallback, /* processCommandsCallback */
NULL /* p_rs */
};
#endif
#if (SIM_COUNT >= 4)
s_ril_param_socket4 = {
RIL_SOCKET_4, /* socket_id */
-1, /* fdListen */
-1, /* fdCommand */
PHONE_PROCESS, /* processName */
&s_commands_event_socket4, /* commands_event */
&s_listen_event_socket4, /* listen_event */
processCommandsCallback, /* processCommandsCallback */
NULL /* p_rs */
};
#endif
s_registerCalled = 1;
RLOGI("s_registerCalled flag set, %d", s_started);
// Little self-check
for (int i = 0; i < (int)NUM_ELEMS(s_commands); i++) {
assert(i == s_commands[i].requestNumber);
}
for (int i = 0; i < (int)NUM_ELEMS(s_commands_v); i++) {
assert(i + RIL_VENDOR_COMMANDS_OFFSET == s_commands[i].requestNumber);
}
for (int i = 0; i < (int)NUM_ELEMS(s_unsolResponses); i++) {
assert(i + RIL_UNSOL_RESPONSE_BASE
== s_unsolResponses[i].requestNumber);
}
for (int i = 0; i < (int)NUM_ELEMS(s_unsolResponses_v); i++) {
assert(i + RIL_UNSOL_RESPONSE_BASE + RIL_VENDOR_COMMANDS_OFFSET
== s_unsolResponses[i].requestNumber);
}
// New rild impl calls RIL_startEventLoop() first
// old standalone impl wants it here.
if (s_started == 0) {
RIL_startEventLoop();
}
// start listen socket1
startListen(RIL_SOCKET_1, &s_ril_param_socket);
#if (SIM_COUNT >= 2)
// start listen socket2
startListen(RIL_SOCKET_2, &s_ril_param_socket2);
#endif /* (SIM_COUNT == 2) */
#if (SIM_COUNT >= 3)
// start listen socket3
startListen(RIL_SOCKET_3, &s_ril_param_socket3);
#endif /* (SIM_COUNT == 3) */
#if (SIM_COUNT >= 4)
// start listen socket4
startListen(RIL_SOCKET_4, &s_ril_param_socket4);
#endif /* (SIM_COUNT == 4) */
#if 1
// start debug interface socket
char *inst = NULL;
if (strlen(RIL_getRilSocketName()) >= strlen(SOCKET_NAME_RIL)) {
inst = RIL_getRilSocketName() + strlen(SOCKET_NAME_RIL);
}
char rildebug[MAX_DEBUG_SOCKET_NAME_LENGTH] = SOCKET_NAME_RIL_DEBUG;
if (inst != NULL) {
snprintf(rildebug, sizeof(rildebug), "%s%s", SOCKET_NAME_RIL_DEBUG, inst);
}
s_fdDebug = android_get_control_socket(rildebug);
if (s_fdDebug < 0) {
RLOGE("Failed to get socket : %s errno:%d", rildebug, errno);
exit(-1);
}
ret = listen(s_fdDebug, 4);
if (ret < 0) {
RLOGE("Failed to listen on ril debug socket '%d': %s",
s_fdDebug, strerror(errno));
exit(-1);
}
ril_event_set (&s_debug_event, s_fdDebug, true,
debugCallback, NULL);
rilEventAddWakeup (&s_debug_event);
#endif
}
extern "C" void
RIL_register_socket (RIL_RadioFunctions *(*Init)(const struct RIL_Env *, int, char **),RIL_SOCKET_TYPE socketType, int argc, char **argv) {
RIL_RadioFunctions* UimFuncs = NULL;
if(Init) {
UimFuncs = Init(&RilSapSocket::uimRilEnv, argc, argv);
switch(socketType) {
case RIL_SAP_SOCKET:
RilSapSocket::initSapSocket("sap_uim_socket1", UimFuncs);
#if (SIM_COUNT >= 2)
RilSapSocket::initSapSocket("sap_uim_socket2", UimFuncs);
#endif
#if (SIM_COUNT >= 3)
RilSapSocket::initSapSocket("sap_uim_socket3", UimFuncs);
#endif
#if (SIM_COUNT >= 4)
RilSapSocket::initSapSocket("sap_uim_socket4", UimFuncs);
#endif
}
}
}
// Check and remove RequestInfo if its a response and not just ack sent back
static int
checkAndDequeueRequestInfoIfAck(struct RequestInfo *pRI, bool isAck) {
int ret = 0;
/* Hook for current context
pendingRequestsMutextHook refer to &s_pendingRequestsMutex */
pthread_mutex_t* pendingRequestsMutexHook = &s_pendingRequestsMutex;
/* pendingRequestsHook refer to &s_pendingRequests */
RequestInfo ** pendingRequestsHook = &s_pendingRequests;
if (pRI == NULL) {
return 0;
}
#if (SIM_COUNT >= 2)
if (pRI->socket_id == RIL_SOCKET_2) {
pendingRequestsMutexHook = &s_pendingRequestsMutex_socket2;
pendingRequestsHook = &s_pendingRequests_socket2;
}
#if (SIM_COUNT >= 3)
if (pRI->socket_id == RIL_SOCKET_3) {
pendingRequestsMutexHook = &s_pendingRequestsMutex_socket3;
pendingRequestsHook = &s_pendingRequests_socket3;
}
#endif
#if (SIM_COUNT >= 4)
if (pRI->socket_id == RIL_SOCKET_4) {
pendingRequestsMutexHook = &s_pendingRequestsMutex_socket4;
pendingRequestsHook = &s_pendingRequests_socket4;
}
#endif
#endif
pthread_mutex_lock(pendingRequestsMutexHook);
for(RequestInfo **ppCur = pendingRequestsHook
; *ppCur != NULL
; ppCur = &((*ppCur)->p_next)
) {
if (pRI == *ppCur) {
ret = 1;
if (isAck) { // Async ack
if (pRI->wasAckSent == 1) {
RLOGD("Ack was already sent for %s", requestToString(pRI->pCI->requestNumber));
} else {
pRI->wasAckSent = 1;
}
} else {
*ppCur = (*ppCur)->p_next;
}
break;
}
}
pthread_mutex_unlock(pendingRequestsMutexHook);
return ret;
}
static int findFd(int socket_id) {
int fd = s_ril_param_socket.fdCommand;
#if (SIM_COUNT >= 2)
if (socket_id == RIL_SOCKET_2) {
fd = s_ril_param_socket2.fdCommand;
}
#if (SIM_COUNT >= 3)
if (socket_id == RIL_SOCKET_3) {
fd = s_ril_param_socket3.fdCommand;
}
#endif
#if (SIM_COUNT >= 4)
if (socket_id == RIL_SOCKET_4) {
fd = s_ril_param_socket4.fdCommand;
}
#endif
#endif
return fd;
}
extern "C" void
RIL_onRequestAck(RIL_Token t) {
RequestInfo *pRI;
int ret, fd;
size_t errorOffset;
RIL_SOCKET_ID socket_id = RIL_SOCKET_1;
pRI = (RequestInfo *)t;
if (!checkAndDequeueRequestInfoIfAck(pRI, true)) {
RLOGE ("RIL_onRequestAck: invalid RIL_Token");
return;
}
socket_id = pRI->socket_id;
fd = findFd(socket_id);
#if VDBG
RLOGD("Request Ack, %s", rilSocketIdToString(socket_id));
#endif
appendPrintBuf("Ack [%04d]< %s", pRI->token, requestToString(pRI->pCI->requestNumber));
if (pRI->cancelled == 0) {
Parcel p;
p.writeInt32 (RESPONSE_SOLICITED_ACK);
p.writeInt32 (pRI->token);
if (fd < 0) {
RLOGD ("RIL onRequestComplete: Command channel closed");
}
sendResponse(p, socket_id);
}
}
extern "C" void
RIL_onRequestComplete(RIL_Token t, RIL_Errno e, void *response, size_t responselen) {
RequestInfo *pRI;
int ret;
int fd;
size_t errorOffset;
RIL_SOCKET_ID socket_id = RIL_SOCKET_1;
pRI = (RequestInfo *)t;
if (!checkAndDequeueRequestInfoIfAck(pRI, false)) {
RLOGE ("RIL_onRequestComplete: invalid RIL_Token");
return;
}
socket_id = pRI->socket_id;
fd = findFd(socket_id);
#if VDBG
RLOGD("RequestComplete, %s", rilSocketIdToString(socket_id));
#endif
if (pRI->local > 0) {
// Locally issued command...void only!
