/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "Sensor.h" #include #include #include namespace android { namespace hardware { namespace sensors { namespace V2_1 { namespace subhal { namespace implementation { using ::android::hardware::sensors::V1_0::MetaDataEventType; using ::android::hardware::sensors::V1_0::OperationMode; using ::android::hardware::sensors::V1_0::Result; using ::android::hardware::sensors::V1_0::SensorFlagBits; using ::android::hardware::sensors::V1_0::SensorStatus; using ::android::hardware::sensors::V2_1::Event; using ::android::hardware::sensors::V2_1::SensorInfo; using ::android::hardware::sensors::V2_1::SensorType; Sensor::Sensor(int32_t sensorHandle, ISensorsEventCallback* callback) : mIsEnabled(false), mSamplingPeriodNs(0), mLastSampleTimeNs(0), mCallback(callback), mMode(OperationMode::NORMAL) { mSensorInfo.sensorHandle = sensorHandle; mSensorInfo.vendor = "The LineageOS Project"; mSensorInfo.version = 1; constexpr float kDefaultMaxDelayUs = 1000 * 1000; mSensorInfo.maxDelay = kDefaultMaxDelayUs; mSensorInfo.fifoReservedEventCount = 0; mSensorInfo.fifoMaxEventCount = 0; mSensorInfo.requiredPermission = ""; mSensorInfo.flags = 0; mRunThread = std::thread(startThread, this); } Sensor::~Sensor() { // Ensure that lock is unlocked before calling mRunThread.join() or a // deadlock will occur. { std::unique_lock lock(mRunMutex); mStopThread = true; mIsEnabled = false; mWaitCV.notify_all(); } mRunThread.join(); } const SensorInfo& Sensor::getSensorInfo() const { return mSensorInfo; } void Sensor::batch(int32_t samplingPeriodNs) { samplingPeriodNs = std::clamp(samplingPeriodNs, mSensorInfo.minDelay * 1000, mSensorInfo.maxDelay * 1000); if (mSamplingPeriodNs != samplingPeriodNs) { mSamplingPeriodNs = samplingPeriodNs; // Wake up the 'run' thread to check if a new event should be generated now mWaitCV.notify_all(); } } void Sensor::activate(bool enable) { if (mIsEnabled != enable) { std::unique_lock lock(mRunMutex); mIsEnabled = enable; mWaitCV.notify_all(); } } Result Sensor::flush() { // Only generate a flush complete event if the sensor is enabled and if the sensor is not a // one-shot sensor. if (!mIsEnabled || (mSensorInfo.flags & static_cast(SensorFlagBits::ONE_SHOT_MODE))) { return Result::BAD_VALUE; } // Note: If a sensor supports batching, write all of the currently batched events for the sensor // to the Event FMQ prior to writing the flush complete event. Event ev; ev.sensorHandle = mSensorInfo.sensorHandle; ev.sensorType = SensorType::META_DATA; ev.u.meta.what = MetaDataEventType::META_DATA_FLUSH_COMPLETE; std::vector evs{ev}; mCallback->postEvents(evs, isWakeUpSensor()); return Result::OK; } void Sensor::startThread(Sensor* sensor) { sensor->run(); } void Sensor::run() { std::unique_lock runLock(mRunMutex); constexpr int64_t kNanosecondsInSeconds = 1000 * 1000 * 1000; while (!mStopThread) { if (!mIsEnabled || mMode == OperationMode::DATA_INJECTION) { mWaitCV.wait(runLock, [&] { return ((mIsEnabled && mMode == OperationMode::NORMAL) || mStopThread); }); } else { timespec curTime; clock_gettime(CLOCK_REALTIME, &curTime); int64_t now = (curTime.tv_sec * kNanosecondsInSeconds) + curTime.tv_nsec; int64_t nextSampleTime = mLastSampleTimeNs + mSamplingPeriodNs; if (now >= nextSampleTime) { mLastSampleTimeNs = now; nextSampleTime = mLastSampleTimeNs + mSamplingPeriodNs; mCallback->postEvents(readEvents(), isWakeUpSensor()); } mWaitCV.wait_for(runLock, std::chrono::nanoseconds(nextSampleTime - now)); } } } bool Sensor::isWakeUpSensor() { return mSensorInfo.flags & static_cast(SensorFlagBits::WAKE_UP); } std::vector Sensor::readEvents() { std::vector events; Event event; event.sensorHandle = mSensorInfo.sensorHandle; event.sensorType = mSensorInfo.type; event.timestamp = ::android::elapsedRealtimeNano(); event.u.vec3.x = 0; event.u.vec3.y = 0; event.u.vec3.z = 0; event.u.vec3.status = SensorStatus::ACCURACY_HIGH; events.push_back(event); return events; } void Sensor::setOperationMode(OperationMode mode) { if (mMode != mode) { std::unique_lock lock(mRunMutex); mMode = mode; mWaitCV.notify_all(); } } bool Sensor::supportsDataInjection() const { return mSensorInfo.flags & static_cast(SensorFlagBits::DATA_INJECTION); } Result Sensor::injectEvent(const Event& event) { Result result = Result::OK; if (event.sensorType == SensorType::ADDITIONAL_INFO) { // When in OperationMode::NORMAL, SensorType::ADDITIONAL_INFO is used to push operation // environment data into the device. } else if (!supportsDataInjection()) { result = Result::INVALID_OPERATION; } else if (mMode == OperationMode::DATA_INJECTION) { mCallback->postEvents(std::vector{event}, isWakeUpSensor()); } else { result = Result::BAD_VALUE; } return result; } } // namespace implementation } // namespace subhal } // namespace V2_1 } // namespace sensors } // namespace hardware } // namespace android