You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
776 lines
30 KiB
776 lines
30 KiB
/*
|
|
* Copyright (C) 2019 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
//#define VERBOSE
|
|
|
|
#include "HalProxy.h"
|
|
|
|
#include <android/hardware/sensors/2.0/types.h>
|
|
|
|
#include <android-base/file.h>
|
|
#include "hardware_legacy/power.h"
|
|
|
|
#include <dlfcn.h>
|
|
|
|
#include <cinttypes>
|
|
#include <cmath>
|
|
#include <fstream>
|
|
#include <functional>
|
|
#include <thread>
|
|
|
|
namespace android {
|
|
namespace hardware {
|
|
namespace sensors {
|
|
namespace V2_1 {
|
|
namespace implementation {
|
|
|
|
using ::android::hardware::sensors::V1_0::Result;
|
|
using ::android::hardware::sensors::V2_0::EventQueueFlagBits;
|
|
using ::android::hardware::sensors::V2_0::WakeLockQueueFlagBits;
|
|
using ::android::hardware::sensors::V2_0::implementation::getTimeNow;
|
|
using ::android::hardware::sensors::V2_0::implementation::kWakelockTimeoutNs;
|
|
|
|
typedef V2_0::implementation::ISensorsSubHal*(SensorsHalGetSubHalFunc)(uint32_t*);
|
|
typedef V2_1::implementation::ISensorsSubHal*(SensorsHalGetSubHalV2_1Func)(uint32_t*);
|
|
|
|
static constexpr int32_t kBitsAfterSubHalIndex = 24;
|
|
|
|
/**
|
|
* Set the subhal index as first byte of sensor handle and return this modified version.
|
|
*
|
|
* @param sensorHandle The sensor handle to modify.
|
|
* @param subHalIndex The index in the hal proxy of the sub hal this sensor belongs to.
|
|
*
|
|
* @return The modified sensor handle.
|
|
*/
|
|
int32_t setSubHalIndex(int32_t sensorHandle, size_t subHalIndex) {
|
|
return sensorHandle | (static_cast<int32_t>(subHalIndex) << kBitsAfterSubHalIndex);
|
|
}
|
|
|
|
/**
|
|
* Extract the subHalIndex from sensorHandle.
|
|
*
|
|
* @param sensorHandle The sensorHandle to extract from.
|
|
*
|
|
* @return The subhal index.
|
|
*/
|
|
size_t extractSubHalIndex(int32_t sensorHandle) {
|
|
return static_cast<size_t>(sensorHandle >> kBitsAfterSubHalIndex);
|
|
}
|
|
|
|
/**
|
|
* Convert nanoseconds to milliseconds.
|
|
*
|
|
* @param nanos The nanoseconds input.
|
|
*
|
|
* @return The milliseconds count.
|
|
*/
|
|
int64_t msFromNs(int64_t nanos) {
|
|
constexpr int64_t nanosecondsInAMillsecond = 1000000;
|
|
return nanos / nanosecondsInAMillsecond;
|
|
}
|
|
|
|
HalProxy::HalProxy() {
|
|
const char* kMultiHalConfigFile = "/vendor/etc/sensors/hals.conf";
|
|
initializeSubHalListFromConfigFile(kMultiHalConfigFile);
|
|
init();
|
|
}
|
|
|
|
HalProxy::HalProxy(std::vector<ISensorsSubHalV2_0*>& subHalList) {
|
|
for (ISensorsSubHalV2_0* subHal : subHalList) {
|
|
mSubHalList.push_back(std::make_unique<SubHalWrapperV2_0>(subHal));
|
|
}
|
|
|
|
init();
|
|
}
|
|
|
|
HalProxy::HalProxy(std::vector<ISensorsSubHalV2_0*>& subHalList,
|
|
std::vector<ISensorsSubHalV2_1*>& subHalListV2_1) {
|
|
for (ISensorsSubHalV2_0* subHal : subHalList) {
|
|
mSubHalList.push_back(std::make_unique<SubHalWrapperV2_0>(subHal));
|
|
}
|
|
|
|
for (ISensorsSubHalV2_1* subHal : subHalListV2_1) {
|
|
mSubHalList.push_back(std::make_unique<SubHalWrapperV2_1>(subHal));
|
|
}
|
|
|
|
init();
|
|
}
|
|
|
|
HalProxy::~HalProxy() {
|
|
stopThreads();
|
|
}
|
|
|
|
Return<void> HalProxy::getSensorsList_2_1(ISensorsV2_1::getSensorsList_2_1_cb _hidl_cb) {
|
|
std::vector<V2_1::SensorInfo> sensors;
|
|
for (const auto& iter : mSensors) {