// response does not go back up the command socket
RLOGD("C[locl]< %s", requestToString(pRI->pCI->requestNumber));
goto done;
}
appendPrintBuf("[%04d]< %s",
pRI->token, requestToString(pRI->pCI->requestNumber));
if (pRI->cancelled == 0) {
Parcel p;
if (s_callbacks.version >= 13 && pRI->wasAckSent == 1) {
// If ack was already sent, then this call is an asynchronous response. So we need to
// send id indicating that we expect an ack from RIL.java as we acquire wakelock here.
p.writeInt32 (RESPONSE_SOLICITED_ACK_EXP);
grabPartialWakeLock();
} else {
p.writeInt32 (RESPONSE_SOLICITED);
}
p.writeInt32 (pRI->token);
errorOffset = p.dataPosition();
p.writeInt32 (e);
if (response != NULL) {
// there is a response payload, no matter success or not.
ret = pRI->pCI->responseFunction(p, response, responselen);
/* if an error occurred, rewind and mark it */
if (ret != 0) {
RLOGE ("responseFunction error, ret %d", ret);
p.setDataPosition(errorOffset);
p.writeInt32 (ret);
}
}
if (e != RIL_E_SUCCESS) {
appendPrintBuf("%s fails by %s", printBuf, failCauseToString(e));
}
if (fd < 0) {
RLOGD ("RIL onRequestComplete: Command channel closed");
}
sendResponse(p, socket_id);
}
done:
free(pRI);
}
static void
grabPartialWakeLock() {
if (s_callbacks.version >= 13) {
int ret;
ret = pthread_mutex_lock(&s_wakeLockCountMutex);
assert(ret == 0);
acquire_wake_lock(PARTIAL_WAKE_LOCK, ANDROID_WAKE_LOCK_NAME);
UserCallbackInfo *p_info =
internalRequestTimedCallback(wakeTimeoutCallback, NULL, &TIMEVAL_WAKE_TIMEOUT);
if (p_info == NULL) {
release_wake_lock(ANDROID_WAKE_LOCK_NAME);
} else {
s_wakelock_count++;
if (s_last_wake_timeout_info != NULL) {
s_last_wake_timeout_info->userParam = (void *)1;
}
s_last_wake_timeout_info = p_info;
}
ret = pthread_mutex_unlock(&s_wakeLockCountMutex);
assert(ret == 0);
} else {
acquire_wake_lock(PARTIAL_WAKE_LOCK, ANDROID_WAKE_LOCK_NAME);
}
}
static void
releaseWakeLock() {
if (s_callbacks.version >= 13) {
int ret;
ret = pthread_mutex_lock(&s_wakeLockCountMutex);
assert(ret == 0);
if (s_wakelock_count > 1) {
s_wakelock_count--;
} else {
s_wakelock_count = 0;
release_wake_lock(ANDROID_WAKE_LOCK_NAME);
if (s_last_wake_timeout_info != NULL) {
s_last_wake_timeout_info->userParam = (void *)1;
}
}
ret = pthread_mutex_unlock(&s_wakeLockCountMutex);
assert(ret == 0);
} else {
release_wake_lock(ANDROID_WAKE_LOCK_NAME);
}
}
/**
* Timer callback to put us back to sleep before the default timeout
*/
static void
wakeTimeoutCallback (void *param) {
// We're using "param != NULL" as a cancellation mechanism
if (s_callbacks.version >= 13) {
if (param == NULL) {
int ret;
ret = pthread_mutex_lock(&s_wakeLockCountMutex);
assert(ret == 0);
s_wakelock_count = 0;
release_wake_lock(ANDROID_WAKE_LOCK_NAME);
ret = pthread_mutex_unlock(&s_wakeLockCountMutex);
assert(ret == 0);
}
} else {
if (param == NULL) {
releaseWakeLock();
}
}
}
static int
decodeVoiceRadioTechnology (RIL_RadioState radioState) {
switch (radioState) {
case RADIO_STATE_SIM_NOT_READY:
case RADIO_STATE_SIM_LOCKED_OR_ABSENT:
case RADIO_STATE_SIM_READY:
return RADIO_TECH_UMTS;
case RADIO_STATE_RUIM_NOT_READY:
case RADIO_STATE_RUIM_READY:
case RADIO_STATE_RUIM_LOCKED_OR_ABSENT:
case RADIO_STATE_NV_NOT_READY:
case RADIO_STATE_NV_READY:
return RADIO_TECH_1xRTT;
default:
RLOGD("decodeVoiceRadioTechnology: Invoked with incorrect RadioState");
return -1;
}
}
static int
decodeCdmaSubscriptionSource (RIL_RadioState radioState) {
switch (radioState) {
case RADIO_STATE_SIM_NOT_READY:
case RADIO_STATE_SIM_LOCKED_OR_ABSENT:
case RADIO_STATE_SIM_READY:
case RADIO_STATE_RUIM_NOT_READY:
case RADIO_STATE_RUIM_READY:
case RADIO_STATE_RUIM_LOCKED_OR_ABSENT:
return CDMA_SUBSCRIPTION_SOURCE_RUIM_SIM;
case RADIO_STATE_NV_NOT_READY:
case RADIO_STATE_NV_READY:
return CDMA_SUBSCRIPTION_SOURCE_NV;
default:
RLOGD("decodeCdmaSubscriptionSource: Invoked with incorrect RadioState");
return -1;
}
}
static int
decodeSimStatus (RIL_RadioState radioState) {
switch (radioState) {
case RADIO_STATE_SIM_NOT_READY:
case RADIO_STATE_RUIM_NOT_READY:
case RADIO_STATE_NV_NOT_READY:
case RADIO_STATE_NV_READY:
return -1;
case RADIO_STATE_SIM_LOCKED_OR_ABSENT:
case RADIO_STATE_SIM_READY:
case RADIO_STATE_RUIM_READY:
case RADIO_STATE_RUIM_LOCKED_OR_ABSENT:
return radioState;
default:
RLOGD("decodeSimStatus: Invoked with incorrect RadioState");
return -1;
}
}
static bool is3gpp2(int radioTech) {
switch (radioTech) {
case RADIO_TECH_IS95A:
case RADIO_TECH_IS95B:
case RADIO_TECH_1xRTT:
case RADIO_TECH_EVDO_0:
case RADIO_TECH_EVDO_A:
case RADIO_TECH_EVDO_B:
case RADIO_TECH_EHRPD:
return true;
default:
return false;
}
}
/* If RIL sends SIM states or RUIM states, store the voice radio
* technology and subscription source information so that they can be
* returned when telephony framework requests them
*/
static RIL_RadioState
processRadioState(RIL_RadioState newRadioState, RIL_SOCKET_ID socket_id) {
if((newRadioState > RADIO_STATE_UNAVAILABLE) && (newRadioState < RADIO_STATE_ON)) {
int newVoiceRadioTech;
int newCdmaSubscriptionSource;
int newSimStatus;
/* This is old RIL. Decode Subscription source and Voice Radio Technology
from Radio State and send change notifications if there has been a change */
newVoiceRadioTech = decodeVoiceRadioTechnology(newRadioState);
if(newVoiceRadioTech != voiceRadioTech) {
voiceRadioTech = newVoiceRadioTech;
RIL_UNSOL_RESPONSE(RIL_UNSOL_VOICE_RADIO_TECH_CHANGED,
&voiceRadioTech, sizeof(voiceRadioTech), socket_id);
}
if(is3gpp2(newVoiceRadioTech)) {
newCdmaSubscriptionSource = decodeCdmaSubscriptionSource(newRadioState);
if(newCdmaSubscriptionSource != cdmaSubscriptionSource) {
cdmaSubscriptionSource = newCdmaSubscriptionSource;
RIL_UNSOL_RESPONSE(RIL_UNSOL_CDMA_SUBSCRIPTION_SOURCE_CHANGED,
&cdmaSubscriptionSource, sizeof(cdmaSubscriptionSource), socket_id);
}
}
newSimStatus = decodeSimStatus(newRadioState);
if(newSimStatus != simRuimStatus) {
simRuimStatus = newSimStatus;
RIL_UNSOL_RESPONSE(RIL_UNSOL_RESPONSE_SIM_STATUS_CHANGED, NULL, 0, socket_id);
}
/* Send RADIO_ON to telephony */
newRadioState = RADIO_STATE_ON;
}
return newRadioState;
}
#if defined(ANDROID_MULTI_SIM)
extern "C"
void RIL_onUnsolicitedResponse(int unsolResponse, const void *data,
size_t datalen, RIL_SOCKET_ID socket_id)
#else
extern "C"
void RIL_onUnsolicitedResponse(int unsolResponse, const void *data,
size_t datalen)
#endif
{
int ret;
int64_t timeReceived = 0;
bool shouldScheduleTimeout = false;
RIL_RadioState newState;
RIL_SOCKET_ID soc_id = RIL_SOCKET_1;
UnsolResponseInfo *pRI = NULL;
#if defined(ANDROID_MULTI_SIM)
soc_id = socket_id;
#endif
if (s_registerCalled == 0) {
// Ignore RIL_onUnsolicitedResponse before RIL_register
RLOGW("RIL_onUnsolicitedResponse called before RIL_register");
return;
}
/* Hack to include Samsung responses */
if (unsolResponse > RIL_VENDOR_COMMANDS_OFFSET + RIL_UNSOL_RESPONSE_BASE) {
int index = unsolResponse - RIL_VENDOR_COMMANDS_OFFSET - RIL_UNSOL_RESPONSE_BASE;
RLOGD("SAMSUNG: unsolResponse=%d, unsolResponseIndex=%d", unsolResponse, index);
if (index < (int32_t)NUM_ELEMS(s_unsolResponses_v))
pRI = &s_unsolResponses_v[index];
} else {
int index = unsolResponse - RIL_UNSOL_RESPONSE_BASE;
if (index < (int32_t)NUM_ELEMS(s_unsolResponses))
pRI = &s_unsolResponses[index];
}
if (pRI == NULL || pRI->responseFunction == NULL) {
RLOGE("unsupported unsolicited response code %d", unsolResponse);
return;
}
// Grab a wake lock if needed for this reponse,
// as we exit we'll either release it immediately
// or set a timer to release it later.
switch (pRI->wakeType) {
case WAKE_PARTIAL:
grabPartialWakeLock();
shouldScheduleTimeout = true;
break;
case DONT_WAKE:
default:
// No wake lock is grabed so don't set timeout
shouldScheduleTimeout = false;
break;
}
// Mark the time this was received, doing this
// after grabing the wakelock incase getting
// the elapsedRealTime might cause us to goto
// sleep.
if (unsolResponse == RIL_UNSOL_NITZ_TIME_RECEIVED) {
timeReceived = elapsedRealtime();
}
appendPrintBuf("[UNSL]< %s", requestToString(unsolResponse));
Parcel p;
if (s_callbacks.version >= 13
&& pRI->wakeType == WAKE_PARTIAL) {
p.writeInt32 (RESPONSE_UNSOLICITED_ACK_EXP);
} else {
p.writeInt32 (RESPONSE_UNSOLICITED);
}
p.writeInt32 (unsolResponse);
ret = pRI->responseFunction(p, const_cast<void*>(data), datalen);
if (ret != 0) {
// Problem with the response. Don't continue;
goto error_exit;
}
// some things get more payload
switch(unsolResponse) {
case RIL_UNSOL_RESPONSE_RADIO_STATE_CHANGED:
newState = processRadioState(CALL_ONSTATEREQUEST(soc_id), soc_id);
p.writeInt32(newState);
appendPrintBuf("%s {%s}", printBuf,
radioStateToString(CALL_ONSTATEREQUEST(soc_id)));
break;
case RIL_UNSOL_NITZ_TIME_RECEIVED:
// Store the time that this was received so the
// handler of this message can account for
// the time it takes to arrive and process. In
// particular the system has been known to sleep
// before this message can be processed.