|
|
V2_1::SensorInfo dst = iter.second;
|
|
|
|
if (dst.requiredPermission == "com.samsung.permission.SSENSOR") {
|
|
dst.requiredPermission = "";
|
|
}
|
|
|
|
if (dst.typeAsString == "com.samsung.sensor.physical_proximity" ||
|
|
dst.typeAsString == "com.samsung.sensor.hover_proximity") {
|
|
ALOGI("Fixing %s", dst.typeAsString.c_str());
|
|
dst.type = V2_1::SensorType::PROXIMITY;
|
|
dst.typeAsString = SENSOR_STRING_TYPE_PROXIMITY;
|
|
dst.maxRange = 1;
|
|
}
|
|
|
|
#ifdef VERBOSE
|
|
ALOGI( "SENSOR NAME:%s ", dst.name.c_str());
|
|
ALOGI( " VENDOR:%s ", dst.name.c_str());
|
|
ALOGI( " TYPE:%d ", (uint32_t)dst.type);
|
|
ALOGI( " TYPE_AS_STRING:%s ", dst.typeAsString.c_str());
|
|
#endif
|
|
sensors.push_back(dst);
|
|
}
|
|
_hidl_cb(sensors);
|
|
return Void();
|
|
}
|
|
|
|
Return<void> HalProxy::getSensorsList(ISensorsV2_0::getSensorsList_cb _hidl_cb) {
|
|
std::vector<V1_0::SensorInfo> sensors;
|
|
for (const auto& iter : mSensors) {
|
|
sensors.push_back(convertToOldSensorInfo(iter.second));
|
|
}
|
|
_hidl_cb(sensors);
|
|
return Void();
|
|
}
|
|
|
|
Return<Result> HalProxy::setOperationMode(OperationMode mode) {
|
|
Result result = Result::OK;
|
|
size_t subHalIndex;
|
|
for (subHalIndex = 0; subHalIndex < mSubHalList.size(); subHalIndex++) {
|
|
result = mSubHalList[subHalIndex]->setOperationMode(mode);
|
|
if (result != Result::OK) {
|
|
ALOGE("setOperationMode failed for SubHal: %s",
|
|
mSubHalList[subHalIndex]->getName().c_str());
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (result != Result::OK) {
|
|
// Reset the subhal operation modes that have been flipped
|
|
for (size_t i = 0; i < subHalIndex; i++) {
|
|
mSubHalList[i]->setOperationMode(mCurrentOperationMode);
|
|
}
|
|
} else {
|
|
mCurrentOperationMode = mode;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
Return<Result> HalProxy::activate(int32_t sensorHandle, bool enabled) {
|
|
if (!isSubHalIndexValid(sensorHandle)) {
|
|
return Result::BAD_VALUE;
|
|
}
|
|
return getSubHalForSensorHandle(sensorHandle)
|
|
->activate(clearSubHalIndex(sensorHandle), enabled);
|
|
}
|
|
|
|
Return<Result> HalProxy::initialize_2_1(
|
|
const ::android::hardware::MQDescriptorSync<V2_1::Event>& eventQueueDescriptor,
|
|
const ::android::hardware::MQDescriptorSync<uint32_t>& wakeLockDescriptor,
|
|
const sp<V2_1::ISensorsCallback>& sensorsCallback) {
|
|
sp<ISensorsCallbackWrapperBase> dynamicCallback =
|
|
new ISensorsCallbackWrapperV2_1(sensorsCallback);
|
|
|
|
// Create the Event FMQ from the eventQueueDescriptor. Reset the read/write positions.
|
|
auto eventQueue =
|
|
std::make_unique<EventMessageQueueV2_1>(eventQueueDescriptor, true /* resetPointers */);
|
|
std::unique_ptr<EventMessageQueueWrapperBase> queue =
|
|
std::make_unique<EventMessageQueueWrapperV2_1>(eventQueue);
|
|
|
|
return initializeCommon(queue, wakeLockDescriptor, dynamicCallback);
|
|
}
|
|
|
|
Return<Result> HalProxy::initialize(
|
|
const ::android::hardware::MQDescriptorSync<V1_0::Event>& eventQueueDescriptor,
|
|
const ::android::hardware::MQDescriptorSync<uint32_t>& wakeLockDescriptor,
|
|
const sp<V2_0::ISensorsCallback>& sensorsCallback) {
|
|
sp<ISensorsCallbackWrapperBase> dynamicCallback =
|
|
new ISensorsCallbackWrapperV2_0(sensorsCallback);
|
|
|
|
// Create the Event FMQ from the eventQueueDescriptor. Reset the read/write positions.