p.writeInt64(timeReceived);
break;
}
if (s_callbacks.version < 13) {
if (shouldScheduleTimeout) {
UserCallbackInfo *p_info = internalRequestTimedCallback(wakeTimeoutCallback, NULL,
&TIMEVAL_WAKE_TIMEOUT);
if (p_info == NULL) {
goto error_exit;
} else {
// Cancel the previous request
if (s_last_wake_timeout_info != NULL) {
s_last_wake_timeout_info->userParam = (void *)1;
}
s_last_wake_timeout_info = p_info;
}
}
}
#if VDBG
RLOGI("%s UNSOLICITED: %s length:%d", rilSocketIdToString(soc_id), requestToString(unsolResponse), p.dataSize());
#endif
ret = sendResponse(p, soc_id);
if (ret != 0 && unsolResponse == RIL_UNSOL_NITZ_TIME_RECEIVED) {
// Unfortunately, NITZ time is not poll/update like everything
// else in the system. So, if the upstream client isn't connected,
// keep a copy of the last NITZ response (with receive time noted
// above) around so we can deliver it when it is connected
if (s_lastNITZTimeData != NULL) {
free (s_lastNITZTimeData);
s_lastNITZTimeData = NULL;
}
s_lastNITZTimeData = malloc(p.dataSize());
if (s_lastNITZTimeData == NULL) {
RLOGE("Memory allocation failed in RIL_onUnsolicitedResponse");
goto error_exit;
}
s_lastNITZTimeDataSize = p.dataSize();
memcpy(s_lastNITZTimeData, p.data(), p.dataSize());
}
// Normal exit
return;
error_exit:
if (shouldScheduleTimeout) {
releaseWakeLock();
}
}
/** FIXME generalize this if you track UserCAllbackInfo, clear it
when the callback occurs
*/
static UserCallbackInfo *
internalRequestTimedCallback (RIL_TimedCallback callback, void *param,
const struct timeval *relativeTime)
{
struct timeval myRelativeTime;
UserCallbackInfo *p_info;
p_info = (UserCallbackInfo *) malloc (sizeof(UserCallbackInfo));
if (p_info == NULL) {
RLOGE("Memory allocation failed in internalRequestTimedCallback");
return p_info;
}
p_info->p_callback = callback;
p_info->userParam = param;
if (relativeTime == NULL) {
/* treat null parameter as a 0 relative time */
memset (&myRelativeTime, 0, sizeof(myRelativeTime));
} else {
/* FIXME I think event_add's tv param is really const anyway */
memcpy (&myRelativeTime, relativeTime, sizeof(myRelativeTime));
}
ril_event_set(&(p_info->event), -1, false, userTimerCallback, p_info);
ril_timer_add(&(p_info->event), &myRelativeTime);
triggerEvLoop();
return p_info;
}
extern "C" void
RIL_requestTimedCallback (RIL_TimedCallback callback, void *param,
const struct timeval *relativeTime) {
internalRequestTimedCallback (callback, param, relativeTime);
}
const char *
failCauseToString(RIL_Errno e) {
switch(e) {
case RIL_E_SUCCESS: return "E_SUCCESS";
case RIL_E_RADIO_NOT_AVAILABLE: return "E_RADIO_NOT_AVAILABLE";
case RIL_E_GENERIC_FAILURE: return "E_GENERIC_FAILURE";
case RIL_E_PASSWORD_INCORRECT: return "E_PASSWORD_INCORRECT";
case RIL_E_SIM_PIN2: return "E_SIM_PIN2";
case RIL_E_SIM_PUK2: return "E_SIM_PUK2";
case RIL_E_REQUEST_NOT_SUPPORTED: return "E_REQUEST_NOT_SUPPORTED";
case RIL_E_CANCELLED: return "E_CANCELLED";
case RIL_E_OP_NOT_ALLOWED_DURING_VOICE_CALL: return "E_OP_NOT_ALLOWED_DURING_VOICE_CALL";
case RIL_E_OP_NOT_ALLOWED_BEFORE_REG_TO_NW: return "E_OP_NOT_ALLOWED_BEFORE_REG_TO_NW";
case RIL_E_SMS_SEND_FAIL_RETRY: return "E_SMS_SEND_FAIL_RETRY";
case RIL_E_SIM_ABSENT:return "E_SIM_ABSENT";
case RIL_E_ILLEGAL_SIM_OR_ME:return "E_ILLEGAL_SIM_OR_ME";
#ifdef FEATURE_MULTIMODE_ANDROID
case RIL_E_SUBSCRIPTION_NOT_AVAILABLE:return "E_SUBSCRIPTION_NOT_AVAILABLE";
case RIL_E_MODE_NOT_SUPPORTED:return "E_MODE_NOT_SUPPORTED";
#endif
case RIL_E_FDN_CHECK_FAILURE: return "E_FDN_CHECK_FAILURE";
case RIL_E_MISSING_RESOURCE: return "E_MISSING_RESOURCE";
case RIL_E_NO_SUCH_ELEMENT: return "E_NO_SUCH_ELEMENT";
case RIL_E_DIAL_MODIFIED_TO_USSD: return "E_DIAL_MODIFIED_TO_USSD";
case RIL_E_DIAL_MODIFIED_TO_SS: return "E_DIAL_MODIFIED_TO_SS";
case RIL_E_DIAL_MODIFIED_TO_DIAL: return "E_DIAL_MODIFIED_TO_DIAL";
case RIL_E_USSD_MODIFIED_TO_DIAL: return "E_USSD_MODIFIED_TO_DIAL";
case RIL_E_USSD_MODIFIED_TO_SS: return "E_USSD_MODIFIED_TO_SS";
case RIL_E_USSD_MODIFIED_TO_USSD: return "E_USSD_MODIFIED_TO_USSD";
case RIL_E_SS_MODIFIED_TO_DIAL: return "E_SS_MODIFIED_TO_DIAL";
case RIL_E_SS_MODIFIED_TO_USSD: return "E_SS_MODIFIED_TO_USSD";
case RIL_E_SUBSCRIPTION_NOT_SUPPORTED: return "E_SUBSCRIPTION_NOT_SUPPORTED";
case RIL_E_SS_MODIFIED_TO_SS: return "E_SS_MODIFIED_TO_SS";