|
|
auto eventQueue =
|
|
std::make_unique<EventMessageQueueV2_0>(eventQueueDescriptor, true /* resetPointers */);
|
|
std::unique_ptr<EventMessageQueueWrapperBase> queue =
|
|
std::make_unique<EventMessageQueueWrapperV1_0>(eventQueue);
|
|
|
|
return initializeCommon(queue, wakeLockDescriptor, dynamicCallback);
|
|
}
|
|
|
|
Return<Result> HalProxy::initializeCommon(
|
|
std::unique_ptr<EventMessageQueueWrapperBase>& eventQueue,
|
|
const ::android::hardware::MQDescriptorSync<uint32_t>& wakeLockDescriptor,
|
|
const sp<ISensorsCallbackWrapperBase>& sensorsCallback) {
|
|
Result result = Result::OK;
|
|
|
|
stopThreads();
|
|
resetSharedWakelock();
|
|
|
|
// So that the pending write events queue can be cleared safely and when we start threads
|
|
// again we do not get new events until after initialize resets the subhals.
|
|
disableAllSensors();
|
|
|
|
// Clears the queue if any events were pending write before.
|
|
mPendingWriteEventsQueue = std::queue<std::pair<std::vector<V2_1::Event>, size_t>>();
|
|
mSizePendingWriteEventsQueue = 0;
|
|
|
|
// Clears previously connected dynamic sensors
|
|
mDynamicSensors.clear();
|
|
|
|
mDynamicSensorsCallback = sensorsCallback;
|
|
|
|
// Create the Event FMQ from the eventQueueDescriptor. Reset the read/write positions.
|
|
mEventQueue = std::move(eventQueue);
|
|
|
|
// Create the Wake Lock FMQ that is used by the framework to communicate whenever WAKE_UP
|
|
// events have been successfully read and handled by the framework.
|
|
mWakeLockQueue =
|
|
std::make_unique<WakeLockMessageQueue>(wakeLockDescriptor, true /* resetPointers */);
|
|
|
|
if (mEventQueueFlag != nullptr) {
|
|
EventFlag::deleteEventFlag(&mEventQueueFlag);
|
|
}
|
|
if (mWakelockQueueFlag != nullptr) {
|
|
EventFlag::deleteEventFlag(&mWakelockQueueFlag);
|
|
}
|
|
if (EventFlag::createEventFlag(mEventQueue->getEventFlagWord(), &mEventQueueFlag) != OK) {
|
|
result = Result::BAD_VALUE;
|
|
}
|
|
if (EventFlag::createEventFlag(mWakeLockQueue->getEventFlagWord(), &mWakelockQueueFlag) != OK) {
|
|
result = Result::BAD_VALUE;
|
|
}
|
|
if (!mDynamicSensorsCallback || !mEventQueue || !mWakeLockQueue || mEventQueueFlag == nullptr) {
|
|
result = Result::BAD_VALUE;
|
|
}
|
|
|
|
mThreadsRun.store(true);
|
|
|
|
mPendingWritesThread = std::thread(startPendingWritesThread, this);
|
|
mWakelockThread = std::thread(startWakelockThread, this);
|
|
|
|
for (size_t i = 0; i < mSubHalList.size(); i++) {
|
|
Result currRes = mSubHalList[i]->initialize(this, this, i);
|
|
if (currRes != Result::OK) {
|
|
result = currRes;
|
|
ALOGE("Subhal '%s' failed to initialize.", mSubHalList[i]->getName().c_str());
|
|
break;
|
|
}
|
|
}
|
|
|
|
mCurrentOperationMode = OperationMode::NORMAL;
|
|
|
|
return result;
|
|
}
|
|
|
|
Return<Result> HalProxy::batch(int32_t sensorHandle, int64_t samplingPeriodNs,
|
|
int64_t maxReportLatencyNs) {
|
|
if (!isSubHalIndexValid(sensorHandle)) {
|
|
return Result::BAD_VALUE;
|
|
}
|
|
return getSubHalForSensorHandle(sensorHandle)
|
|
->batch(clearSubHalIndex(sensorHandle), samplingPeriodNs, maxReportLatencyNs);
|
|
}
|
|
|
|
Return<Result> HalProxy::flush(int32_t sensorHandle) {
|
|
if (!isSubHalIndexValid(sensorHandle)) {
|
|
return Result::BAD_VALUE;
|
|
}
|
|
return getSubHalForSensorHandle(sensorHandle)->flush(clearSubHalIndex(sensorHandle));
|
|
}
|
|
|
|
Return<Result> HalProxy::injectSensorData_2_1(const V2_1::Event& event) {
|
|
return injectSensorData(convertToOldEvent(event));
|
|
}
|
|
|
|
Return<Result> HalProxy::injectSensorData(const V1_0::Event& event) {