case RIL_E_LCE_NOT_SUPPORTED: return "E_LCE_NOT_SUPPORTED";
case RIL_E_NO_MEMORY: return "E_NO_MEMORY";
case RIL_E_INTERNAL_ERR: return "E_INTERNAL_ERR";
case RIL_E_SYSTEM_ERR: return "E_SYSTEM_ERR";
case RIL_E_MODEM_ERR: return "E_MODEM_ERR";
case RIL_E_INVALID_STATE: return "E_INVALID_STATE";
case RIL_E_NO_RESOURCES: return "E_NO_RESOURCES";
case RIL_E_SIM_ERR: return "E_SIM_ERR";
case RIL_E_INVALID_ARGUMENTS: return "E_INVALID_ARGUMENTS";
case RIL_E_INVALID_SIM_STATE: return "E_INVALID_SIM_STATE";
case RIL_E_INVALID_MODEM_STATE: return "E_INVALID_MODEM_STATE";
case RIL_E_INVALID_CALL_ID: return "E_INVALID_CALL_ID";
case RIL_E_NO_SMS_TO_ACK: return "E_NO_SMS_TO_ACK";
case RIL_E_NETWORK_ERR: return "E_NETWORK_ERR";
case RIL_E_REQUEST_RATE_LIMITED: return "E_REQUEST_RATE_LIMITED";
case RIL_E_SIM_BUSY: return "E_SIM_BUSY";
case RIL_E_SIM_FULL: return "E_SIM_FULL";
case RIL_E_NETWORK_REJECT: return "E_NETWORK_REJECT";
case RIL_E_OPERATION_NOT_ALLOWED: return "E_OPERATION_NOT_ALLOWED";
case RIL_E_EMPTY_RECORD: "E_EMPTY_RECORD";
case RIL_E_INVALID_SMS_FORMAT: return "E_INVALID_SMS_FORMAT";
case RIL_E_ENCODING_ERR: return "E_ENCODING_ERR";
case RIL_E_INVALID_SMSC_ADDRESS: return "E_INVALID_SMSC_ADDRESS";
case RIL_E_NO_SUCH_ENTRY: return "E_NO_SUCH_ENTRY";
case RIL_E_NETWORK_NOT_READY: return "E_NETWORK_NOT_READY";
case RIL_E_NOT_PROVISIONED: return "E_NOT_PROVISIONED";
case RIL_E_NO_SUBSCRIPTION: return "E_NO_SUBSCRIPTION";
case RIL_E_NO_NETWORK_FOUND: return "E_NO_NETWORK_FOUND";
case RIL_E_DEVICE_IN_USE: return "E_DEVICE_IN_USE";
case RIL_E_ABORTED: return "E_ABORTED";
case RIL_E_OEM_ERROR_1: return "E_OEM_ERROR_1";
case RIL_E_OEM_ERROR_2: return "E_OEM_ERROR_2";
case RIL_E_OEM_ERROR_3: return "E_OEM_ERROR_3";
case RIL_E_OEM_ERROR_4: return "E_OEM_ERROR_4";
case RIL_E_OEM_ERROR_5: return "E_OEM_ERROR_5";
case RIL_E_OEM_ERROR_6: return "E_OEM_ERROR_6";
case RIL_E_OEM_ERROR_7: return "E_OEM_ERROR_7";
case RIL_E_OEM_ERROR_8: return "E_OEM_ERROR_8";
case RIL_E_OEM_ERROR_9: return "E_OEM_ERROR_9";
case RIL_E_OEM_ERROR_10: return "E_OEM_ERROR_10";
case RIL_E_OEM_ERROR_11: return "E_OEM_ERROR_11";
case RIL_E_OEM_ERROR_12: return "E_OEM_ERROR_12";
case RIL_E_OEM_ERROR_13: return "E_OEM_ERROR_13";
case RIL_E_OEM_ERROR_14: return "E_OEM_ERROR_14";
case RIL_E_OEM_ERROR_15: return "E_OEM_ERROR_15";
case RIL_E_OEM_ERROR_16: return "E_OEM_ERROR_16";
case RIL_E_OEM_ERROR_17: return "E_OEM_ERROR_17";
case RIL_E_OEM_ERROR_18: return "E_OEM_ERROR_18";
case RIL_E_OEM_ERROR_19: return "E_OEM_ERROR_19";
case RIL_E_OEM_ERROR_20: return "E_OEM_ERROR_20";
case RIL_E_OEM_ERROR_21: return "E_OEM_ERROR_21";
case RIL_E_OEM_ERROR_22: return "E_OEM_ERROR_22";
case RIL_E_OEM_ERROR_23: return "E_OEM_ERROR_23";
case RIL_E_OEM_ERROR_24: return "E_OEM_ERROR_24";
case RIL_E_OEM_ERROR_25: return "E_OEM_ERROR_25";
default: return "<unknown error>";
}
}
const char *
radioStateToString(RIL_RadioState s) {
switch(s) {
case RADIO_STATE_OFF: return "RADIO_OFF";
case RADIO_STATE_UNAVAILABLE: return "RADIO_UNAVAILABLE";
case RADIO_STATE_SIM_NOT_READY: return "RADIO_SIM_NOT_READY";
case RADIO_STATE_SIM_LOCKED_OR_ABSENT: return "RADIO_SIM_LOCKED_OR_ABSENT";
case RADIO_STATE_SIM_READY: return "RADIO_SIM_READY";
case RADIO_STATE_RUIM_NOT_READY:return"RADIO_RUIM_NOT_READY";
case RADIO_STATE_RUIM_READY:return"RADIO_RUIM_READY";
case RADIO_STATE_RUIM_LOCKED_OR_ABSENT:return"RADIO_RUIM_LOCKED_OR_ABSENT";
case RADIO_STATE_NV_NOT_READY:return"RADIO_NV_NOT_READY";
case RADIO_STATE_NV_READY:return"RADIO_NV_READY";
case RADIO_STATE_ON:return"RADIO_ON";
default: return "<unknown state>";
}
}
const char *
callStateToString(RIL_CallState s) {
switch(s) {
case RIL_CALL_ACTIVE : return "ACTIVE";
case RIL_CALL_HOLDING: return "HOLDING";
case RIL_CALL_DIALING: return "DIALING";
case RIL_CALL_ALERTING: return "ALERTING";
case RIL_CALL_INCOMING: return "INCOMING";
case RIL_CALL_WAITING: return "WAITING";
default: return "<unknown state>";
}
}
const char *
requestToString(int request) {
/*
cat libs/telephony/ril_commands.h \
| egrep "^ *{RIL_" \
| sed -re 's/\{RIL_([^,]+),[^,]+,([^}]+).+/case RIL_\1: return "\1";/'
cat libs/telephony/ril_unsol_commands.h \
| egrep "^ *{RIL_" \
| sed -re 's/\{RIL_([^,]+),([^}]+).+/case RIL_\1: return "\1";/'