|
|
Result result = Result::OK;
|
|
if (mCurrentOperationMode == OperationMode::NORMAL &&
|
|
event.sensorType != V1_0::SensorType::ADDITIONAL_INFO) {
|
|
ALOGE("An event with type != ADDITIONAL_INFO passed to injectSensorData while operation"
|
|
" mode was NORMAL.");
|
|
result = Result::BAD_VALUE;
|
|
}
|
|
if (result == Result::OK) {
|
|
V1_0::Event subHalEvent = event;
|
|
if (!isSubHalIndexValid(event.sensorHandle)) {
|
|
return Result::BAD_VALUE;
|
|
}
|
|
subHalEvent.sensorHandle = clearSubHalIndex(event.sensorHandle);
|
|
result = getSubHalForSensorHandle(event.sensorHandle)
|
|
->injectSensorData(convertToNewEvent(subHalEvent));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
Return<void> HalProxy::registerDirectChannel(const SharedMemInfo& mem,
|
|
ISensorsV2_0::registerDirectChannel_cb _hidl_cb) {
|
|
if (mDirectChannelSubHal == nullptr) {
|
|
_hidl_cb(Result::INVALID_OPERATION, -1 /* channelHandle */);
|
|
} else {
|
|
mDirectChannelSubHal->registerDirectChannel(mem, _hidl_cb);
|
|
}
|
|
return Return<void>();
|
|
}
|
|
|
|
Return<Result> HalProxy::unregisterDirectChannel(int32_t channelHandle) {
|
|
Result result;
|
|
if (mDirectChannelSubHal == nullptr) {
|
|
result = Result::INVALID_OPERATION;
|
|
} else {
|
|
result = mDirectChannelSubHal->unregisterDirectChannel(channelHandle);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
Return<void> HalProxy::configDirectReport(int32_t sensorHandle, int32_t channelHandle,
|
|
RateLevel rate,
|
|
ISensorsV2_0::configDirectReport_cb _hidl_cb) {
|
|
if (mDirectChannelSubHal == nullptr) {
|
|
_hidl_cb(Result::INVALID_OPERATION, -1 /* reportToken */);
|
|
} else if (sensorHandle == -1 && rate != RateLevel::STOP) {
|
|
_hidl_cb(Result::BAD_VALUE, -1 /* reportToken */);
|
|
} else {
|
|
// -1 denotes all sensors should be disabled
|
|
if (sensorHandle != -1) {
|
|
sensorHandle = clearSubHalIndex(sensorHandle);
|
|
}
|
|
mDirectChannelSubHal->configDirectReport(sensorHandle, channelHandle, rate, _hidl_cb);
|
|
}
|
|
return Return<void>();
|
|
}
|
|
|
|
Return<void> HalProxy::debug(const hidl_handle& fd, const hidl_vec<hidl_string>& /*args*/) {
|
|
if (fd.getNativeHandle() == nullptr || fd->numFds < 1) {
|
|
ALOGE("%s: missing fd for writing", __FUNCTION__);
|
|
return Void();
|
|
}
|
|
|
|
android::base::borrowed_fd writeFd = dup(fd->data[0]);
|
|
|
|
std::ostringstream stream;
|
|
stream << "===HalProxy===" << std::endl;
|
|
stream << "Internal values:" << std::endl;
|
|
stream << " Threads are running: " << (mThreadsRun.load() ? "true" : "false") << std::endl;
|
|
int64_t now = getTimeNow();
|
|
stream << " Wakelock timeout start time: " << msFromNs(now - mWakelockTimeoutStartTime)
|
|
<< " ms ago" << std::endl;
|
|
stream << " Wakelock timeout reset time: " << msFromNs(now - mWakelockTimeoutResetTime)
|
|
<< " ms ago" << std::endl;
|
|
// TODO(b/142969448): Add logging for history of wakelock acquisition per subhal.
|
|
stream << " Wakelock ref count: " << mWakelockRefCount << std::endl;
|
|
stream << " # of events on pending write writes queue: " << mSizePendingWriteEventsQueue
|
|
<< std::endl;
|
|
stream << " Most events seen on pending write events queue: "
|
|
<< mMostEventsObservedPendingWriteEventsQueue << std::endl;
|
|
if (!mPendingWriteEventsQueue.empty()) {
|
|
stream << " Size of events list on front of pending writes queue: "
|
|
<< mPendingWriteEventsQueue.front().first.size() << std::endl;
|
|
}
|
|
stream << " # of non-dynamic sensors across all subhals: " << mSensors.size() << std::endl;
|
|
stream << " # of dynamic sensors across all subhals: " << mDynamicSensors.size() << std::endl;
|
|
stream << "SubHals (" << mSubHalList.size() << "):" << std::endl;
|
|
for (auto& subHal : mSubHalList) {
|
|
stream << " Name: " << subHal->getName() << std::endl;
|
|
stream << " Debug dump: " << std::endl;
|
|
android::base::WriteStringToFd(stream.str(), writeFd);
|
|
subHal->debug(fd, {});
|
|
stream.str("");
|
|
stream << std::endl;
|
|
}
|
|
android::base::WriteStringToFd(stream.str(), writeFd);
|
|
return Return<void>();
|
|
}
|
|
|
|
Return<void> HalProxy::onDynamicSensorsConnected(const hidl_vec<SensorInfo>& dynamicSensorsAdded,
|
|
int32_t subHalIndex) {
|
|
std::vector<SensorInfo> sensors;
|
|
{
|
|
std::lock_guard<std::mutex> lock(mDynamicSensorsMutex);
|
|
for (SensorInfo sensor : dynamicSensorsAdded) {
|
|
if (!subHalIndexIsClear(sensor.sensorHandle)) {
|
|
ALOGE("Dynamic sensor added %s had sensorHandle with first byte not 0.",
|
|
sensor.name.c_str());
|
|
} else {
|
|
sensor.sensorHandle = setSubHalIndex(sensor.sensorHandle, subHalIndex);
|
|
mDynamicSensors[sensor.sensorHandle] = sensor;
|
|
sensors.push_back(sensor);
|
|
}
|
|
}
|
|
}
|
|
mDynamicSensorsCallback->onDynamicSensorsConnected(sensors);
|
|
return Return<void>();
|
|
}
|
|
|
|
Return<void> HalProxy::onDynamicSensorsDisconnected(
|
|
const hidl_vec<int32_t>& dynamicSensorHandlesRemoved, int32_t subHalIndex) {
|
|
// TODO(b/143302327): Block this call until all pending events are flushed from queue
|
|
std::vector<int32_t> sensorHandles;
|
|
{
|
|
std::lock_guard<std::mutex> lock(mDynamicSensorsMutex);
|
|
for (int32_t sensorHandle : dynamicSensorHandlesRemoved) {
|
|
if (!subHalIndexIsClear(sensorHandle)) {
|
|
ALOGE("Dynamic sensorHandle removed had first byte not 0.");
|
|
} else {
|
|
sensorHandle = setSubHalIndex(sensorHandle, subHalIndex);
|
|
if (mDynamicSensors.find(sensorHandle) != mDynamicSensors.end()) {
|
|
mDynamicSensors.erase(sensorHandle);
|
|
sensorHandles.push_back(sensorHandle);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
mDynamicSensorsCallback->onDynamicSensorsDisconnected(sensorHandles);
|
|
return Return<void>();
|
|
}
|
|
|
|
void HalProxy::initializeSubHalListFromConfigFile(const char* configFileName) {
|
|
std::ifstream subHalConfigStream(configFileName);
|
|
if (!subHalConfigStream) {
|
|
ALOGE("Failed to load subHal config file: %s", configFileName);
|
|
} else {
|
|
std::string subHalLibraryFile;
|
|
while (subHalConfigStream >> subHalLibraryFile) {
|
|
void* handle = getHandleForSubHalSharedObject(subHalLibraryFile);
|
|
if (handle == nullptr) {
|
|
ALOGE("dlopen failed for library: %s", subHalLibraryFile.c_str());
|
|
} else {
|
|
SensorsHalGetSubHalFunc* sensorsHalGetSubHalPtr =
|
|
(SensorsHalGetSubHalFunc*)dlsym(handle, "sensorsHalGetSubHal");
|
|
if (sensorsHalGetSubHalPtr != nullptr) {
|
|
std::function<SensorsHalGetSubHalFunc> sensorsHalGetSubHal =
|
|
*sensorsHalGetSubHalPtr;
|
|
uint32_t version;
|
|
ISensorsSubHalV2_0* subHal = sensorsHalGetSubHal(&version);
|
|
if (version != SUB_HAL_2_0_VERSION) {
|
|
ALOGE("SubHal version was not 2.0 for library: %s",
|
|
subHalLibraryFile.c_str());
|
|
} else {
|
|
ALOGV("Loaded SubHal from library: %s", subHalLibraryFile.c_str());
|
|
mSubHalList.push_back(std::make_unique<SubHalWrapperV2_0>(subHal));
|
|
}
|
|
} else {
|
|
SensorsHalGetSubHalV2_1Func* getSubHalV2_1Ptr =
|
|
(SensorsHalGetSubHalV2_1Func*)dlsym(handle, "sensorsHalGetSubHal_2_1");
|
|
|
|
if (getSubHalV2_1Ptr == nullptr) {
|
|