*/
switch(request) {
case RIL_REQUEST_GET_SIM_STATUS: return "GET_SIM_STATUS";
case RIL_REQUEST_ENTER_SIM_PIN: return "ENTER_SIM_PIN";
case RIL_REQUEST_ENTER_SIM_PUK: return "ENTER_SIM_PUK";
case RIL_REQUEST_ENTER_SIM_PIN2: return "ENTER_SIM_PIN2";
case RIL_REQUEST_ENTER_SIM_PUK2: return "ENTER_SIM_PUK2";
case RIL_REQUEST_CHANGE_SIM_PIN: return "CHANGE_SIM_PIN";
case RIL_REQUEST_CHANGE_SIM_PIN2: return "CHANGE_SIM_PIN2";
case RIL_REQUEST_ENTER_NETWORK_DEPERSONALIZATION: return "ENTER_NETWORK_DEPERSONALIZATION";
case RIL_REQUEST_GET_CURRENT_CALLS: return "GET_CURRENT_CALLS";
case RIL_REQUEST_DIAL: return "DIAL";
case RIL_REQUEST_GET_IMSI: return "GET_IMSI";
case RIL_REQUEST_HANGUP: return "HANGUP";
case RIL_REQUEST_HANGUP_WAITING_OR_BACKGROUND: return "HANGUP_WAITING_OR_BACKGROUND";
case RIL_REQUEST_HANGUP_FOREGROUND_RESUME_BACKGROUND: return "HANGUP_FOREGROUND_RESUME_BACKGROUND";
case RIL_REQUEST_SWITCH_WAITING_OR_HOLDING_AND_ACTIVE: return "SWITCH_WAITING_OR_HOLDING_AND_ACTIVE";
case RIL_REQUEST_CONFERENCE: return "CONFERENCE";
case RIL_REQUEST_UDUB: return "UDUB";
case RIL_REQUEST_LAST_CALL_FAIL_CAUSE: return "LAST_CALL_FAIL_CAUSE";
case RIL_REQUEST_SIGNAL_STRENGTH: return "SIGNAL_STRENGTH";
case RIL_REQUEST_VOICE_REGISTRATION_STATE: return "VOICE_REGISTRATION_STATE";
case RIL_REQUEST_DATA_REGISTRATION_STATE: return "DATA_REGISTRATION_STATE";
case RIL_REQUEST_OPERATOR: return "OPERATOR";
case RIL_REQUEST_RADIO_POWER: return "RADIO_POWER";
case RIL_REQUEST_DTMF: return "DTMF";
case RIL_REQUEST_SEND_SMS: return "SEND_SMS";
case RIL_REQUEST_SEND_SMS_EXPECT_MORE: return "SEND_SMS_EXPECT_MORE";
case RIL_REQUEST_SETUP_DATA_CALL: return "SETUP_DATA_CALL";
case RIL_REQUEST_SIM_IO: return "SIM_IO";
case RIL_REQUEST_SEND_USSD: return "SEND_USSD";
case RIL_REQUEST_CANCEL_USSD: return "CANCEL_USSD";
case RIL_REQUEST_GET_CLIR: return "GET_CLIR";
case RIL_REQUEST_SET_CLIR: return "SET_CLIR";
case RIL_REQUEST_QUERY_CALL_FORWARD_STATUS: return "QUERY_CALL_FORWARD_STATUS";
case RIL_REQUEST_SET_CALL_FORWARD: return "SET_CALL_FORWARD";
case RIL_REQUEST_QUERY_CALL_WAITING: return "QUERY_CALL_WAITING";
case RIL_REQUEST_SET_CALL_WAITING: return "SET_CALL_WAITING";
case RIL_REQUEST_SMS_ACKNOWLEDGE: return "SMS_ACKNOWLEDGE";
case RIL_REQUEST_GET_IMEI: return "GET_IMEI";
case RIL_REQUEST_GET_IMEISV: return "GET_IMEISV";
case RIL_REQUEST_ANSWER: return "ANSWER";
case RIL_REQUEST_DEACTIVATE_DATA_CALL: return "DEACTIVATE_DATA_CALL";
case RIL_REQUEST_QUERY_FACILITY_LOCK: return "QUERY_FACILITY_LOCK";
case RIL_REQUEST_SET_FACILITY_LOCK: return "SET_FACILITY_LOCK";
case RIL_REQUEST_CHANGE_BARRING_PASSWORD: return "CHANGE_BARRING_PASSWORD";
case RIL_REQUEST_QUERY_NETWORK_SELECTION_MODE: return "QUERY_NETWORK_SELECTION_MODE";
case RIL_REQUEST_SET_NETWORK_SELECTION_AUTOMATIC: return "SET_NETWORK_SELECTION_AUTOMATIC";
case RIL_REQUEST_SET_NETWORK_SELECTION_MANUAL: return "SET_NETWORK_SELECTION_MANUAL";
case RIL_REQUEST_QUERY_AVAILABLE_NETWORKS : return "QUERY_AVAILABLE_NETWORKS ";
case RIL_REQUEST_DTMF_START: return "DTMF_START";
case RIL_REQUEST_DTMF_STOP: return "DTMF_STOP";
case RIL_REQUEST_BASEBAND_VERSION: return "BASEBAND_VERSION";
case RIL_REQUEST_SEPARATE_CONNECTION: return "SEPARATE_CONNECTION";
case RIL_REQUEST_SET_PREFERRED_NETWORK_TYPE: return "SET_PREFERRED_NETWORK_TYPE";
case RIL_REQUEST_GET_PREFERRED_NETWORK_TYPE: return "GET_PREFERRED_NETWORK_TYPE";
case RIL_REQUEST_GET_NEIGHBORING_CELL_IDS: return "GET_NEIGHBORING_CELL_IDS";
case RIL_REQUEST_SET_MUTE: return "SET_MUTE";
case RIL_REQUEST_GET_MUTE: return "GET_MUTE";
case RIL_REQUEST_QUERY_CLIP: return "QUERY_CLIP";
case RIL_REQUEST_LAST_DATA_CALL_FAIL_CAUSE: return "LAST_DATA_CALL_FAIL_CAUSE";
case RIL_REQUEST_DATA_CALL_LIST: return "DATA_CALL_LIST";
case RIL_REQUEST_RESET_RADIO: return "RESET_RADIO";
case RIL_REQUEST_OEM_HOOK_RAW: return "OEM_HOOK_RAW";
case RIL_REQUEST_OEM_HOOK_STRINGS: return "OEM_HOOK_STRINGS";
case RIL_REQUEST_SET_BAND_MODE: return "SET_BAND_MODE";
case RIL_REQUEST_QUERY_AVAILABLE_BAND_MODE: return "QUERY_AVAILABLE_BAND_MODE";
case RIL_REQUEST_STK_GET_PROFILE: return "STK_GET_PROFILE";
case RIL_REQUEST_STK_SET_PROFILE: return "STK_SET_PROFILE";
case RIL_REQUEST_STK_SEND_ENVELOPE_COMMAND: return "STK_SEND_ENVELOPE_COMMAND";