ALOGE("Failed to locate sensorsHalGetSubHal function for library: %s",
|
|
subHalLibraryFile.c_str());
|
|
} else {
|
|
std::function<SensorsHalGetSubHalV2_1Func> sensorsHalGetSubHal_2_1 =
|
|
*getSubHalV2_1Ptr;
|
|
uint32_t version;
|
|
ISensorsSubHalV2_1* subHal = sensorsHalGetSubHal_2_1(&version);
|
|
if (version != SUB_HAL_2_1_VERSION) {
|
|
ALOGE("SubHal version was not 2.1 for library: %s",
|
|
subHalLibraryFile.c_str());
|
|
} else {
|
|
ALOGV("Loaded SubHal from library: %s", subHalLibraryFile.c_str());
|
|
mSubHalList.push_back(std::make_unique<SubHalWrapperV2_1>(subHal));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void HalProxy::initializeSensorList() {
|
|
for (size_t subHalIndex = 0; subHalIndex < mSubHalList.size(); subHalIndex++) {
|
|
auto result = mSubHalList[subHalIndex]->getSensorsList([&](const auto& list) {
|
|
for (SensorInfo sensor : list) {
|
|
if (!subHalIndexIsClear(sensor.sensorHandle)) {
|
|
ALOGE("SubHal sensorHandle's first byte was not 0");
|
|
} else {
|
|
ALOGV("Loaded sensor: %s", sensor.name.c_str());
|
|
sensor.sensorHandle = setSubHalIndex(sensor.sensorHandle, subHalIndex);
|
|
setDirectChannelFlags(&sensor, mSubHalList[subHalIndex]);
|
|
mSensors[sensor.sensorHandle] = sensor;
|
|
}
|
|
}
|
|
});
|
|
if (!result.isOk()) {
|
|
ALOGE("getSensorsList call failed for SubHal: %s",
|
|
mSubHalList[subHalIndex]->getName().c_str());
|
|
}
|
|
}
|
|
}
|
|
|
|
void* HalProxy::getHandleForSubHalSharedObject(const std::string& filename) {
|
|
static const std::string kSubHalShareObjectLocations[] = {
|
|
"", // Default locations will be searched
|
|
#ifdef __LP64__
|
|
"/vendor/lib64/hw/", "/odm/lib64/hw/"
|
|
#else
|
|
"/vendor/lib/hw/", "/odm/lib/hw/"
|
|
#endif
|
|
};
|
|
|
|
for (const std::string& dir : kSubHalShareObjectLocations) {
|
|
void* handle = dlopen((dir + filename).c_str(), RTLD_NOW);
|
|
if (handle != nullptr) {
|
|
return handle;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void HalProxy::init() {
|
|
initializeSensorList();
|
|
}
|
|
|
|
void HalProxy::stopThreads() {
|
|
mThreadsRun.store(false);
|
|
if (mEventQueueFlag != nullptr && mEventQueue != nullptr) {
|
|
size_t numToRead = mEventQueue->availableToRead();
|
|
std::vector<Event> events(numToRead);
|
|
mEventQueue->read(events.data(), numToRead);
|
|
mEventQueueFlag->wake(static_cast<uint32_t>(EventQueueFlagBits::EVENTS_READ));
|
|
}
|
|
if (mWakelockQueueFlag != nullptr && mWakeLockQueue != nullptr) {
|
|
uint32_t kZero = 0;
|
|
mWakeLockQueue->write(&kZero);
|
|
mWakelockQueueFlag->wake(static_cast<uint32_t>(WakeLockQueueFlagBits::DATA_WRITTEN));
|
|
}
|
|
mWakelockCV.notify_one();
|
|
mEventQueueWriteCV.notify_one();
|
|
if (mPendingWritesThread.joinable()) {
|
|
mPendingWritesThread.join();
|
|
}
|
|
if (mWakelockThread.joinable()) {
|
|
mWakelockThread.join();
|
|
}
|
|
}
|
|
|
|
void HalProxy::disableAllSensors() {
|
|
for (const auto& sensorEntry : mSensors) {
|
|
int32_t sensorHandle = sensorEntry.first;
|
|
activate(sensorHandle, false /* enabled */);
|
|
}
|
|
std::lock_guard<std::mutex> dynamicSensorsLock(mDynamicSensorsMutex);
|
|
for (const auto& sensorEntry : mDynamicSensors) {
|
|
int32_t sensorHandle = sensorEntry.first;
|
|
activate(sensorHandle, false /* enabled */);
|
|
}
|
|
}
|
|
|
|
void HalProxy::startPendingWritesThread(HalProxy* halProxy) {
|
|
halProxy->handlePendingWrites();
|
|
}
|
|
|
|
void HalProxy::handlePendingWrites() {
|
|
// TODO(b/143302327): Find a way to optimize locking strategy maybe using two mutexes instead of
|
|
// one.
|
|
std::unique_lock<std::mutex> lock(mEventQueueWriteMutex);
|
|
while (mThreadsRun.load()) {
|
|
mEventQueueWriteCV.wait(
|
|
lock, [&] { return !mPendingWriteEventsQueue.empty() || !mThreadsRun.load(); });
|
|
if (mThreadsRun.load()) {
|
|
std::vector<Event>& pendingWriteEvents = mPendingWriteEventsQueue.front().first;
|
|
size_t numWakeupEvents = mPendingWriteEventsQueue.front().second;
|
|
size_t eventQueueSize = mEventQueue->getQuantumCount();
|
|
size_t numToWrite = std::min(pendingWriteEvents.size(), eventQueueSize);
|
|
lock.unlock();
|
|
if (!mEventQueue->writeBlocking(
|
|
pendingWriteEvents.data(), numToWrite,
|
|
static_cast<uint32_t>(EventQueueFlagBits::EVENTS_READ),
|
|
static_cast<uint32_t>(EventQueueFlagBits::READ_AND_PROCESS),
|
|
kPendingWriteTimeoutNs, mEventQueueFlag)) {
|
|
ALOGE("Dropping %zu events after blockingWrite failed.", numToWrite);
|
|
if (numWakeupEvents > 0) {
|
|
if (pendingWriteEvents.size() > eventQueueSize) {
|
|
decrementRefCountAndMaybeReleaseWakelock(
|
|
countNumWakeupEvents(pendingWriteEvents, eventQueueSize));
|
|
} else {
|
|
decrementRefCountAndMaybeReleaseWakelock(numWakeupEvents);
|
|
}
|
|
}
|
|
}
|
|
lock.lock();
|
|
mSizePendingWriteEventsQueue -= numToWrite;
|
|
if (pendingWriteEvents.size() > eventQueueSize) {
|
|
// TODO(b/143302327): Check if this erase operation is too inefficient. It will copy
|
|
// all the events ahead of it down to fill gap off array at front after the erase.
|
|
pendingWriteEvents.erase(pendingWriteEvents.begin(),
|
|
pendingWriteEvents.begin() + eventQueueSize);
|
|
} else {
|
|
mPendingWriteEventsQueue.pop();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void HalProxy::startWakelockThread(HalProxy* halProxy) {
|
|
halProxy->handleWakelocks();
|
|
}
|
|
|
|
void HalProxy::handleWakelocks() {
|
|
std::unique_lock<std::recursive_mutex> lock(mWakelockMutex);
|
|
while (mThreadsRun.load()) {
|
|
mWakelockCV.wait(lock, [&] { return mWakelockRefCount > 0 || !mThreadsRun.load(); });
|
|
if (mThreadsRun.load()) {
|
|
int64_t timeLeft;
|
|
if (sharedWakelockDidTimeout(&timeLeft)) {
|
|
resetSharedWakelock();
|
|
} else {
|
|
uint32_t numWakeLocksProcessed;
|
|
lock.unlock();
|
|
bool success = mWakeLockQueue->readBlocking(
|
|
&numWakeLocksProcessed, 1, 0,
|
|
static_cast<uint32_t>(WakeLockQueueFlagBits::DATA_WRITTEN), timeLeft);
|
|
lock.lock();
|
|
if (success) {
|
|
decrementRefCountAndMaybeReleaseWakelock(
|
|
static_cast<size_t>(numWakeLocksProcessed));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
resetSharedWakelock();
|
|
}
|
|
|
|
bool HalProxy::sharedWakelockDidTimeout(int64_t* timeLeft) {
|
|
bool didTimeout;
|
|
int64_t duration = getTimeNow() - mWakelockTimeoutStartTime;
|
|
if (duration > kWakelockTimeoutNs) {
|
|
didTimeout = true;
|
|
} else {
|
|
didTimeout = false;
|
|
*timeLeft = kWakelockTimeoutNs - duration;
|
|
}
|
|
return didTimeout;
|
|
}
|
|
|
|
void HalProxy::resetSharedWakelock() {
|
|
std::lock_guard<std::recursive_mutex> lockGuard(mWakelockMutex);
|
|
decrementRefCountAndMaybeReleaseWakelock(mWakelockRefCount);
|
|
mWakelockTimeoutResetTime = getTimeNow();
|
|
}
|
|
|
|
void HalProxy::postEventsToMessageQueue(const std::vector<Event>& events, size_t numWakeupEvents,
|
|
V2_0::implementation::ScopedWakelock wakelock) {
|
|
size_t numToWrite = 0;
|
|
std::lock_guard<std::mutex> lock(mEventQueueWriteMutex);
|
|
if (wakelock.isLocked()) {
|
|
incrementRefCountAndMaybeAcquireWakelock(numWakeupEvents);
|
|
}
|
|
if (mPendingWriteEventsQueue.empty()) {
|
|
numToWrite = std::min(events.size(), mEventQueue->availableToWrite());
|
|
if (numToWrite > 0) {
|
|
if (mEventQueue->write(events.data(), numToWrite)) {
|
|
// TODO(b/143302327): While loop if mEventQueue->avaiableToWrite > 0 to possibly fit