case RIL_REQUEST_STK_SEND_TERMINAL_RESPONSE: return "STK_SEND_TERMINAL_RESPONSE";
case RIL_REQUEST_STK_HANDLE_CALL_SETUP_REQUESTED_FROM_SIM: return "STK_HANDLE_CALL_SETUP_REQUESTED_FROM_SIM";
case RIL_REQUEST_SCREEN_STATE: return "SCREEN_STATE";
case RIL_REQUEST_EXPLICIT_CALL_TRANSFER: return "EXPLICIT_CALL_TRANSFER";
case RIL_REQUEST_SET_LOCATION_UPDATES: return "SET_LOCATION_UPDATES";
case RIL_REQUEST_CDMA_SET_SUBSCRIPTION_SOURCE:return"CDMA_SET_SUBSCRIPTION_SOURCE";
case RIL_REQUEST_CDMA_SET_ROAMING_PREFERENCE:return"CDMA_SET_ROAMING_PREFERENCE";
case RIL_REQUEST_CDMA_QUERY_ROAMING_PREFERENCE:return"CDMA_QUERY_ROAMING_PREFERENCE";
case RIL_REQUEST_SET_TTY_MODE:return"SET_TTY_MODE";
case RIL_REQUEST_QUERY_TTY_MODE:return"QUERY_TTY_MODE";
case RIL_REQUEST_CDMA_SET_PREFERRED_VOICE_PRIVACY_MODE:return"CDMA_SET_PREFERRED_VOICE_PRIVACY_MODE";
case RIL_REQUEST_CDMA_QUERY_PREFERRED_VOICE_PRIVACY_MODE:return"CDMA_QUERY_PREFERRED_VOICE_PRIVACY_MODE";
case RIL_REQUEST_CDMA_FLASH:return"CDMA_FLASH";
case RIL_REQUEST_CDMA_BURST_DTMF:return"CDMA_BURST_DTMF";
case RIL_REQUEST_CDMA_SEND_SMS:return"CDMA_SEND_SMS";
case RIL_REQUEST_CDMA_SMS_ACKNOWLEDGE:return"CDMA_SMS_ACKNOWLEDGE";
case RIL_REQUEST_GSM_GET_BROADCAST_SMS_CONFIG:return"GSM_GET_BROADCAST_SMS_CONFIG";
case RIL_REQUEST_GSM_SET_BROADCAST_SMS_CONFIG:return"GSM_SET_BROADCAST_SMS_CONFIG";
case RIL_REQUEST_CDMA_GET_BROADCAST_SMS_CONFIG:return "CDMA_GET_BROADCAST_SMS_CONFIG";
case RIL_REQUEST_CDMA_SET_BROADCAST_SMS_CONFIG:return "CDMA_SET_BROADCAST_SMS_CONFIG";
case RIL_REQUEST_CDMA_SMS_BROADCAST_ACTIVATION:return "CDMA_SMS_BROADCAST_ACTIVATION";
case RIL_REQUEST_CDMA_VALIDATE_AND_WRITE_AKEY: return"CDMA_VALIDATE_AND_WRITE_AKEY";
case RIL_REQUEST_CDMA_SUBSCRIPTION: return"CDMA_SUBSCRIPTION";
case RIL_REQUEST_CDMA_WRITE_SMS_TO_RUIM: return "CDMA_WRITE_SMS_TO_RUIM";
case RIL_REQUEST_CDMA_DELETE_SMS_ON_RUIM: return "CDMA_DELETE_SMS_ON_RUIM";
case RIL_REQUEST_DEVICE_IDENTITY: return "DEVICE_IDENTITY";
case RIL_REQUEST_EXIT_EMERGENCY_CALLBACK_MODE: return "EXIT_EMERGENCY_CALLBACK_MODE";
case RIL_REQUEST_GET_SMSC_ADDRESS: return "GET_SMSC_ADDRESS";
case RIL_REQUEST_SET_SMSC_ADDRESS: return "SET_SMSC_ADDRESS";
case RIL_REQUEST_REPORT_SMS_MEMORY_STATUS: return "REPORT_SMS_MEMORY_STATUS";
case RIL_REQUEST_REPORT_STK_SERVICE_IS_RUNNING: return "REPORT_STK_SERVICE_IS_RUNNING";
case RIL_REQUEST_CDMA_GET_SUBSCRIPTION_SOURCE: return "CDMA_GET_SUBSCRIPTION_SOURCE";
case RIL_REQUEST_ISIM_AUTHENTICATION: return "ISIM_AUTHENTICATION";
case RIL_REQUEST_ACKNOWLEDGE_INCOMING_GSM_SMS_WITH_PDU: return "RIL_REQUEST_ACKNOWLEDGE_INCOMING_GSM_SMS_WITH_PDU";
case RIL_REQUEST_STK_SEND_ENVELOPE_WITH_STATUS: return "RIL_REQUEST_STK_SEND_ENVELOPE_WITH_STATUS";
case RIL_REQUEST_VOICE_RADIO_TECH: return "VOICE_RADIO_TECH";
case RIL_REQUEST_WRITE_SMS_TO_SIM: return "WRITE_SMS_TO_SIM";
case RIL_REQUEST_GET_CELL_INFO_LIST: return"GET_CELL_INFO_LIST";
case RIL_REQUEST_SET_UNSOL_CELL_INFO_LIST_RATE: return"SET_UNSOL_CELL_INFO_LIST_RATE";
case RIL_REQUEST_SET_INITIAL_ATTACH_APN: return "RIL_REQUEST_SET_INITIAL_ATTACH_APN";
case RIL_REQUEST_IMS_REGISTRATION_STATE: return "IMS_REGISTRATION_STATE";
case RIL_REQUEST_IMS_SEND_SMS: return "IMS_SEND_SMS";
case RIL_REQUEST_SIM_TRANSMIT_APDU_BASIC: return "SIM_TRANSMIT_APDU_BASIC";
case RIL_REQUEST_SIM_OPEN_CHANNEL: return "SIM_OPEN_CHANNEL";
case RIL_REQUEST_SIM_CLOSE_CHANNEL: return "SIM_CLOSE_CHANNEL";
case RIL_REQUEST_SIM_TRANSMIT_APDU_CHANNEL: return "SIM_TRANSMIT_APDU_CHANNEL";
case RIL_REQUEST_GET_RADIO_CAPABILITY: return "RIL_REQUEST_GET_RADIO_CAPABILITY";
case RIL_REQUEST_SET_RADIO_CAPABILITY: return "RIL_REQUEST_SET_RADIO_CAPABILITY";
case RIL_REQUEST_SET_UICC_SUBSCRIPTION: return "SET_UICC_SUBSCRIPTION";
case RIL_REQUEST_ALLOW_DATA: return "ALLOW_DATA";
case RIL_REQUEST_GET_HARDWARE_CONFIG: return "GET_HARDWARE_CONFIG";
case RIL_REQUEST_SIM_AUTHENTICATION: return "SIM_AUTHENTICATION";
case RIL_REQUEST_GET_DC_RT_INFO: return "GET_DC_RT_INFO";
case RIL_REQUEST_SET_DC_RT_INFO_RATE: return "SET_DC_RT_INFO_RATE";
case RIL_REQUEST_SET_DATA_PROFILE: return "SET_DATA_PROFILE";
case RIL_UNSOL_RESPONSE_RADIO_STATE_CHANGED: return "UNSOL_RESPONSE_RADIO_STATE_CHANGED";
case RIL_UNSOL_RESPONSE_CALL_STATE_CHANGED: return "UNSOL_RESPONSE_CALL_STATE_CHANGED";