|
|
// in more writes immediately
|
|
mEventQueueFlag->wake(static_cast<uint32_t>(EventQueueFlagBits::READ_AND_PROCESS));
|
|
} else {
|
|
numToWrite = 0;
|
|
}
|
|
}
|
|
}
|
|
size_t numLeft = events.size() - numToWrite;
|
|
if (numToWrite < events.size() &&
|
|
mSizePendingWriteEventsQueue + numLeft <= kMaxSizePendingWriteEventsQueue) {
|
|
std::vector<Event> eventsLeft(events.begin() + numToWrite, events.end());
|
|
mPendingWriteEventsQueue.push({eventsLeft, numWakeupEvents});
|
|
mSizePendingWriteEventsQueue += numLeft;
|
|
mMostEventsObservedPendingWriteEventsQueue =
|
|
std::max(mMostEventsObservedPendingWriteEventsQueue, mSizePendingWriteEventsQueue);
|
|
mEventQueueWriteCV.notify_one();
|
|
}
|
|
}
|
|
|
|
bool HalProxy::incrementRefCountAndMaybeAcquireWakelock(size_t delta,
|
|
int64_t* timeoutStart /* = nullptr */) {
|
|
if (!mThreadsRun.load()) return false;
|
|
std::lock_guard<std::recursive_mutex> lockGuard(mWakelockMutex);
|
|
if (mWakelockRefCount == 0) {
|
|
acquire_wake_lock(PARTIAL_WAKE_LOCK, kWakelockName);
|
|
mWakelockCV.notify_one();
|
|
}
|
|
mWakelockTimeoutStartTime = getTimeNow();
|
|
mWakelockRefCount += delta;
|
|
if (timeoutStart != nullptr) {
|
|
*timeoutStart = mWakelockTimeoutStartTime;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void HalProxy::decrementRefCountAndMaybeReleaseWakelock(size_t delta,
|
|
int64_t timeoutStart /* = -1 */) {
|
|
if (!mThreadsRun.load()) return;
|
|
std::lock_guard<std::recursive_mutex> lockGuard(mWakelockMutex);
|
|
if (delta > mWakelockRefCount) {
|
|
ALOGE("Decrementing wakelock ref count by %zu when count is %zu",
|
|
delta, mWakelockRefCount);
|
|
}
|
|
if (timeoutStart == -1) timeoutStart = mWakelockTimeoutResetTime;
|
|
if (mWakelockRefCount == 0 || timeoutStart < mWakelockTimeoutResetTime) return;
|
|
mWakelockRefCount -= std::min(mWakelockRefCount, delta);
|
|
if (mWakelockRefCount == 0) {
|
|
release_wake_lock(kWakelockName);
|
|
}
|
|
}
|
|
|
|
void HalProxy::setDirectChannelFlags(SensorInfo* sensorInfo,
|
|
std::shared_ptr<ISubHalWrapperBase> subHal) {
|
|
bool sensorSupportsDirectChannel =
|
|
(sensorInfo->flags & (V1_0::SensorFlagBits::MASK_DIRECT_REPORT |
|
|
V1_0::SensorFlagBits::MASK_DIRECT_CHANNEL)) != 0;
|
|
if (mDirectChannelSubHal == nullptr && sensorSupportsDirectChannel) {
|
|
mDirectChannelSubHal = subHal;
|
|
} else if (mDirectChannelSubHal != nullptr && subHal != mDirectChannelSubHal) {
|
|
// disable direct channel capability for sensors in subHals that are not
|
|
// the only one we will enable
|
|
sensorInfo->flags &= ~(V1_0::SensorFlagBits::MASK_DIRECT_REPORT |
|
|
V1_0::SensorFlagBits::MASK_DIRECT_CHANNEL);
|
|
}
|
|
}
|
|
|
|
std::shared_ptr<ISubHalWrapperBase> HalProxy::getSubHalForSensorHandle(int32_t sensorHandle) {
|
|
return mSubHalList[extractSubHalIndex(sensorHandle)];
|
|
}
|
|
|
|
bool HalProxy::isSubHalIndexValid(int32_t sensorHandle) {
|
|
return extractSubHalIndex(sensorHandle) < mSubHalList.size();
|
|
}
|
|
|
|
size_t HalProxy::countNumWakeupEvents(const std::vector<Event>& events, size_t n) {
|
|
size_t numWakeupEvents = 0;
|
|
for (size_t i = 0; i < n; i++) {
|
|
int32_t sensorHandle = events[i].sensorHandle;
|
|
if (mSensors[sensorHandle].flags & static_cast<uint32_t>(V1_0::SensorFlagBits::WAKE_UP)) {
|
|
numWakeupEvents++;
|
|
}
|
|
}
|
|
return numWakeupEvents;
|
|
}
|
|
|
|
int32_t HalProxy::clearSubHalIndex(int32_t sensorHandle) {
|
|
return sensorHandle & (~kSensorHandleSubHalIndexMask);
|
|
}
|
|
|
|
bool HalProxy::subHalIndexIsClear(int32_t sensorHandle) {
|
|
return (sensorHandle & kSensorHandleSubHalIndexMask) == 0;
|
|
}
|
|
|
|
} // namespace implementation
|
|
} // namespace V2_1
|
|
} // namespace sensors
|
|
} // namespace hardware
|
|
} // namespace android
|
|
|