case RIL_UNSOL_RESPONSE_VOICE_NETWORK_STATE_CHANGED: return "UNSOL_RESPONSE_VOICE_NETWORK_STATE_CHANGED";
case RIL_UNSOL_RESPONSE_NEW_SMS: return "UNSOL_RESPONSE_NEW_SMS";
case RIL_UNSOL_RESPONSE_NEW_SMS_STATUS_REPORT: return "UNSOL_RESPONSE_NEW_SMS_STATUS_REPORT";
case RIL_UNSOL_RESPONSE_NEW_SMS_ON_SIM: return "UNSOL_RESPONSE_NEW_SMS_ON_SIM";
case RIL_UNSOL_ON_USSD: return "UNSOL_ON_USSD";
case RIL_UNSOL_ON_USSD_REQUEST: return "UNSOL_ON_USSD_REQUEST(obsolete)";
case RIL_UNSOL_NITZ_TIME_RECEIVED: return "UNSOL_NITZ_TIME_RECEIVED";
case RIL_UNSOL_SIGNAL_STRENGTH: return "UNSOL_SIGNAL_STRENGTH";
case RIL_UNSOL_DATA_CALL_LIST_CHANGED: return "UNSOL_DATA_CALL_LIST_CHANGED";
case RIL_UNSOL_SUPP_SVC_NOTIFICATION: return "UNSOL_SUPP_SVC_NOTIFICATION";
case RIL_UNSOL_STK_SESSION_END: return "UNSOL_STK_SESSION_END";
case RIL_UNSOL_STK_PROACTIVE_COMMAND: return "UNSOL_STK_PROACTIVE_COMMAND";
case RIL_UNSOL_STK_EVENT_NOTIFY: return "UNSOL_STK_EVENT_NOTIFY";
case RIL_UNSOL_STK_CALL_SETUP: return "UNSOL_STK_CALL_SETUP";
case RIL_UNSOL_SIM_SMS_STORAGE_FULL: return "UNSOL_SIM_SMS_STORAGE_FUL";
case RIL_UNSOL_SIM_REFRESH: return "UNSOL_SIM_REFRESH";
case RIL_UNSOL_CALL_RING: return "UNSOL_CALL_RING";
case RIL_UNSOL_RESPONSE_SIM_STATUS_CHANGED: return "UNSOL_RESPONSE_SIM_STATUS_CHANGED";
case RIL_UNSOL_RESPONSE_CDMA_NEW_SMS: return "UNSOL_NEW_CDMA_SMS";
case RIL_UNSOL_RESPONSE_NEW_BROADCAST_SMS: return "UNSOL_NEW_BROADCAST_SMS";
case RIL_UNSOL_CDMA_RUIM_SMS_STORAGE_FULL: return "UNSOL_CDMA_RUIM_SMS_STORAGE_FULL";
case RIL_UNSOL_RESTRICTED_STATE_CHANGED: return "UNSOL_RESTRICTED_STATE_CHANGED";
case RIL_UNSOL_ENTER_EMERGENCY_CALLBACK_MODE: return "UNSOL_ENTER_EMERGENCY_CALLBACK_MODE";
case RIL_UNSOL_CDMA_CALL_WAITING: return "UNSOL_CDMA_CALL_WAITING";
case RIL_UNSOL_CDMA_OTA_PROVISION_STATUS: return "UNSOL_CDMA_OTA_PROVISION_STATUS";
case RIL_UNSOL_CDMA_INFO_REC: return "UNSOL_CDMA_INFO_REC";
case RIL_UNSOL_OEM_HOOK_RAW: return "UNSOL_OEM_HOOK_RAW";
case RIL_UNSOL_RINGBACK_TONE: return "UNSOL_RINGBACK_TONE";
case RIL_UNSOL_RESEND_INCALL_MUTE: return "UNSOL_RESEND_INCALL_MUTE";
case RIL_UNSOL_CDMA_SUBSCRIPTION_SOURCE_CHANGED: return "UNSOL_CDMA_SUBSCRIPTION_SOURCE_CHANGED";
case RIL_UNSOL_CDMA_PRL_CHANGED: return "UNSOL_CDMA_PRL_CHANGED";
case RIL_UNSOL_EXIT_EMERGENCY_CALLBACK_MODE: return "UNSOL_EXIT_EMERGENCY_CALLBACK_MODE";
case RIL_UNSOL_RIL_CONNECTED: return "UNSOL_RIL_CONNECTED";
case RIL_UNSOL_VOICE_RADIO_TECH_CHANGED: return "UNSOL_VOICE_RADIO_TECH_CHANGED";
case RIL_UNSOL_CELL_INFO_LIST: return "UNSOL_CELL_INFO_LIST";
case RIL_UNSOL_RESPONSE_IMS_NETWORK_STATE_CHANGED: return "RESPONSE_IMS_NETWORK_STATE_CHANGED";
case RIL_UNSOL_UICC_SUBSCRIPTION_STATUS_CHANGED: return "UNSOL_UICC_SUBSCRIPTION_STATUS_CHANGED";
case RIL_UNSOL_SRVCC_STATE_NOTIFY: return "UNSOL_SRVCC_STATE_NOTIFY";
case RIL_UNSOL_HARDWARE_CONFIG_CHANGED: return "HARDWARE_CONFIG_CHANGED";
case RIL_UNSOL_DC_RT_INFO_CHANGED: return "UNSOL_DC_RT_INFO_CHANGED";
case RIL_UNSOL_RADIO_CAPABILITY: return "UNSOL_RADIO_CAPABILITY";
case RIL_UNSOL_ON_SS: return "UNSOL_ON_SS";
case RIL_UNSOL_STK_CC_ALPHA_NOTIFY: return "UNSOL_STK_CC_ALPHA_NOTIFY";
case RIL_REQUEST_SHUTDOWN: return "SHUTDOWN";
case RIL_RESPONSE_ACKNOWLEDGEMENT: return "RIL_RESPONSE_ACKNOWLEDGEMENT";
default: return "<unknown request>";
}
}
const char *
rilSocketIdToString(RIL_SOCKET_ID socket_id)
{
switch(socket_id) {
case RIL_SOCKET_1:
return "RIL_SOCKET_1";
#if (SIM_COUNT >= 2)
case RIL_SOCKET_2:
return "RIL_SOCKET_2";
#endif
#if (SIM_COUNT >= 3)
case RIL_SOCKET_3:
return "RIL_SOCKET_3";
#endif
#if (SIM_COUNT >= 4)
case RIL_SOCKET_4:
return "RIL_SOCKET_4";
#endif
default:
return "not a valid RIL";
}
}
/*
* Returns true for a debuggable build.
*/
static bool isDebuggable() {
char debuggable[PROP_VALUE_MAX];
property_get("ro.debuggable", debuggable, "0");
if (strcmp(debuggable, "1") == 0) {
return true;
}
return false;
}
} /* namespace android */
void rilEventAddWakeup_helper(struct ril_event *ev) {
android::rilEventAddWakeup(ev);
}
void listenCallback_helper(int fd, short flags, void *param) {
android::listenCallback(fd, flags, param);
}
int blockingWrite_helper(int fd, void *buffer, size_t len) {
return android::blockingWrite(fd, buffer, len);
}